

2021 Groundwater and Soil Vapour Monitoring Report McKenzie Trails Recreation Area NE and SE Portions of Section 28-037-27 W4M

PRESENTED TO City of Red Deer

JUNE 15, 2022 ISSUED FOR USE FILE: 704-SWM.SWOP04071-02.003

> Tetra Tech Canada Inc. Suite 110, 140 Quarry Park Blvd SE Calgary, AB T2C 3G3 CANADA Tel 403.203.3355 Fax 403.203.3301

This page intentionally left blank.

EXECUTIVE SUMMARY

The City of Red Deer (The City) retained Tetra Tech Canada Inc. (Tetra Tech) to conduct the 2021 groundwater and vapour monitoring program at the former landfill located beneath the McKenzie Trails Recreation Area (McKenzie Trails), located within the NE and SE Section of 28-038-27 W4M in Red Deer, Alberta, hereafter referred to as "the site". The objective of the monitoring program is to identify potential environmental concerns related to former operations at the site.

Tetra Tech's scope of work for the 2021 monitoring and sampling program at the McKenzie Trails site included conducting semi-annual events of groundwater and vapour monitoring, annual groundwater sampling, reviewing, and updating previous recommendations for the site, and preparing an annual report.

The groundwater monitoring network at the site consists of six monitoring wells (MW-01 to MW-05 and MW-203). MW-03 (deep) and MW-04 (shallow) are a nested pair located in the northeast section of the site. Most of the wells are screened within the native sand and gravel. MW-05 is screened within the municipal solid waste (MSW) to bedrock. The vapour monitoring network consists of one vapour monitoring well (VW-01) near the southeast corner of the site.

Based upon the results of the groundwater and soil vapour monitoring and sampling conducted in 2021 and previous years, Tetra Tech has developed the following conclusions:

- The groundwater elevations in 2021 could not be contoured as there were no clear elevation differences in the central portion of the site, while elevations at wells away from the centre may have been influenced by water level fluctuations in the nearby Red Deer River and adjacent channel sediments. However, the inferred groundwater flow direction based on historical results was overall northerly, which is consistent with the flow direction in the Red Deer River. Groundwater elevations in 2021 were overall slightly lower than the groundwater elevations measured in 2019.
- Routine groundwater chemistry parameters and dissolved metals that exceeded the Tier 1 Guidelines at one
 or more monitoring wells in 2021 included total dissolved solids (TDS), sodium, ammonia, and the dissolved
 metals arsenic, iron, manganese, and selenium. The measured concentrations of one or more of these
 parameters suggest leachate has impacted the groundwater quality at MW-03, MW-04, and MW-203, each
 hydraulically down-gradient of the waste disposal area.
- In 2021, the only monitoring well that exceeded the guideline value derived for ammonia in accordance with the Environmental Quality Guidelines for Alberta Surface Waters was MW-04. The calculated guideline value for the well was 10.7 mg-N/L, while the measured concentration was 11.2 mg-N/L. Groundwater near MW-04 is expected to ultimately discharge into the Red Deer River, which is approximately 90 m north of the monitoring well. Based on the measured concentration and the expected dilution effect when groundwater discharges, the environmental risk is considered low.
- Concentrations of dissolved benzene, toluene, ethylbenzene, and xylenes (BTEX) and petroleum hydrocarbon (PHC) fractions F1 to F2, were less than the analytical detection limits at most locations in 2021. MW-203 had a detectable concentration of benzene (0.00058 mg/L), marginally greater than the analytical detection limit (0.00050 mg/L). Concentrations of BTEX and PHC fractions F1 and F2 were less than the Tier 1 Guidelines at all locations.
- Concentrations of vinyl chloride were greater than the Tier 1 Guideline in the groundwater samples collected from MW-03, MW-04, and MW-203. Additionally, concentrations of 1,2-dichloroethene (cis) (cis-1,2-DCE) were detected at MW-03, MW-04, and MW-203. The concentrations of vinyl chloride and cis-1,2-DCE measured are indicators of MSW leachate impacting the groundwater below the site. However, the concentrations of both volatile organic compounds (VOCs) have been consistent since 2019, the concentrations are considered low,

and the VOC concentrations are not interpreted to impose a significant risk to the freshwater quality in the nearby Red Deer River.

- In 2021, methane was not detected at vapour well VW-01. The methane concentrations from the groundwater monitoring well headspaces were also measured and were all relatively low ranging from less than the instrument detection limit (5 parts per million [ppm]) at several wells in July and November to 190 ppm at MW-01 and MW-03 in July. For methane, 50,000 ppm, or 5% gas, is equivalent to the lower explosive limit (LEL). Additionally, methane concentrations in the on-site bathrooms were monitored, and the concentrations ranged from 10 ppm in November 2021 to 90 ppm in July 2021. The likelihood of methane accumulating in the outdoor bathrooms is low as they are open to atmospheric air along the base of the roofline.
- During the 2021 monitoring events, a site walkover was conducted to assess the thin soil cover identified in the earlier work by Tiamat Environmental Consultants Ltd. (Tiamat), to evaluate for exposed wastes and/or seepage along the riverbank. No potential exposed wastes and/or seepage was identified during the site walkovers in July 2021 and November 2021.

Based upon the results of the groundwater monitoring program in 2021 and previous years, there are residual impacts in the groundwater and buried waste remains beneath the site; therefore, ongoing risk management is required; however, the risk management can be reduced over time with consistent analytical results. Risk management is recommended to include ongoing monitoring and administrative actions. The following recommendations are made according to these risk management elements:

- Ongoing Monitoring:
 - Reduce the groundwater monitoring and sampling program to annually at the site for another year to confirm concentrations measured to date and to monitor trends. If groundwater results remain consistent, Tetra Tech proposes to reduce the monitoring events over time, as illustrated in Table 6.1 below. However, if groundwater quality drastically changes, adjustments should be made to the monitoring program accordingly.

•				•	•					
Activity	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031
Annual Groundwater Monitoring (6 wells) and Sampling (3 wells)	Х		Х			Х				Х

Proposed Groundwater and Vapour Monitoring Program

- The groundwater monitoring and sampling program going forward should consist of water level monitoring at the six on-site monitoring wells (MW-01, MW-02, MW-03, MW-04, MW-05, and MW-203) and sampling of the three down-gradient monitoring wells (MW-03, MW-04, and MW-203) as per the proposed schedule.
- Based on the 2021 results, the risk of vapour migration is interpreted to be low and soil vapour headspace monitoring of all wells (groundwater and vapour) and on-site bathrooms is not recommended to continue.
- Administrative Actions:
 - Utilize the revised generic mitigative measures (when evaluating applications for development within the setback).
 - Ensure that the site is clearly identified within The City's Land Use Bylaw and appropriate administrative requirements are met for the site in accordance with City policies.

Further to the above recommendations, as noted the site remains an historical landfill. It presently appears to be well maintained and capped. The City should review this status on an ongoing basis to ensure that the cover remains intact and drainage remains positive; repairs or maintenance should be undertaken as required to maintain the site.

TABLE OF CONTENTS

1.0	INT	RODUCTION	1
	1.1	2019 Report – Key Findings and Recommendations	
	1.2	Scope of Work	
2.0	BAC	CKGROUND INFORMATION	3
	2.1	General Information	3
	2.2	Conceptual Site Model Summary	4
	2.3	Monitoring Well Network	5
3.0	MO	NITORING AND SAMPLING METHODOLOGY	5
	3.1	Groundwater Monitoring and Sampling	5
		3.1.1 Groundwater Monitoring and Sampling Methodology	5
		3.1.2 Groundwater Sampling Analytical Program	6
	3.2	Vapour Monitoring and Sampling Program	6
		3.2.1 Vapour Monitoring Methodology	6
4.0	RES	SULTS AND DISCUSSION	7
	4.1	Well Headspace Monitoring	7
	4.2	Groundwater Elevations	7
	4.3	Groundwater Field Parameters	8
	4.4	Groundwater Analytical Results	8
		4.4.1 Background Groundwater Quality	8
		4.4.2 Routine Water Chemistry Parameters	8
		4.4.3 Dissolved Metals	9
		4.4.4 Organic Parameters	
	4.5	Quality Assurance/Quality Control	
		4.5.1 Methods	10
		4.5.2 Results	11
5.0	EVA	ALUATION OF SITE CONDITIONS	11
6.0	CON	NCLUSIONS AND RECOMMENDATIONS	12
7.0	CLC	OSURE	14
RFF		NCES	
ا ك ۲			

APPENDIX SECTIONS

TABLES

- Table 1
 Monitoring Results Groundwater Wells
- Table 2Groundwater Analytical Results
- Table 3 Groundwater Quality Assurance/Quality Control Analytical Results
- Table 4
 Monitoring Results Soil Vapour Well

FIGURES

- Figure 1 Site Location Plan
- Figure 2 Site Plan and Surrounding Land Use
- Figure 3 Historical Groundwater Elevations (Groundwater Monitoring Wells)
- Figure 4 Groundwater Elevation Contours July 2021
- Figure 5 Groundwater Elevation Contours November 2021

APPENDICES

- Appendix A Tetra Tech's Limitations on the Use of this Document
- Appendix B Site History, Historical Information, Site Setting, 2019 Hazard Quotients, and 2014 Risk Management Plan Review
- Appendix C Cross-sections (Tiamat 2014A)
- Appendix D Laboratory Analytical Reports
- Appendix E Historical Analytical Data
- Appendix F Borehole Logs

LIMITATIONS OF REPORT

This report and its contents are intended for the sole use of The City of Red Deer and their agents. Tetra Tech Canada Inc. (Tetra Tech) does not accept any responsibility for the accuracy of any of the data, the analysis, or the recommendations contained or referenced in the report when the report is used or relied upon by any Party other than The City of Red Deer, or for any Project other than the proposed development at the subject site. Any such unauthorized use of this report is at the sole risk of the user. Use of this document is subject to the Limitations on the Use of this Document attached in Appendix A or Contractual Terms and Conditions executed by both parties.

1.0 INTRODUCTION

The City of Red Deer (The City) retained Tetra Tech Canada Inc. (Tetra Tech) to conduct the 2021 groundwater and vapour monitoring program at the former landfill located beneath the McKenzie Trails Recreation Area (McKenzie Trails), located within the NE and SE Sections of 28-038-27 W4M, hereafter referred to as the site.

Tetra Tech previously undertook groundwater and soil vapour monitoring at the site in 2019 based on a broader program for The City's pre-1972 landfill sites. The results of that monitoring program identified indications of leachate impacts related to the former landfill operations at several monitoring wells. Based on these findings, Tetra Tech recommended conducting an additional year of soil vapour and groundwater monitoring to verify the on-site methane concentrations and conduct groundwater sampling to confirm the concentrations of leachate related parameters.

This report presents the results of the 2021 groundwater and vapour monitoring and sampling program at the site, which was undertaken based on the document 2021 Work Scope and Cost Estimate – Red Deer Pre-1972 Landfills, submitted to The City on March 2, 2021.

1.1 2019 Report – Key Findings and Recommendations

The scope of work for the 2019 monitoring program was based on the proposal submitted by Tetra Tech on January 11, 2019 to The City to conduct environmental monitoring services for the pre-1972 landfill sites.

The objectives of the project outlined in the 2019 proposal were to:

- Confirm and implement the prior recommendations, as per the request for proposal (RFP);
- Consult with the regulator on amendments to the program, as required;
- Conduct environmental monitoring and sampling for each of the eight sites, as outlined in the RFP recommendations, while incorporating any approved recommendations;
- Update the hazard quotients for each site; and
- Prepare an environmental monitoring report for each site.

The 2019 groundwater and vapour monitoring report identified that there was no evidence of significant concerns related to the former landfill operations at McKenzie Trails. However, there was evidence of residual impacts by leachate and the site does contain buried landfill waste; therefore, some risk management measures are required. Key findings of the report included the following:

- The groundwater elevations in 2019 indicated that the inferred groundwater flow direction was overall northerly, which is consistent with the groundwater flow direction from 2013 and the flow direction in the Red Deer River.
- Routine groundwater chemistry parameters and dissolved metals that exceeded the Alberta Tier 1 Soil and Groundwater Remediation Guidelines (Tier 1 Guidelines) at one or more monitoring wells in 2019 included total dissolved solids (TDS), ammonia, arsenic, copper, iron, and manganese. The measured concentrations of one or more of these parameters suggest leachate has impacted the groundwater quality at MW-03, MW-04, and MW-203.

- Concentrations of benzene, toluene, ethylbenzene and xylenes (BTEX) and petroleum hydrocarbon (PHC) fractions F1 to F2, were less than the analytical detection limits at most locations in 2019. MW-203 had a detectable concentration of benzene (0.00053 mg/L), marginally greater than the analytical detection limit (0.00050 mg/L). Concentrations of BTEX and PHC fractions F1 and F2 were less than the Tier 1 Guidelines at all locations.
- Concentrations of vinyl chloride were greater than the Tier 1 Guideline in the groundwater samples collected from MW-04 and MW-203. Concentrations of vinyl chloride were historically less than the analytical detection limit at MW-04; no historical data was available for MW-203.
- Concentrations of BTEX, hydrocarbons, and volatile organic compounds (VOCs) in the soil vapour sample were
 less than the calculated soil vapour screening criteria.
- Concentrations of siloxanes were less than the analytical detections limits in the vapour sample collected.
- The estimated individual and cumulative risks and hazards associated with the soil vapour sample collected in December 2019 did not exceed the corresponding target risk and hazard levels.

Based on these findings, recommendations for the 2021 monitoring program were as follows:

- Continue with a semi-annual groundwater monitoring program, with annual sampling at the hydraulically down-gradient monitoring wells (MW-03, MW-04, and MW-203) for another year to confirm trends. These wells should be sampled for routine chemistry, dissolved metals, and VOC parameters.
- Survey the elevation of MW-203 to better establish the groundwater flow pattern within the northern portion of the site.
- If the measured concentrations are stable or decreasing, discontinue monitoring and sampling at the site. If the
 concentrations are confirmed and remain greater than the referenced guidelines, a qualitative evaluation of
 risks should be made to evaluate the potential concern, if any, these concentrations pose to the adjacent
 Red Deer River.
- Based on the results of the soil vapour sample, there is little indication that this pathway will pose a hazard to receptors. The soil vapour concentrations were less than the levels of concern and groundwater concentrations of volatile chemicals were also less than the established Tier 1 Guidelines, except for vinyl chloride at monitoring wells MW-04 and MW-203. Historical results have not identified vinyl chloride. If the concentrations of vinyl chloride exceed the referenced guideline in groundwater during the next monitoring events, a qualitative evaluation of risks, as stated above, should be conducted.
- Conduct vapour headspace monitoring for methane at each monitoring well in conjunction with the groundwater monitoring program.
- Conduct a walkthrough of the bathroom buildings located near the centre of the site, within the waste footprint, to evaluate the potential for accumulation of methane; if the potential for accumulation is identified, indoor air monitoring could be undertaken in conjunction with the well headspace monitoring.
- Continue to monitor the riverbank during the semi-annual monitoring events for potential waste exposure and seepage due to bank erosion.

1.2 Scope of Work

Based on the 2019 findings and recommendations, the 2021 monitoring program scope of work included the following activities:

- Conducting semi-annual events of groundwater and vapour monitoring, including measuring headspace vapours and groundwater levels within each monitoring well and observing monitoring well integrity.
- Conducting annual groundwater sampling of monitoring wells MW-03, MW-04, and MW-203 by:
 - Purging shallow groundwater monitoring wells and deep groundwater monitoring wells until practically dry
 or until a minimum of three well volumes had been removed and allowing the water levels in the wells to
 recover;
 - Measuring field parameters (pH, electrical conductivity [EC], and water temperature) at the time of sampling; and
 - Collecting groundwater samples from each well and submitting the samples for laboratory chemical analyses.
- Conducting a semi-annual walkthrough of the on-site bathrooms to assess the potential for methane accumulation.
- Conduct a semi-annual site walkover along the riverbank to evaluate the potential for waste exposure and seepage due to bank erosion.
- Conducting monitoring well repairs, as required.
- Preparing an annual report summarizing the field activities undertaken for the year and interpreting the groundwater monitoring and analytical results and soil vapour monitoring results.

In the 2019 groundwater and soil vapour monitoring report (Tetra Tech 2020), Tetra Tech recommended monitoring of groundwater monitoring well headspaces for methane as a useful screening tool in the absence of vapour wells in other areas of the site. Subsequently, headspace monitoring at these wells was undertaken for methane, and monitoring for VOCs and combustible vapour concentrations (CVCs) was not conducted in 2021.

The project was completed under Tetra Tech's Limitations on the Use of this Document for conducting environment work. A copy of these conditions is provided in Appendix A.

2.0 BACKGROUND INFORMATION

2.1 General Information

The site is located within the NE and SE portions of 28-038-27 W4M, within Plan 4086EO and 3081MC. The site is zoned P1 – Parks and Recreation and is located within the McKenzie Trails Park. The site is located on the east bank of the Red Deer River, north of 67 Street and east of Riverside Drive. The Red Deer River is adjacent to the west boundary of the site and flows in a northeasterly direction. A site location plan is shown on Figure 1. The site has been redeveloped, and includes a picnic shelter, man-made pond, playground, paved walking trails, surface parking, and two year-round washroom facilities. The Phase I environmental site assessment (ESA) by Tiamat Environmental Consultants Ltd. (Tiamat 2013) identified a non-potable water well as providing water for the public washroom facilities is

supplied by tanks, which are filled periodically by a water truck. The surrounding land use consists of Environmental Preservation District, Future Urban Development District, and Parks and Recreation District. A residential subdivision is located on the east side of the park. Natural areas of the site consist of grasses, trees, and wetlands. Figure 2 shows the site location with surrounding land use.

Additional information on the site history, historical groundwater monitoring investigations, site setting, 2019 hazard quotient calculations, and 2014 risk management plan (RMP) review can be found in Appendix B (Tiamat Environmental Consultants Ltd. [Tiamat] 2014b). Cross-sections that were prepared using the wells previously installed at the site in 2013 are included in Appendix C (from Tiamat 2014a). The available borehole logs for the vapour and groundwater monitoring wells are attached in Appendix F.

2.2 Conceptual Site Model Summary

The selection of comparative guidelines is based on the conceptual site model (CSM), which outlines the rationale for the selection of applicable exposure pathways and receptors at the site. This evaluation is based on guidance presented in the Alberta Tier 1 Guidelines (Alberta Environment and Parks [AEP] 2019). The CSM that was developed for the site in the 2019 groundwater and soil vapour monitoring report (Tetra Tech 2020) included the following items:

- Description of identified environmental issues including a description of processes or activities undertaken at or near the site and a listing of chemicals of potential concern (COPCs) identified in earlier investigations.
- Description of known and reported historical releases, including locations and status of any subsequent ESAs and remediation.
- Identification of applicable exposure pathways and receptors.

The following table presents a summary of the relevant exposure pathways and receptors identified in the CSM.

Release Mechanism	COPC	Migration/Exposure Pathway	Potential Receptor
Leachate infiltration from buried waste into foundation or	nutrients, metals, PHCs, VOCs, and other indicator		Human users of the parkland; ecological plants and soil invertebrates.
through cover.	parameters (i.e., biological oxygen demand [BOD] and chemical oxygen demand [COD]).	Groundwater ingestion (drinking water).	Domestic use aquifer (DUA) drinking water; freshwater aquatic life in the Red Deer River.
		Off-site surface migration (wind or water erosion).	Adjacent sites of more sensitive land use.
		Nutrient and energy cycling.	Microbial functioning of the soil.
Landfill gas (LFG) emissions from buried	VOCs, methane, BTEX and PHC fractions, and siloxanes.	Vapour inhalation.	Human users of the parkland.
waste.	Methane.	Accumulation to explosive levels in presence of an ignition source	Enclosed spaces.

Summary of Conceptual Site Model

As recommended by AEP, the soil vapour results obtained during the 2019 investigation were evaluated using the Canadian Council of Minister of the Environment's (CCME's) document A Protocol for the Derivation of Soil Vapour Quality Guidelines for Protection of Human Exposures Via Inhalation of Vapours (CCME 2014). To determine the appropriate vapour guidelines, indoor air risk calculations were undertaken and hazard quotients were calculated.

Potential explosive risk was evaluated through relative comparison of the measured concentrations to the lower explosive limit (LEL) for methane (5% Gas by volume).

The CSM determined that the most applicable guidelines for groundwater and vapour results for the site were as follows:

- Groundwater concentrations at the site were compared to the Alberta Tier 1 Guidelines under residential and parkland land use for coarse-grained soils (AEP 2019).
- Soil vapour analytical results were compared to A Protocol for the Derivation of Soil Vapour Quality Guidelines for Protection of Human Exposures Via Inhalation of Vapours under residential land use for both slab-on-grade and basement for coarse-grained soils (CCME 2014).

2.3 Monitoring Well Network

The groundwater monitoring network at the site consists of six monitoring wells (MW-01 to MW-05 and MW-203). MW-03 (deep) and MW-04 (shallow) are a nested pair located in the northeast section of the site. Most of the wells are screened to the bottom of the well within the native sand and gravel. MW-05 is screened within municipal solid waste (MSW) to bedrock. Monitoring well completion details are summarized in Table 1. Most monitoring wells were reported to be in good condition in 2021. MW-03 and MW-04 appeared to have been vandalized and were repaired in November 2021. The vapour monitoring network consists of one vapour monitoring well (VW-01) near the southeast corner of the site. The vapour well was reported to be in good condition during all events in 2021.

Monitoring well MW-203 was surveyed by The City in 2021 and is now incorporated into the monitoring well network.

Groundwater and vapour monitoring well locations are shown on Figure 2.

3.0 MONITORING AND SAMPLING METHODOLOGY

3.1 Groundwater Monitoring and Sampling

A discussion of the methods used for the fieldwork and laboratory testing is presented in the following sections. In 2021, Tetra Tech conducted groundwater monitoring on July 9 and July 12, and November 21. Groundwater sampling was conducted on November 21, 2021.

3.1.1 Groundwater Monitoring and Sampling Methodology

Monitoring at the groundwater monitoring wells (51 mm diameter) consisted of measuring methane in the monitoring well headspace and static groundwater levels in each monitoring well semi-annually (July and November).

The methodology for monitoring and sampling at the groundwater monitoring wells included the following:

- Observing the integrity of each well and noting drainage and site conditions near the well that may have an
 effect on monitoring results or groundwater quality.
- Measuring the methane headspace concentrations in each well using an RKI Eagle Hydrocarbon Surveyor II (RKI Eagle) calibrated to methane.

- Measuring liquid levels in each monitoring well with an interface probe and recording total depths confirming absence of non-aqueous phase liquids (NAPL) and evaluating the water level relative to the screen to confirm the screen was not blinded.
- Recording of field data on standardized forms as documented in Tetra Tech standard operating practices.
- Purging each monitoring well requiring sampling using dedicated polyethylene bailers or Waterra tubing with inertial pump foot valves of at least three well volumes of water, or until the well was practically dry.

Following the completion of groundwater monitoring and purging, groundwater samples were collected from the required wells using the procedures identified below:

- Groundwater samples were collected from three monitoring wells (MW-03, MW-04, and MW-203). Samples
 were collected and placed into appropriate laboratory supplied, sterile glass and plastic vials and bottles for the
 required analytical package. Samples were filtered and/or preserved in the field, as required.
- Field measurements were taken for pH, EC, and temperature at the time of sampling.
- Samples were submitted in coolers with ice to ALS Laboratory Group (ALS) in Calgary, Alberta for laboratory analysis under a chain-of-custody (COC) documentation.

3.1.2 Groundwater Sampling Analytical Program

The analytical program for the groundwater monitoring wells was developed based on the recommendations in Section 1.1 and is summarized below:

- Routine water chemistry and dissolved metals.
- VOCs.

3.2 Vapour Monitoring and Sampling Program

A discussion of the methods used for the fieldwork and laboratory testing is presented in the following sections. In 2021, Tetra Tech conducted vapour monitoring on July 9 and November 21.

3.2.1 Vapour Monitoring Methodology

Monitoring at the vapour monitoring probe (25 mm diameter) consisted of measuring and recording soil gas pressure, composition (methane, carbon dioxide, oxygen, hydrogen sulphide, and balance) on a percent volumetric basis, and groundwater elevation semi-annually (July and November).

The soil vapour probe was inspected for visible signs of damage and the position of the sampling labcock was noted. Soil gas pressure was recorded using a digital manometer. Once the soil gas pressure measurement was recorded, the soil gas probe was purged of three well volumes of air, or until readings stabilized. The soil vapour well on site is a small diameter soil gas probe and was purged directly with the GEM LFG analyzer.

After purging, gas composition measurements for methane, carbon dioxide, oxygen, balance gas, and hydrogen sulphide were recorded using the GEM analyzer. After recording soil gas concentrations, the probe/well depths and water levels were measured and recorded to confirm the water level within the probe was beneath the screen portion of the soil gas probe (i.e., the probe was not blinded).

After monitoring, the soil vapour probe sampling port was returned to the closed position and the well was securely locked.

4.0 **RESULTS AND DISCUSSION**

This section presents the results of the fieldwork conducted in 2021 at the site and discussions of these results.

4.1 Well Headspace Monitoring

The headspace vapour concentrations for 2021 are presented in Table 1 (groundwater wells) and Table 4 (soil vapour probe). Based on the style of installation, different monitoring methodologies were utilized; however, the instruments utilized were each calibrated to methane. In 2021, Tetra Tech monitored six groundwater monitoring wells (MW-01, MW-02, MW-03, MW-04, MW-05 and MW-203) semi-annually for measurements of methane in well headspace using an RKI Eagle, calibrated to methane. The RKI Eagle detection limit ranges from 5 parts per million (ppm) to 100% of the lower explosive limit (LEL). For methane, 500 ppm is equivalent to 1% LEL; 20% LEL is equivalent to 1% Gas.

At the groundwater monitoring wells, the water level was above the top of the monitoring well screen for monitoring wells MW-02 and MW-05 during both monitoring events in 2021, meaning the wells were blinded and headspace vapour measurements are not representative for in-situ soil vapours. Monitoring well MW-01 located up-gradient of the waste footprint was not blinded during the 2021 monitoring events. The top of screen elevations are unknown for MW-03, MW-04, and MW-203; consequently, it cannot be determined if the wells were blinded during the 2021 monitoring events. The vapour well (VW-01) was dry during both events in 2021 indicating the well was not blinded with groundwater.

During the July 2021 monitoring event, methane headspace concentrations at the groundwater wells (measured using the RKI) ranged from less than the instrument detection limit at down-gradient wells MW-04 and MW-203 to 190 parts per million (ppm) at MW-01 and MW-03. During the November 2021 monitoring event, methane headspace concentrations at the groundwater wells ranged from less than the instrument detection limit at MW-03, MW-04, and MW-203 to 50 ppm at MW-05. At the vapour well (VW-01), concentrations of methane (measured using the GEM) were less than the instrument detection limit during both monitoring events in 2021.

During the 2021 monitoring events, methane concentrations were measured (using the RKI) at the bathrooms located in the centre of the site and the bathroom located west of the parking lot near MW-203. The on-site bathrooms are labelled on Figure 2. The on-site bathrooms are unlocked outdoor public bathrooms that are open to atmospheric air along the base of the roofline. During the monitoring events, the instrument did not detect measurable amounts of methane in any bathroom. The manhole located next to the central bathroom was measured to have 90 ppm in July 2021 and 10 ppm in November 2021. The methane concentrations measured from the manhole are considered low and not necessarily interpreted to be related to methane migration from the landfill.

Wellhead pressures at vapour well VW-01 were negligible during both monitoring events in 2021. Carbon monoxide was detected at VW-01 in July 2021 (1.0%); however, the concentration was less than the instrument detection limit in November 2021. Concentrations of carbon dioxide, oxygen, and the balance gas were consistent during both monitoring events and with the concentrations measured in 2019.

4.2 **Groundwater Elevations**

The measured groundwater levels and calculated groundwater elevations for 2021 are presented in Table 1.

Figure 3 presents the groundwater elevation trends (hydrographs) for the groundwater monitoring wells. This figure shows the groundwater elevations in 2013, 2019, and 2021. Overall, groundwater elevations decreased at most monitoring wells from those measured in 2019, with the exception of MW-03 and MW-05. Groundwater levels remained fairly constant throughout 2021. Similar decreases in water levels were observed at MW-01, MW-02, MW-04, and MW-203 from July 2021 to November 2021.

In 2021, the average depth to groundwater in the monitoring wells was 2.34 m below grade (mbg) in July, and 2.56 mbg in November 2021. The groundwater elevations for July 2021 and November 2021 are shown on Figure 4 and Figure 5, respectively. In 2021, the groundwater elevations were not contoured as there were no clear elevation differences in the middle of the site, while elevations at wells away from the centre may have been influenced by water level fluctuations in the nearby Red Deer River and its historical channel sediments. The wells installed in native soils suggest an overall northern direction of flow parallel to the river; the central well installed in waste (MW-05) has a marginally greater elevation suggesting that the site may represent a localized mounding of groundwater. The historical groundwater flow is interpreted to be north-northwest towards the Red Deer River.

4.3 Groundwater Field Parameters

Field measurements for temperature, pH, and EC in November 2021 are shown in Table 2. A discussion of the results of the field tests is summarized in this section.

In 2021, groundwater temperatures ranged from 5.7°C (MW-203) to 7.9°C (MW-03).

In 2021, field pH values ranged from 6.76 (MW-203) to 7.22 (MW-03). The field pH measurements were generally less than the laboratory pH at all monitoring wells. The difference between field recorded and laboratory pH values may be due to limitations of the field equipment and differences in sample temperature.

In 2021, field EC measurements ranged from 1,062 μ S/cm (MW-203) to 1,564 μ S/cm (MW-03). The field EC measurements were less than the laboratory measured EC results, which may be due to limitations of field equipment or temperature differences.

4.4 Groundwater Analytical Results

The groundwater analytical data for 2021 is summarized in Table 2. The 2021 laboratory analytical reports are included in Appendix D. Historical data from the 2013 Phase II ESA are included in Appendix E.

4.4.1 Background Groundwater Quality

MW-01 and MW-02 are up-gradient of the site and may represent background groundwater quality. Monitoring wells MW-01 and MW-02 were not sampled in 2021. The 2019 results at MW-01 and MW-02 suggest that both up-gradient wells had low concentrations of chloride (17.0 mg/L and 7.67 mg/L, respectively), MW-01 had guideline exceedances of dissolved arsenic, dissolved iron, and dissolved lead and MW-02 contained concentrations of dissolved manganese and dissolved copper greater than the Tier 1 Guidelines. Concentrations of BTEX, PHC fractions F1 and F2, and VOCs were less than the analytical detection limits at MW-01 and MW-02 in 2019.

4.4.2 Routine Water Chemistry Parameters

In 2021, TDS concentrations ranged from 803 mg/L (MW-203) to 1,100 mg/L (MW-03). TDS concentrations at monitoring wells MW-03, MW-04, and MW-203 were greater than the Tier 1 Guidelines (500 mg/L) in 2021. TDS concentrations measured in 2021 were consistent with the results from 2019. Elevated TDS concentrations often

occur in groundwater as a result of the dissolution of naturally occurring salts and minerals, and do not necessarily indicate groundwater quality impact related to the former landfill. Monitoring wells MW-03, MW-04, and MW-203 exhibited elevated concentrations of hardness (calcium and magnesium combined) and alkalinity with respect to the other site wells in 2019 and reported similar concentrations in 2021. Elevated concentrations of hardness and alkalinity is often observed when the groundwater quality is affected by leachate.

In 2021, concentrations of chloride at the site ranged from 24.0 mg/L at MW-203 to 43.2 mg/L at MW-03. The concentrations at all wells were less than the Tier 1 Guidelines (120 mg/L). Concentrations of chloride in 2021 were consistent with concentrations measured in 2013 and 2019.

In 2021, sodium concentrations increased at all monitoring wells that were analyzed. The sodium concentration at monitoring well MW-03 increased in 2021 to greater than the Tier 1 Guideline. The increase in sodium concentrations may be from variations in natural salinity of the deeper groundwater and is not interpreted to be indicative of site impacts.

Ammonia concentrations at several monitoring wells adjacent to the former waste footprint have been elevated relative to monitoring wells outside the waste (e.g., MW-01 and MW-02), and often near or greater than the referenced guideline values. In 2021, the only monitoring well that exceeded the guideline value derived in accordance with the Environmental Quality Guidelines for Alberta Surface Waters was MW-04. The calculated guideline value for the well was 10.7 mg-N/L (AEP 2018), while the measured concentration was 11.2 mg-N/L. Groundwater near MW-04 is expected to ultimately discharge into the Red Deer River, which is approximately 90 m north of the monitoring well. Based on the measured concentration and the expected dilution effect when groundwater discharges, the environmental risk is considered low.

Concentrations of nitrate and nitrite were less than the analytical detection limits at most monitoring wells, except for nitrate at MW-04 (0.301 mg-N/L) and MW-203 (0.121 mg-N/L), which were less than the Tier 1 Guideline.

4.4.3 Dissolved Metals

In 2021, the concentration of dissolved arsenic at MW-04 (0.00618 mg/L) was greater than the Tier 1 Guideline (0.005 mg/L) and dissolved selenium (0.00254 mg/L) exceeded the guideline (0.002 mg/L) at MW-203. Dissolved arsenic is strongly absorbed into iron(hydr)oxides, which are naturally occurring in most Alberta soils. If these iron precipitates dissolve under anoxic conditions, arsenic is mobilized. The results for the five monitoring wells in 2019 and 2021 show a correlation between dissolved iron and dissolved arsenic concentrations. The arsenic exceedance also near the Tier 1 Guideline and may be predominantly a result of iron(hydr)oxide dissolution rather than originating from MSW leachate. The single selenium exceedance is marginal (0.00254 mg/L), may be natural occurring, and is not considered to be of concern.

Iron and manganese are redox-sensitive parameters that also naturally occur in groundwater under anaerobic conditions and can help determine whether the groundwater quality is affected by biodegradation reactions, for instance related to landfill leachate. The dissolved manganese and iron concentrations were greater than the Tier 1 Guidelines (0.05 mg/L) at all monitoring wells during the sampling event in 2021.

4.4.4 Organic Parameters

Concentrations of BTEX and PHC fractions F1 to F2, were less than the analytical detection limits at most locations in 2021. MW-203 had a detectable concentration of benzene in 2021 (0.00058 mg/L), marginally greater than the analytical detection limit (0.00050 mg/L). The concentration was less than the Tier 1 Guideline (0.005 mg/L) and similar to the concentration measured in 2019 (0.00053 mg/L).

In 2021, VOC concentrations were less than the analytical detection limits for most parameters, except for cis-1,2-dichloroethene (cis-1,2-DCE) and vinyl chloride at MW-03, MW-04, and MW-203. A Tier 1 Guideline value has not been established for cis-1,2-DCE. Vinyl chloride exceeded the Tier 1 Guideline at MW-03 (0.0021 mg/L), MW-04 (0.0032 mg/L), and MW-203 (0.0046 mg/L); however, the concentrations were within the same order of magnitude as the guideline (0.0011 mg/L). It should be noted that the Tier 1 Guideline for vinyl chloride is based off human vapour inhalation and there is currently no guideline pertaining to freshwater aquatic life. The VOC concentrations measured in 2021 are consistent with the concentrations measured in 2019.

Cis-1,2-DCE is a known breakdown product of dry-cleaning liquids (i.e., tetrachloroethene [PCE] or trichloroethene [TCE]). It typically further degrades to form vinyl chloride. PCE or TCE were not detected in 2021 or 2019; however, in 2013, a PCE concentration of 0.0033 mg/L was measured at MW-05. MW-05 also contained a trace concentration (0.0007 mg/L) of vinyl chloride in 2013. As stated above, the well is completed within an area with MSW and was not sampled in either 2019 or 2021.

The measured concentrations of vinyl chloride and cis-1,2-DCE are indicators of MSW leachate impacting the groundwater hydraulically down-gradient from the site. Although both VOCs have consistently been detected since 2019, the concentrations are relatively low. Vinyl chloride and cis-1,2-DCE exhibit distinctly different properties. Vinyl chloride is gaseous substance with a boiling point of -13.4°C and a relatively low water solubility. Although there is evidence of carcinogenicity of vinyl chloride, owing to its high volatility, vinyl chloride has rarely been detected in surface water (World Health Organization [WHO] 2004). There is limited information on the toxicity of cis-1,2-DCE; however, the data suggest the compound has less toxicological concerns than vinyl chloride (WHO 2003). It is a dense liquid and when released to surface water, volatilization is expected to be the primary fate process, with a published estimated half-life of less than one day (Agency for Toxic Substances and Disease Registry [ATSDR] 1996). Based on the measured concentrations, and the published information on the properties and environmental fate of both VOCs, they are not interpreted to present a significant risk to the freshwater quality in the nearby Red Deer River.

Quality Assurance/Quality Control 4.5

4.5.1 **Methods**

Tetra Tech's groundwater quality assurance/quality control (QA/QC) procedures include reviewing the data collected for precision and accuracy and following the appropriate field protocols.

The field procedures for QA/QC involved:

- Changing nitrile gloves between sample collections;
- Using sample containers provided by the laboratory;
- Cleaning monitoring and sampling tools between sample locations;
- Filling sample containers for PHC analysis with no headspace (air) when the containers were closed;
- Conducting leak testing at vapour wells prior to the collection of vapour samples;
- Collecting a duplicate vapour sample during the vapour sampling event; and
- Documenting field procedures and sampling activities.

4.5.2 Results

The QA/QC results are included in Table 3. The duplicate sample was submitted for analysis of the same parameters as the original sample.

The duplicate analysis is compared by relative percent difference (RPD). The RPD is calculated using the following equation:

$$\text{RPD} = -\frac{(V_1 - V_2)}{\frac{(V_1 + V_2)}{2}} * 100\%$$

Where:

V₁ = Parent Sample

V₂ = Duplicate Sample

Chemical parameters were considered as having passed the QA/QC reproducibility procedure if the RPD was less than or equal to 20%, indicating a close correlation between the sample-duplicate pair.

RPD values were not calculated if one or both of the sample-duplicate concentrations were between the reportable detection limit (RDL) and five times the RDL. In these cases, chemical parameters were still considered as having passed the QA/QC reproducibility procedure if the sample duplicate concentration difference was less than one RDL value.

Duplicate RPDs were less than 20% for all the reportable concentrations. Based on the QA/QC results, the sample methods and results are considered acceptable.

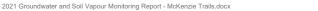
5.0 EVALUATION OF SITE CONDITIONS

Based on the 2021 and historical data for the site, there is no evidence that there are significant concerns related to the former landfill operations at McKenzie Trails. However, there is evidence of residual impacts by leachate and the site does contain buried landfill waste; therefore, some risk management measures are required. Further, there are several elements of the site assessment data requiring further confirmation as detailed below.

The groundwater quality appears to be affected by leachate at several monitoring wells. Most obvious are elevated ammonia concentrations at MW-03, MW-04, and MW-203. Chloride and boron, which are often elevated in MSW leachate, did not exceed the referenced guidelines at the monitoring wells that were sampled. Two chlorinated VOCs were detected in 2021 at the down-gradient monitoring wells. One VOC compound (vinyl chloride) exceeded the referenced Tier 1 Guidelines at MW-03, MW-04, and MW-203.

The site only contains one vapour well (VW-01), which is located between the waste footprint and the building to the southeast. The methane headspace concentrations in the groundwater monitoring wells were measured with the RKI Eagle. The RKI Eagle detection limit ranges from 5 ppm to 100% LEL. For methane, 500 ppm is equivalent to 1% LEL; 20% LEL is equivalent to 1% Gas. In 2021, methane headspace measurements from the groundwater monitoring wells were conducted and the concentrations ranged from less than the instrument detection limit at several wells in July and November to 190 ppm at MW-01 and MW-03 in July.

Additionally, methane concentrations in the on-site bathrooms were monitored, and the concentrations were less than the instrument's detection limits. The on-site bathrooms are unlocked outdoor public bathrooms that are vented to the atmospheric air and the risk for methane accumulation in the outdoor bathrooms is considered low.


During the 2021 monitoring events, a site walkover was conducted to assess the thin soil cover identified in the earlier work by Tiamat, to evaluate for exposed wastes and/or seepage along the riverbank. No potential exposed wastes and/or seepage was identified during the site walkovers in July and November.

The proximity of the Red Deer River warrants the groundwater flow pattern and trends in groundwater quality to continue to be monitored.

6.0 CONCLUSIONS AND RECOMMENDATIONS

Based upon the results of the groundwater and soil vapour monitoring and sampling conducted in 2021 and previous years, Tetra Tech has developed the following conclusions:

- The groundwater elevations in 2021 could not be contoured as there were no clear elevation differences in the central portion of the site, while elevations at wells away from the centre may have been influenced by water level fluctuations in the nearby Red Deer River and its adjacent channel sediments. However, the inferred groundwater flow direction based on historical results was overall northerly, which is consistent with the flow direction in the Red Deer River. Groundwater elevations in 2021 were overall slightly lower than the groundwater elevations measured in 2019.
- Routine groundwater chemistry parameters and dissolved metals that exceeded the Tier 1 Guidelines at one
 or more monitoring wells in 2021 included TDS, sodium, ammonia, and the dissolved metals arsenic, iron,
 manganese, and selenium. The measured concentrations of one or more of these parameters suggest leachate
 has impacted the groundwater quality at MW-03, MW-04, and MW-203, each hydraulically down-gradient of
 the waste disposal area.
- In 2021, the only monitoring well that exceeded the guideline value derived for ammonia in accordance with the Environmental Quality Guidelines for Alberta Surface Waters was MW-04. The calculated guideline value for the well was 10.7 mg-N/L, while the measured concentration was 11.2 mg-N/L. Groundwater near MW-04 is expected to ultimately discharge into the Red Deer River, which is approximately 90 m north of the monitoring well. Based on the measured concentration and the expected dilution effect when groundwater discharges, the environmental risk is considered low.
- Concentrations of BTEX and PHC fractions F1 to F2, were less than the analytical detection limits at most locations in 2021. MW-203 had a detectable concentration of benzene (0.00058 mg/L), marginally greater than the analytical detection limit (0.00050 mg/L). Concentrations of BTEX and PHC fractions F1 and F2 were less than the Tier 1 Guidelines at all locations.
- Concentrations of vinyl chloride were greater than the Tier 1 Guideline in the groundwater samples collected from MW-03, MW-04, and MW-203. Additionally, concentrations of cis-1,2-DCE were detected at MW-03, MW-04, and MW-203. The concentrations of vinyl chloride and cis-1,2-DCE measured are indicators of MSW leachate impacting the groundwater below the site. However, the concentrations of both VOCs have been consistent since 2019, the concentrations are considered low, and the VOC concentrations are not interpreted to impose a significant risk to the freshwater quality in the nearby Red Deer River.
- In 2021, methane was not detected at vapour well VW-01. The methane concentrations from the groundwater monitoring well headspaces were also measured and were all relatively low ranging from less than the instrument detection limit (5 ppm) at several wells in July and November to 190 ppm at MW-01 and MW-03 in July. For methane, 50,000 ppm, or 5% gas, is equivalent to the lower explosive limit. Additionally, methane concentrations in the on-site bathrooms were monitored, and the concentrations ranged from 10 ppm in November 2021 to 90 ppm in July 2021. The likelihood of methane accumulating in the outdoor bathrooms is low as they are open to atmospheric air along the base of the roofline.

 During the 2021 monitoring events, a site walkover was conducted to assess the thin soil cover identified in the earlier work by Tiamat, to evaluate for exposed wastes and/or seepage along the riverbank. No potential exposed wastes and/or seepage was identified during the site walkovers in July 2021 and November 2021.

Based upon the results of the groundwater monitoring program in 2021 and previous years, there are residual impacts in the groundwater and buried waste remains beneath the site; therefore, ongoing risk management is required; however, the risk management can be reduced over time with consistent analytical results. Risk management is recommended to include ongoing monitoring and administrative actions. The following recommendations are made according to these risk management elements:

- Ongoing Monitoring:
 - Reduce the groundwater monitoring and sampling program to annually at the site for another year to confirm concentrations measured to date and to monitor trends. If groundwater results remain consistent, Tetra Tech proposes to reduce the monitoring events over time, as illustrated in the table below. However, if groundwater quality drastically changes, adjustments should be made to the monitoring program accordingly.

Proposed Groundwater and Vapour Monitoring Program

Activity	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031
Annual Groundwater Monitoring (6 wells) and Sampling (3 wells)	X		Х			Х				Х

- The groundwater monitoring and sampling program going forward should consist of water level monitoring at the six on-site monitoring wells (MW-01, MW-02, MW-03, MW-04, MW-05, and MW-203) and sampling of the three down-gradient monitoring wells (MW-03, MW-04, and MW-203) as per the proposed schedule.
- Based on the 2021 results, the risk of vapour migration is interpreted to be low and soil vapour headspace monitoring of all wells (groundwater and vapour) and on-site bathrooms is not recommended to continue.
- Administrative Actions:
 - Utilize the revised generic mitigative measures (when evaluating applications for development within the setback).
 - Ensure that the site is clearly identified within The City's Land Use Bylaw and appropriate administrative requirements are met for the site in accordance with City policies.

Further to the above recommendations, as noted the site remains an historical landfill. It presently appears to be well maintained and capped. The City should review this status on an ongoing basis to ensure that the cover remains intact and drainage remains positive; repairs or maintenance should be undertaken as required to maintain the site.

7.0 CLOSURE

We trust this report meets your present requirements. If you have any questions or comments, please contact Frans Hettinga at our Calgary office.

Respectfully submitted, Tetra Tech Canada Inc.

Prepared by: Ryan Miller, B.Sc. Environmental Scientist Solid Waste Management Practice Direct Line: 403.723.3268 Ryan.Miller@tetratech.com

Reviewed by: Frans Hettinga, B.Sc. Principal Specialist Solid Waste Management Practice Direct Line: 403.723.6860 Frans.Hettinga@tetratech.com

FILE: 704-SWM.SWOP04071-02.003 FILE: 704-SWM.SWOP04071-02.003 FILE: 704-SWM.SWOP04071-02.003

Reviewed by: Sean D. Buckles, M.Sc., P.Eng. Senior Project Engineer- Team Lead Solid Waste Management Practice Direct Line: 403.723.6876 Sean.Buckles@tetratech.com

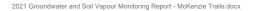
/dm:lc

PERMIT TO PRACTICE TETRA TECH CANADA INC.

RM SIGNATURE:

RM APEGA ID #: ____

DATE:


PERMIT NUMBER: P013774 The Association of Professional Engineers and Geoscientists of Alberta (APEGA)

REFERENCES

Agency for Toxic Substances and Disease Registry. 1996. Toxicology Profile for 1,2-Dichloroethene. Atlanta, GA.

- Alberta Environment and Parks. 2019. Alberta Tier 1 Soil and Groundwater Remediation Guidelines. Land Policy Branch, Policy and Planning Division. 198 pp.
- Canadian Council of Ministers of the Environment. 2014. A Protocol for the Derivation of Soil Vapour Quality Guidelines for Exposure Protection of Human Exposures via Inhalation of Vapours. Available online: http://ceqg-rcqe.ccme.ca/en/index.html#void.
- Government of Alberta. 2018. Environmental Quality Guidelines for Alberta Surface Waters. Water Policy Branch, Alberta Environment and Parks. Edmonton, Alberta.
- Tetra Tech Canada Inc. 2020. 2019 Groundwater and Soil Vapour Monitoring Report McKenzie Trails Recreation Area. Prepared for The City of Red Deer. October 2020. Project Number: 704-SWM.SWOP04071-01.003.
- Tiamat Environmental Consultants Ltd. 2013. Phase I Environmental Site Assessment, Historic Waste Disposal Site, McKenzie Trails Recreation Area, The City of Red Deer. September 24, 2013.
- Tiamat Environmental Consultants Ltd. 2014a. Phase II Environmental Site Assessment, Historic Waste Disposal Site, McKenzie Trails Recreation Area, The City of Red Deer. February 12, 2014.
- Tiamat Environmental Consultants Ltd. 2014b. Environmental Risk Management Plan, Historic Waste Disposal Sites, McKenzie Trails Recreation Area, The City of Red Deer. November 26, 2014.
- World Health Organization. 2004. Vinyl Chloride in Drinking-water. Background document for development of WHO Guidelines for Drinking-water Quality. https://www.who.int/water_sanitation_health/dwq/chemicals/ vinylchloride.pdf [accessed March 14, 2021].
- World Health Organization. 2003. 1,2-Dichloroethene in Drinking-water. Background document for development of WHO Guidelines for Drinking-water Quality. https://www.who.int/water_sanitation_health/waterquality/guidelines/chemicals/1-2-dichloroethene-background.pdf [accessed March 14, 2021]

TABLES

- Table 1
 Monitoring Results Groundwater Wells
- Table 2 Groundwater Analytical Results
- Table 3
 Groundwater Quality Assurance/Quality Control Analytical Results
- Table 4
 Monitoring Results Soil Vapour Well

Monitoring Well		MW-01	MW-02	MW-03	MW-04	MW-05	MW-203
Total Drilled Depth (m)		5.5	10.6	9.1	3.8	6.1	5.3
Top of Screened Interval (mbg)		0.9	6.9	-	-	3.1	-
Bottom of Screened Interval (mbg)		5.5	10.6	9.1	3.8	6.1	-
Stick up (m)		0.79	0.92	0.87	0.77	0.86	0.51
Ground Elevation (m)		848.29	849.75	847.47	847.48	849.38	848.61
TPC Elevation (m)		849.09	850.67	848.34	848.25	850.24	849.17
Depth to Groundwater (mBTPC)	Aug-13	1.71	3.10	1.56	1.55	3.69	4.12
	May-19	2.59	4.18	2.55	2.46	4.10	3.46
	Jun-19	2.63	4.01	2.40	2.29	4.11	2.96
	Sep-19	2.89	4.27	2.72	2.67	4.12	3.52
	Dec-19	2.75	3.35	2.50	2.38	4.12	2.52
	Jul-21	2.78	4.12	2.58	2.17	3.74	3.38
	Nov-21	3.15	4.38	2.59	2.51	3.78	3.70
Groundwater Elevation (m)	Aug-13	847.38	847.57	846.78	846.70	846.55	845.05
	May-19	846.50	846.49	845.79	845.79	846.15	845.72
	Jun-19	846.46	846.66	845.94	845.96	846.14	846.22
	Sep-19	846.19	846.40	845.62	845.58	846.13	845.65
	Dec-19	846.34	847.32	845.84	845.87	846.12	846.65
	Jul-21	846.31	846.55	845.76	845.76	846.50	845.79
	Nov-21	845.93	846.29	845.75	845.33	846.46	845.47
Volatile Organic Compounds*	May-19	ND	ND	ND	ND	ND	ND
(VOCs)	Jun-19	ND	ND	ND	ND	ND	ND
(ppm)	Sep-19	ND	ND	ND	ND	ND	Nd
	Dec-19	ND	1	1	1	1	1
Combustible Vapour	May-19	ND	ND	ND	ND	ND	ND
Concentrations* (CVCs)	Jun-19	ND	ND	ND	ND	ND	ND
(ppm)	Sep-19	35	15	ND	ND	170	100
	Dec-19	ND	20	ND	ND	5	20
Methane Concentrations** (ppm)	Jul-21	190	15	190	ND	45	ND
	Nov-21	5	10	ND	ND	50	ND

Table 1: Monitoring Results - Groundwater Wells

Notes:

mbg - Metres below grade.

mBTPC - Metres below top of plastic pipe casing.

ppm - Parts per million.

ND- non-detect

- Unavailable.

*- Measured using an RKI Eagle II calibrated to hexane (CVCs) and isobutylene (VOCs) and operated in methane elimination mode.

**- measured using an RKI Eagle II calibrated to methane.

Parameter	Unit	Tier 1 Guideline ^{1,2}	MW-01	MW-02		MW-03 (Deep We			/-04	MW-203		
	onit	Tier i Guideinie	4-Dec-2019	4-Dec-2019	4-Dec-2019	21-Nov-2021	21-Nov-2021 DUP	4-Dec-2019	21-Nov-2021	5-Dec-2019	21-Nov-2021	
Field												
Field Temperature	°C	-	2.90	5.42	2.64	7.88	-	2.67	6.63	1.15	5.72	
Field Electric Conductivity	μS/cm	-	434	381	1,017	1564	-	973	1521	510	1062	
Field pH	pH Units	6.5 to 8.5	8.53	7.98	7.48	7.22	-	7.25	7.04	7.64	6.76	
Routine				1							1	
pH	pH Units	6.5 to 8.5	8.13	8.22	7.77	7.85	7.89	7.53	7.71	8.03	7.79	
Electrical Conductivity (EC)	μS/cm	-	617	559	1,680	1690	1650	1,660	1700	1,030	1410	
Total Dissolved Solids (TDS)	mg/L	500	378	333	1,090	1100	1060	1,010	1080	633	803	
Hardness as CaCO ₃	mg/L	-	289	269	646	537	534	664	714	437	421	
Alkalinity (total as CaCO ₃)	mg/L	-	337	255	934	937	878	872	939	510	743	
Bicarbonate	mg/L	-	411	311	1,140	1140	1070	1,060	1140	622	906	
Carbonate	mg/L	-	<5.0	<5.0	<5.0	<1.0	<1.0	<5.0	<1.0	<5.0	<1.0	
Hydroxide	mg/L	-	<5.0	<5.0	<5.0	<1.0	<1.0	<5.0	<1.0	<5.0	<1.0	
Calcium	mg/L	-	71.7	72.2	168	144	142	168	185	119	110	
Magnesium	mg/L	-	26.8	21.6	55.0	43.0	43.5	59.3	61.1	33.9	35.5	
Potassium	mg/L	-	4.27	2.70	9.68	8.04	8.16	20.7	18.9	13.8	13.0	
Sodium	mg/L	200	40.1	16.4	174	207	209	96.6	113	47.1	64.8	
Chloride	mg/L	120	17.0	7.67	49.6	43.2	42.8	42.9	29.4	19.5	24.0	
Fluoride	mg/L	1.5	0.094	0.086	<0.10	<0.100	<0.100	<0.10	<0.100	<0.10	<0.100	
Phosphorus - Total	mg/L	-	0.412	0.0202	0.273	-	-	0.568	-	0.35	-	
Sulphate	mg/L	429 ³	16.0	59.6	69.5	64.4	63.7	94.7	71.4	93.2	78.3	
Anions Total (Filtered)	meq/L	-	-	-	-	21.3	20.1	-	21.1	-	17.2	
Cations Total (Filtered)	meq/L	-	-	-	-	20.4	20.4	-	20.7	-	12.5	
Ionic Balance	N/A	-	102	94.0	98.6	104.4	98.5	91.1	102	95.2	138	
Nutrients						-					-	
Ammonia as N	mg/L	0.309 to 29.961 6	0.477	<0.050	7.00	5.51	5.23	10.4	11.2	13.3	12.9	
Nitrate (as NO ₃ -N)	mg/L	3	<0.020	<0.020	<0.10	<0.100	<0.100	0.17	0.301	<0.10	0.121	
Nitrite (as NO ₂ -N)	mg/L	0.08 to 0.20 ⁴	<0.010	<0.010	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	
Nitrate and Nitrite (as N)	mg/L	-	<0.022	<0.022	<0.11	-	-	0.17	-	<0.11	-	
Total Kjeldahl Nitrogen (TKN)	mg/L	-	1.29	0.23	8.2	-	-	13.3	-	15	-	
Carbon												
Dissolved Organic Carbon (DOC)	mg/L	-	5.4	4.6	11.4	-	-	20.7	-	9.5	-	
Dissolved Metals												
Aluminum	mg/L	0.050 5	0.0033	0.0074	<0.0050	0.0069	0.0061	0.0348	<0.0050	0.0035	0.0080	
Antimony	mg/L	0.006	0.00014	0.00013	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00010	<0.00050	
Arsenic	mg/L	0.005	0.00828	0.00029	0.00137	0.00158	0.00179	0.00440	0.00618	0.00796	0.00209	
Barium	mg/L	1	0.421	0.152	0.309	0.371	0.372	0.253	0.278	0.188	0.211	
Beryllium	mg/L	-	-	-	-	<0.000100	<0.000100	-	<0.000100	-	<0.000100	
Bismuth	mg/L	-	-	-	-	<0.000250	<0.000250	-	<0.000250	-	<0.000250	
Boron	mg/L	1.5	0.024	0.016	0.875	0.907	0.882	0.977	1.47	0.494	0.617	
Cadmium	mg/L	0.00036 to 0.00037 ³	<0.000050	0.000148	<0.000025	0.0000286	0.0000274	0.0000830	0.000120	0.0000408	<0.0000250	
Chromium	mg/L	0.05	<0.00010	<0.00010	<0.00050	<0.00250	<0.00250	<0.00050	<0.00250	0.00015	<0.00250	
Cobalt	mg/L	-	-	-	-	0.00225	0.00214	-	0.00444	-	<0.00050	
Copper	mg/L	0.007	<0.00020	0.00719	0.0052	<0.00100	<0.00100	<0.0010	<0.00100	<0.00020	<0.00100	
Iron	mg/L	0.3	3.09	0.041	0.123	0.534	0.538	3.85	5.34	2.23	0.680	
Lead	mg/L	0.0070 ³	<0.000050	0.000219	<0.00025	<0.000250	<0.000250	<0.00025	<0.000250	<0.000050	<0.000250	
Lithium	mg/L	-	-	-	-	0.0499	0.0490	-	0.0304	-	0.0169	
Manganese	mg/L	0.05	0.861	0.0843	1.02	0.780	0.785	1.16	1.16	0.303	0.297	
Mercury	mg/L	0.000005	<0.0000050	<0.0000050	<0.000050	<0.000050	<0.000050	<0.0000050	<0.000050	<0.000050	<0.0000050	
Molybdenum	mg/L	-	-	-	-	0.00100	0.000941	-	0.00259	-	<0.000250	
Nickel	mg/L	0.120 to 0.275 3	0.00192	0.00099	0.0171	0.00532	0.00470	0.0093	0.00910	0.00054	0.00307	
Phosphorus	mg/L	-	-	-	-	<0.250	<0.250	-	<0.250	-	0.977	
Selenium	mg/L	0.002	0.000104	0.000132	<0.00025	<0.000250	<0.000250	<0.00025	<0.000250	0.000242	0.00254	
Silicon	mg/L	-	-	-	-	6.45	6.36	-	7.02	-	4.84	
Silver	mg/L	0.0001	<0.000010	<0.000010	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000010	<0.000050	
Strontium	mg/L	-	-	-	-	1.80	1.77	-	1.81	-	1.21	
Sulphur	mg/L	-	-	-	-	27.6	28.3	-	29.7	-	19.1	
Thallium	mg/L	-	-	-	-	<0.000050	<0.000050	-	<0.000050	-	<0.000050	
Tin	mg/L	-	-	-	-	<0.00050	<0.00050	-	<0.00050	-	<0.00050	
Titanium	mg/L	-	-	-	-	<0.00150	<0.00150	-	<0.00150	-	<0.00150	
Uranium	mg/L	0.015	0.000733	0.000851	0.00242	0.00238	0.00229	0.00297	0.00351	0.00059	0.000228	
Vanadium	mg/L	-	-	-	-	< 0.00250	< 0.00250	-	<0.00250	-	< 0.00250	
					I		-					
Zinc	mg/L	0.03	<0.0010	0.0058	0.0247	0.0054	< 0.0050	0.0097	0.0087	0.0011	< 0.0050	

Table 2: Groundwater Analytical Results

Notes:

¹ Alberta Environment and Parks (AEP). 2019. Alberta Tier 1 Soil and Groundwater Remediation Guidelines. Land Policy Branch, Policy and Planning Division. 198 pp. Referenced guidelines are for coarse-textured soils under Residential/Parkland land use. ² Alberta Environment and Parks (AEP). Environmental Quality Guidelines for Alberta Surface Waters. March 2018. Table 1 Surface water quality guidelines for the protection of freshwater aquatic life (FAL). Most conservative values applied (chronic or acute). ³ Guideline varies with hardness. Values shown based on site hardness range of 269 mg/L to 714 mg/L.
 ⁴ Guideline varies with chloride. Values shown based on site chloride range of 7.70 mg/L to 49.6 mg/L.

⁵ Guideline varies with pH. Values shown based on site pH range of 6.76 to 8.53.

⁶ Guideline varies with pH and temperature. Values shown based on pH range of 6.76 to 8.53 and temperature range of 1.15°C to 7.88°c.

"-" No applicable guideline or not analyzed. "ND" Non-detected.

BOLD - Greater than Tier 1 Guideline.

N/A - Not applicable.

-
0.0080
<0.00050
0.00209
0.211
<0.000100
<0.000250
0.617
<0.0000250
<0.00250
<0.00050
<0.00100
0.680
<0.000250
0.0169
0.0169 0.297
0.297
0.297 <0.0000050
0.297 <0.0000050 <0.000250
0.297 <0.0000050 <0.000250 0.00307
0.297 <0.000050 <0.000250 0.00307 0.977
0.297 <0.0000050 <0.000250 0.00307 0.977 0.00254

Parameter	Unit	Tier 1 Guideline ^{1,2}	MW-01	MW-02		MW-03 (Deep Well)	MW	/-04	MW-20
	Unit	Tier 1 Guideline "*	4-Dec-2019	4-Dec-2019	4-Dec-2019	21-Nov-2021	21-Nov-2021 DUP	4-Dec-2019	21-Nov-2021	5-Dec-2019
Drganics										
AOX	mg/L	-	ND	ND	ND	-	-	ND	-	ND
Hydrocarbons						-				
Benzene	mg/L	0.005	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	0.00053
Toluene	mg/L	0.021	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Ethylbenzene	mg/L	0.0016	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Xylenes (m & p)	mg/L	-	<0.00050	<0.00050	<0.00050	<0.00030	<0.00030	<0.00050	<0.00030	<0.00050
Xylene (o)	mg/L	-	<0.00050	<0.00050	<0.00050	<0.00040	<0.00040	<0.00050	<0.00040	<0.00050
Xylenes Total	mg/L	0.02	<0.00071	<0.00071	<0.00071	< 0.00050	<0.00050	<0.00071	< 0.00050	<0.00071
Styrene	mg/L	0.072	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	< 0.00050	<0.00050
F1 (C ₆ -C ₁₀)	mg/L	-	<0.10	<0.10	<0.10	-	-	<0.10	-	<0.10
F1 (C ₆ -C ₁₀) - BTEX	mg/L	0.81	<0.10	<0.10	<0.10	-	-	<0.10	-	<0.10
F2 (C ₁₀ -C ₁₆)	mg/L	1.1	<0.10	<0.10	<0.10	-	-	<0.10	-	<0.10
Total BTEX	mg/L	-	-	-	-	<0.0010	<0.0010	-	<0.0010	-
Volatile Fatty/Carboxylic Acids				1						
Acetic Acid	mg/L	-	<10	<10	<10	-	-	<10	-	<10
Butyric Acid	mg/L	-	<1.0	<1.0	<1.0	-	-	<1.0	-	<1.0
Formic Acid	mg/L	-	<50	<50	<50	-	-	<50	-	<50
Hexanoic Acid	mg/L	-	<1.0	<1.0	<1.0	-	-	<1.0	-	<1.0
iso-Butyric Acid	- <u> </u>	-		<1.0	<1.0	-	-	<1.0	-	
Isovaleric Acid	mg/L	-	<1.0	<1.0	<1.0	-	-	<1.0	-	<1.0
	mg/L					-	-		-	
Propanoic Acid	mg/L		<5.0	<5.0	<5.0	-		<5.0		<5.0
Valeric Acid	mg/L	-	<1.0	<1.0	<1.0	-	-	<1.0	-	<1.0
Polycyclic Aromatic Hydrocarbons (PAHs)										
Naphthalene	mg/L	0.001	-	-	-	<0.0010	<0.0010	-	<0.0010	-
Volatile Organic Compounds (VOCs)	1					1				
Bromobenzene	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
Bromochloromethane	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
Bromodichloromethane	mg/L	-	<0.00050	<0.00050	<0.00050	<0.0010	<0.0010	<0.00050	<0.0010	<0.00050
Bromoform	mg/L	-	<0.00050	<0.00050	<0.00050	<0.0010	<0.0010	<0.00050	<0.0010	<0.00050
Bromomethane	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
n-Butylbenzene	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
sec-Butylbenzene	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
tert-Butylbenzene	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
Carbon tetrachloride	mg/L	0.00057	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Chlorobenzene	mg/L	0.0013	<0.00050	<0.00050	<0.00050	<0.0010	<0.0010	<0.00050	<0.0010	<0.00050
Chloroethane	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
Chloroform	mg/L	0.018	<0.00050	<0.00050	<0.00050	<0.0010	<0.0010	<0.00050	<0.0010	<0.00050
Chloromethane	mg/L	-	<0.0010	<0.0010	<0.0010	< 0.0050	<0.0050	<0.0010	<0.0050	<0.0010
2-Chlorotoluene	mg/L	-	<0.0010	<0.0010	<0.0010	< 0.0010	<0.0010	<0.0010	<0.0010	<0.0010
4-Chlorotoluene	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
Dibromochloromethane	mg/L	0.19	<0.00050	<0.00050	<0.00050	<0.0010	<0.0010	<0.00050	<0.0010	<0.00050
1,2-Dibromo-3-chloropropane	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
1,2-Dibromoethane	mg/L	-	<0.00050	<0.00050	<0.00050	<0.0010	<0.0010	<0.00050	<0.0010	<0.00050
Dibromomethane	mg/L	-	<0.00050	<0.00050	<0.00050	<0.0010	<0.0010	<0.00050	<0.0010	<0.00050
1,2-Dichlorobenzene	mg/L	0.0007	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	< 0.00050	< 0.00050	<0.00050
1,3-Dichlorobenzene	mg/L	-	<0.00050	< 0.00050	<0.00050	<0.0010	<0.0010	<0.00050	<0.0010	<0.00050
1,4-Dichlorobenzene	mg/L	0.001	<0.00050	< 0.00050	<0.00050	<0.0010	<0.0010	<0.00050	<0.0010	<0.00050
1,1-Dichloroethane	mg/L	0.001	<0.00050	< 0.00050	<0.00050	<0.0010	<0.0010	< 0.00050	<0.0010	<0.00050
1,2-Dichloroethane	mg/L	0.005	<0.00030	<0.00050	<0.00050	<0.0010	<0.0010	<0.00050	<0.0010	<0.00050
1,1-Dichloroethene		0.005	<0.00050	<0.0010	<0.0010	<0.0010	<0.0010	<0.00050	<0.0010	<0.00050
1,2-Dichloroethene (cis)	mg/L	+ + +								
	mg/L	-	<0.0010	<0.0010	0.0036	0.0042	0.0039	0.0083	0.0077	0.0083
1,2-Dichloroethene (trans)	mg/L	-	<0.00050	< 0.00050	<0.00050	<0.0010	<0.0010	< 0.00050	<0.0010	<0.00050
Dichlorodifluoromethane	mg/L	-	<0.00050	< 0.00050	<0.00050	<0.0010	<0.0010	<0.00050	<0.0010	<0.00050
1,2-Dichloropropane	mg/L	-	< 0.00050	< 0.00050	<0.00050	< 0.0010	<0.0010	< 0.00050	< 0.0010	<0.00050

¹ Alberta Environment and Parks (AEP). 2019. Alberta Tier 1 Soil and Groundwater Remediation Guidelines. Land Policy Branch, Policy and Planning Division. 198 pp. Referenced guidelines are for coarse-textured soils under Residential/Parkland land use. ² Alberta Environment and Parks (AEP). Environmental Quality Guidelines for Alberta Surface Waters. March 2018. Table 1 Surface water quality guidelines for the protection of freshwater aquatic life (FAL). Most conservative values applied (chronic or acute).

³ Guideline varies with hardness. Values shown based on site hardness range of 269 mg/L to 714 mg/L. ⁴ Guideline varies with chloride. Values shown based on site chloride range of 7.70 mg/L to 49.6 mg/L.

 5 Guideline varies with pH. Values shown based on site pH range of 6.76 to 8.53.

⁶ Guideline varies with pH and temperature. Values shown based on pH range of 6.76 to 8.53 and temperature range of 1.15°C to 7.88°C.

"-" No applicable guideline or not analyzed.

"ND" Non-detected.

BOLD - Greater than Tier 1 Guideline.

N/A - Not applicable.

203
21-Nov-2021
-
0.00058
<0.00050
<0.00050
<0.00030
<0.00040
<0.00050
< 0.00050
-
-
-
<0.0010
<0.0010
-
-
-
-
-
-
-
-
-
<0.0010
<0.0010
< 0.0010
<0.0010
<0.0010
<0.0010
<0.0010
<0.0010
<0.0010
<0.00050
< 0.0010
<0.0010
<0.0010
<0.0050
<0.0010
<0.0010
<0.0010
<0.0010
<0.0010
<0.0010
< 0.00050
<0.0010
<0.0010
<0.0010
<0.0010
< 0.0010
0.0098
<0.0010
<0.0010
<0.0010

Table 2: Groundwater Analytical Results

Parameter	Unit	Tion 4 Quidaline 12	MW-01	MW-02		MW-03 (Deep Wel	I)	MW-04		MM	V-203
Farameter	Unit	Tier 1 Guideline ^{1,2}	4-Dec-2019	4-Dec-2019	4-Dec-2019	21-Nov-2021	21-Nov-2021 DUP	4-Dec-2019	21-Nov-2021	5-Dec-2019	2
Volatile Organic Compounds (VOCs)											
1,3-Dichloropropane	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	
2,2-Dichloropropane	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	
1,1-Dichloropropene	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	
1,3-Dichloropropene	mg/L	-	-	-	-	<0.0015	<0.0015	-	<0.0015	-	
1,3-Dichloropropene [cis]	mg/L	-	<0.00050	<0.00050	<0.00050	<0.0010	<0.0010	<0.00050	<0.0010	<0.00050	
1,3-Dichloropropene [trans]	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	
Hexachlorobutadiene	mg/L	0.0013	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	
p-Isopropyltoluene	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	
Methyl t-Butyl Ether (MTBE)	mg/L	0.015	-	-	-	<0.00050	<0.00050	-	<0.00050	-	
Methylene Chloride	mg/L	0.05	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	
iso-Propylbenzene (cumene)	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	
n-Propylbenzene	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	
1,1,1,2-Tetrachloroethane	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	
1,1,2,2-Tetrachloroethane	mg/L	-	<0.00050	<0.00050	<0.00050	<0.0010	<0.0010	<0.00050	<0.0010	<0.00050	
Tetrachloroethene	mg/L	0.01	<0.00050	<0.00050	<0.00050	<0.0010	<0.0010	<0.00050	<0.0010	<0.00050	
1,2,3-Trichlorobenzene	mg/L	0.008	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	
1,2,4-Trichlorobenzene	mg/L	0.015	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	
1,1,1-Trichloroethane	mg/L	-	<0.00050	<0.00050	<0.00050	<0.0010	<0.0010	<0.00050	<0.0010	<0.00050	
1,1,2-Trichloroethane	mg/L	-	<0.00050	<0.00050	<0.00050	<0.0010	<0.0010	<0.00050	<0.0010	<0.00050	
Trichloroethene	mg/L	0.005	<0.00050	<0.00050	<0.00050	<0.0010	<0.0010	<0.00050	<0.0010	<0.00050	
Trichlorofluoromethane	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	
Trihalomethanes	mg/L	0.1	-	-	-	<0.0020	<0.0020	-	<0.0020	-	
1,2,3-Trichloropropane	mg/L	-	<0.00050	<0.00050	<0.00050	<0.0010	<0.0010	<0.00050	<0.0010	<0.00050	
1,2,4-Trimethylbenzene	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	
1,3,5-Trimethylbenzene	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	
Vinyl chloride	mg/L	0.0011	<0.00050	<0.00050	0.00070	0.0021	0.0018	0.00643	0.0032	0.00289	

Notes:

¹ Alberta Environment and Parks (AEP). 2019. Alberta Tier 1 Soil and Groundwater Remediation Guidelines. Land Policy Branch, Policy and Planning Division. 198 pp. Referenced guidelines are for coarse-textured soils under Residential/Parkland land use. ² Alberta Environment and Parks (AEP). Environmental Quality Guidelines for Alberta Surface Waters. March 2018. Table 1 Surface water quality guidelines for the protection of freshwater aquatic life (FAL). Most conservative values applied (chronic or acute). ³ Guideline varies with hardness. Values shown based on site hardness range of 269 mg/L to 714 mg/L.
 ⁴ Guideline varies with chloride. Values shown based on site chloride range of 7.70 mg/L to 49.6 mg/L.

⁵ Guideline varies with pH. Values shown based on site pH range of 6.76 to 8.53.

⁶ Guideline varies with pH and temperature. Values shown based on pH range of 6.76 to 8.53 and temperature range of 1.15°C to 7.88°C.

"-" No applicable guideline or not analyzed.

"ND" Non-detected.

BOLD - Greater than Tier 1 Guideline.

N/A - Not applicable.

203
21-Nov-2021
<0.0010
<0.0010
<0.0010
<0.0015
<0.0010
<0.0010
<0.0010
<0.0010
<0.00050
<0.0010
<0.0010
<0.0010
<0.0010
<0.0010
<0.0010
<0.0010
<0.0010
<0.0010
<0.0010
<0.0010
<0.0010
<0.0020
<0.0010
<0.0010
<0.0010
0.0046

Parameter	Unit	RDL	MW-03	DUPLICATE	RPD (%)	
			21-Nov-2021	21-Nov-2021		
Routine						
рН	pH Units	0.1	7.85	7.89	1	
Electrical Conductivity (EC)	μS/cm	1	1690	1650	2	
Total Dissolved Solids (TDS)	mg/L	1	1100	1060	4	
Hardness as CaCO ₃	mg/L	0.6	537	534	1	
Alkalinity (total as CaCO ₃)	mg/L	1	937	878	7	
Bicarbonate	mg/L	1	1140	1070	6	
Carbonate	mg/L	1	<1.0	<1.0	-	
Hydroxide	mg/L	1	<1.0	<1.0	-	
Calcium	mg/L	0.25	144	142	1	
/lagnesium	mg/L	0.5	43.0	43.5	1	
Potassium	mg/L	0.5	8.04	8.16	1	
Sodium	mg/L	0.25	207	209	1	
Chloride	mg/L	2.5	43.2	42.8	1	
luoride	mg/L	0.1	<0.100	<0.100	-	
Sulphate	mg/L	1.5	64.4	63.7	1	
Anions Total	meq/L	0.1	21.3	20.1	6	
Cations Total	meq/L	0.1	20.4	20.4	0	
onic Balance	N/A	0.01	2.16	0.741	-	
lutrients		0.01	2.10			
Ammonia as N	mg/L	0.5	5.51	5.23	5	
litrate (as NO ₃ -N)	mg/L	0.1	<0.100	<0.100	-	
Nitrite (as NO ₂ -N)	mg/L	0.05	<0.050	<0.050		
Dissolved Metals	III9/L	0.00	-0.030	-0.030		
Aluminum	mall	0.005	0.0069	0.0061		
Antimony	mg/L	0.0005	<0.00050	< 0.00050	-	
Arsenic	mg/L	0.0005	0.00158	0.00179	-	
Barium	mg/L	0.0005	0.371	0.372	-	
	mg/L				0.3	
Beryllium	mg/L	0.0001	<0.000100	<0.000100	-	
Bismuth	mg/L	0.00025	<0.000250	<0.000250	-	
Boron	mg/L	0.05	0.907	0.882	3	
	mg/L	0.000025	0.0000286	0.0000274	-	
Chromium	mg/L	0.0025	<0.00250	<0.00250	-	
Cobalt	mg/L	0.0005	0.00225	0.00214	-	
Copper	mg/L	0.001	<0.00100	<0.00100	-	
ron	mg/L	0.05	0.534	0.538	1	
ead	mg/L	0.00025	<0.000250	<0.000250	-	
ithium	mg/L	0.005	0.0499	0.0490	2	
Manganese	mg/L	0.0005	0.780	0.785	1	
<i>l</i> ercury	mg/L	0.000005	<0.000050	<0.000050	-	
<i>l</i> olybdenum	mg/L	0.00025	0.00100	0.000941	-	
lickel	mg/L	0.0025	0.00532	0.00470	-	
Phosphorus	mg/L	0.25	<0.250	<0.250	-	
Selenium	mg/L	0.00025	<0.000250	<0.000250	-	
Silicon	mg/L	0.25	6.45	6.36	1	
Silver	mg/L	0.00005	<0.000050	<0.000050	-	
Strontium	mg/L	0.001	1.80	1.77	2	
Sulphur	mg/L	2.5	27.6	28.3	3	
- Thallium	mg/L	0.00005	<0.000050	<0.000050	-	
in	mg/L	0.0005	<0.00050	< 0.00050	_	
itanium	mg/L	0.0015	<0.00050	<0.00150		
Jranium	mg/L	0.00005	0.00238	0.00229	4	
/anadium		0.0005	<0.00238	<0.00229		
Zinc	mg/L	0.0025	0.00250	<0.00250	-	
	1 110/1	1 0.000	0.00004	I SU.UUDU	-	

Notes:

RDL - Reportable detection limit

RPD - Relative Percentage Difference calculated as RPD(%)=(|V1-V2|)/[(V1+V2)/2])*100 where V1,V2 = concentrations of parent and duplicate sample, respectively.

"-" Indicates RPD not calculated. RPDs have only been considered where both concentrations are greater than 5 times the RDL

N/A - Not applicable

 $\underline{\textbf{BOLD}}$ - RPD value greater than 20%

Table 3: Groundwater Quality Assurance/Quality Control Analytical Results

Parameter	Unit	RDL	MW-03	DUPLICATE	RPD (%)	
			21-Nov-2021	21-Nov-2021		
Hydrocarbons	, n	0.0005	-0.00050	-0.00050		
Benzene	mg/L	0.0005	< 0.00050	< 0.00050	-	
	mg/L	0.0005	<0.00050	<0.00050	-	
Ethylbenzene Xylenes (m & p)	mg/L	0.0005	<0.00050	<0.00050	-	
Xylene (o)	mg/L mg/L	0.0003	<0.00030	<0.00030 <0.00040	-	
Xylenes Total	mg/L	0.0004	<0.00040	<0.00040	-	
Styrene	mg/L	0.0005	<0.00050	<0.00050	-	
Total BTEX	mg/L	0.0003	<0.00030	<0.00030	-	
Polycyclic Aromatic Hydrocarbons (PAHs)	ing/L	0.001	40.0010	40.0010		
Naphthalene	mg/L	0.001	<0.0010	<0.0010		
Volatile Organic Compounds (VOCs)		0.001	0.0010	0.0010		
Bromobenzene	mg/L	0.001	<0.0010	<0.0010	-	
Bromochloromethane	mg/L	0.001	<0.0010	<0.0010	-	
Bromodichloromethane	mg/L	0.001	<0.0010	<0.0010	-	
Bromoform	mg/L	0.001	<0.0010	<0.0010	-	
Bromomethane	mg/L	0.001	< 0.0010	<0.0010	-	
n-Butylbenzene	mg/L	0.001	< 0.0010	<0.0010	-	
sec-Butylbenzene	mg/L	0.001	<0.0010	<0.0010	-	
ert-Butylbenzene	mg/L	0.001	<0.0010	<0.0010	-	
Carbon tetrachloride	mg/L	0.0005	<0.00050	<0.00050	-	
Chlorobenzene	mg/L	0.001	<0.0010	<0.0010	-	
Chloroethane	mg/L	0.001	<0.0010	<0.0010	-	
Chloroform	mg/L	0.001	<0.0010	<0.0010	-	
Chloromethane	mg/L	0.005	<0.0050	<0.0050	-	
2-Chlorotoluene	mg/L	0.001	<0.0010	<0.0010	-	
I-Chlorotoluene	mg/L	0.001	<0.0010	<0.0010	-	
Dibromochloromethane	mg/L	0.001	<0.0010	<0.0010	-	
I,2-Dibromo-3-chloropropane	mg/L	0.001	<0.0010	<0.0010	-	
,2-Dibromoethane	mg/L	0.001	<0.0010	<0.0010	-	
Dibromomethane	mg/L	0.001	<0.0010	<0.0010	-	
1,2-Dichlorobenzene	mg/L	0.0005	<0.00050	<0.00050	-	
1,3-Dichlorobenzene	mg/L	0.001	<0.0010	<0.0010	-	
1,4-Dichlorobenzene	mg/L	0.001	<0.0010	<0.0010	-	
,1-Dichloroethane	mg/L	0.001	<0.0010	<0.0010	-	
1,2-Dichloroethane	mg/L	0.001	<0.0010	<0.0010	-	
1,1-Dichloroethene	mg/L	0.001	<0.0010	<0.0010	-	
1,2-Dichloroethene (cis)	mg/L	0.001	0.0042	0.0039	-	
1,2-Dichloroethene (trans)	mg/L	0.001	<0.0010	<0.0010	-	
Dichlorodifluoromethane	mg/L	0.001	<0.0010	<0.0010	-	
1,2-Dichloropropane	mg/L	0.001	<0.0010	<0.0010	-	
1,3-Dichloropropane	mg/L	0.001	<0.0010	<0.0010	-	
2,2-Dichloropropane	mg/L	0.001	<0.0010	<0.0010	-	
I,1-Dichloropropene	mg/L	0.001	<0.0010	<0.0010	-	
1,3-Dichloropropene	mg/L	0.0015	<0.0015	<0.0015	-	
1,3-Dichloropropene [cis]	mg/L	0.001	<0.0010	<0.0010	-	
I,3-Dichloropropene [trans]	mg/L	0.001	<0.0010	<0.0010	-	
Hexachlorobutadiene	mg/L	0.001	<0.0010	<0.0010	-	
o-Isopropyltoluene	mg/L	0.001	<0.0010	<0.0010	-	
Methyl t-Butyl Ether (MTBE)	mg/L	0.0005	<0.00050	<0.00050	-	
Methylene Chloride	mg/L	0.001	<0.0010	<0.0010	-	
so-Propylbenzene (cumene)	mg/L	0.001	<0.0010	<0.0010	-	
n-Propylbenzene	mg/L	0.001	<0.0010	<0.0010	-	
I,1,1,2-Tetrachloroethane	mg/L	0.001	<0.0010	<0.0010	-	
,1,2,2-Tetrachloroethane	mg/L	0.001	<0.0010	<0.0010	-	
etrachloroethene	mg/L	0.001	<0.0010	<0.0010	-	
,2,3-Trichlorobenzene	mg/L	0.001	<0.0010	<0.0010	-	
,2,4-Trichlorobenzene	mg/L	0.001	<0.0010	<0.0010	-	
,1,1-Trichloroethane	mg/L	0.001	<0.0010	<0.0010	-	
l,1,2-Trichloroethane	mg/L	0.001	<0.0010	<0.0010	-	
Trichloroethene	mg/L	0.001	<0.0010	<0.0010	-	
Trichlorofluoromethane	mg/L	0.001	<0.0010	<0.0010	-	
Trihalomethanes	mg/L	0.002	<0.0020	<0.0020	-	
,2,3-Trichloropropane	mg/L	0.001	<0.0010	<0.0010	-	
,2,4-Trimethylbenzene	mg/L	0.001	<0.0010	<0.0010	-	
I,3,5-Trimethylbenzene	mg/L	0.001	<0.0010	<0.0010	-	
/inyl chloride	mg/L	0.001	0.0021	0.0018	-	

Notes:

RDL - Reportable detection limit

RPD - Relative Percentage Difference calculated as $RPD(\%)=(|V1-V2|)/[(V1+V2)/2])^*100$ where V1,V2 = concentrations of parent and duplicate sample, respectively.

"-" Indicates RPD not calculated. RPDs have only been considered where both concentrations are greater than 5 times the RDL

N/A - Not applicable

BOLD - RPD value greater than 20%

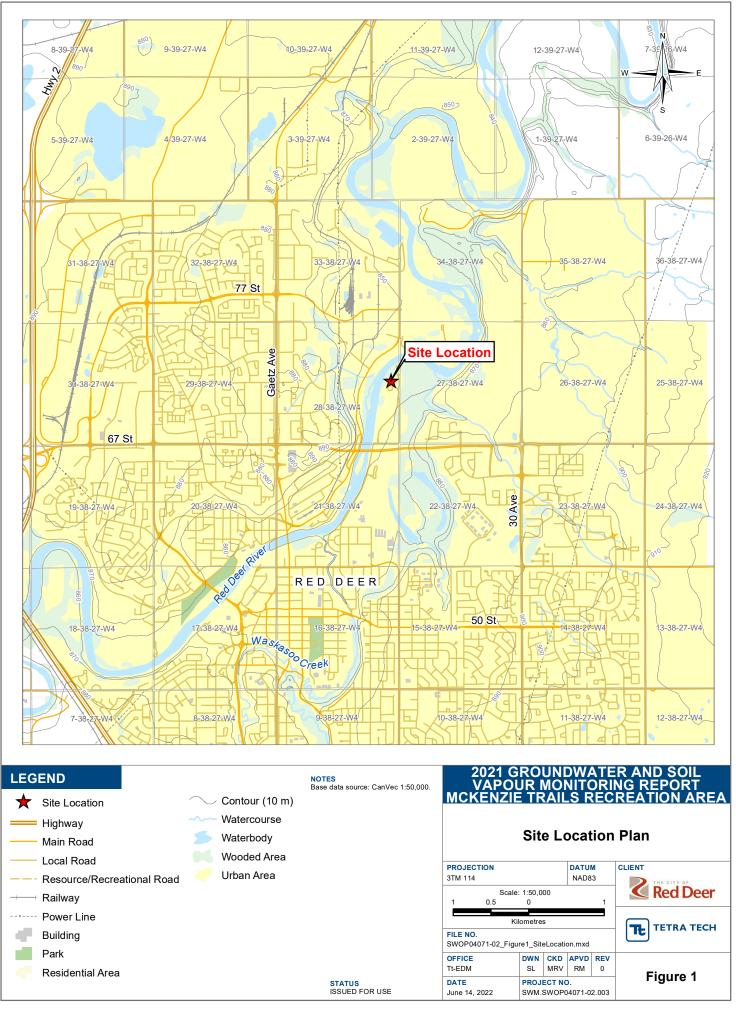
Gas Well VW-01 Parameter Aug-13 May-19 Jun-19 Sep-19 Dec-19 Jul-21 Nov-21 0.0 0.0 0.0 0.0 0.0 Pressure (kPa)¹ -0.0 CH₄ (%) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 CO (ppm)² -0.0 0.0 0.0 0.0 1.0 0.0 CO₂ (%) 9.5 1.3 2.0 5.4 2.2 2.1 4.9 O₂ (%) 17.4 5.8 18.8 18.2 19.3 15.3 19.6 Balance (% v/v) 77.2 84.7 79.9 79.8 78.5 79.8 78.2 Static Water Level (mbtoc)³ Dry Dry Dry Dry Dry -Dry Depth to Bottom (m) 5.50 2.56 2.56 2.67 2.56 2.62 2.63 Stick up (m) 0.77 0.77 0.87 0.87 -0.87 0.87

Table 4: Monitoring Results - Soil Vapour Well

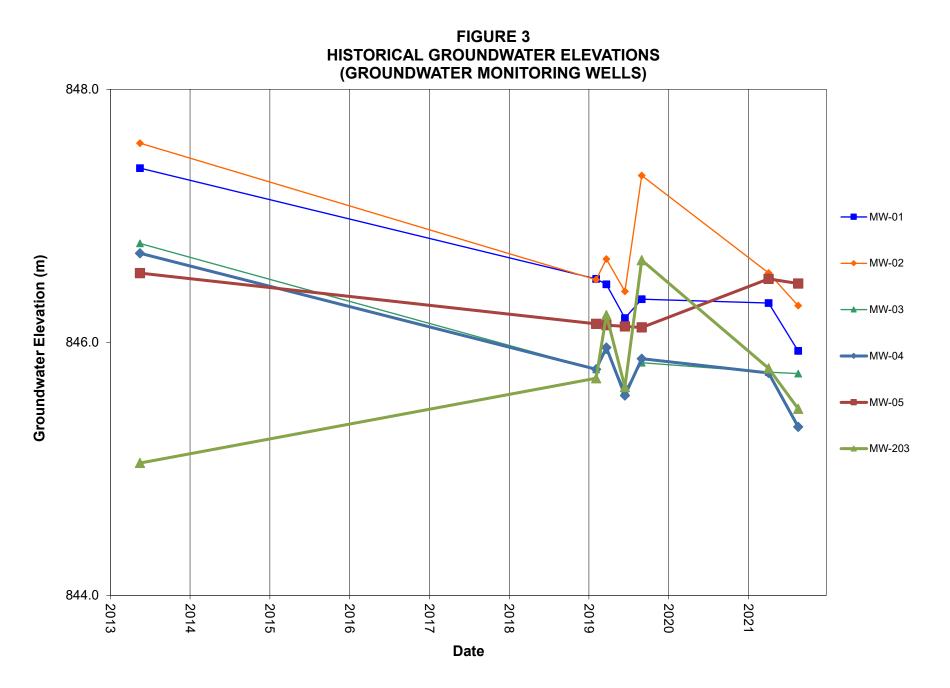
Notes:

¹ kPa - Kilopascal.

² ppm - Parts per million.


³ mbtoc - Meters below top of casing.

N/A - Not applicable - well can not be accessed to obtain measurement.



FIGURES

- Figure 2 Site Plan and Surrounding Land Use
- Figure 3 Historical Groundwater Elevations (Groundwater Monitoring Wells)
- Figure 4 Groundwater Elevation Contours July 2021
- Figure 5 Groundwater Elevation Contours November 2021

APPENDIX A

TETRA TECH'S LIMITATIONS ON THE USE OF THIS DOCUMENT

GEOENVIRONMENTAL

1.1 USE OF DOCUMENT AND OWNERSHIP

This document pertains to a specific site, a specific development, and a specific scope of work. The document may include plans, drawings, profiles and other supporting documents that collectively constitute the document (the "Professional Document").

The Professional Document is intended for the sole use of TETRA TECH's Client (the "Client") as specifically identified in the TETRA TECH Services Agreement or other Contractual Agreement entered into with the Client (either of which is termed the "Contract" herein). TETRA TECH does not accept any responsibility for the accuracy of any of the data, analyses, recommendations or other contents of the Professional Document when it is used or relied upon by any party other than the Client, unless authorized in writing by TETRA TECH.

Any unauthorized use of the Professional Document is at the sole risk of the user. TETRA TECH accepts no responsibility whatsoever for any loss or damage where such loss or damage is alleged to be or, is in fact, caused by the unauthorized use of the Professional Document.

Where TETRA TECH has expressly authorized the use of the Professional Document by a third party (an "Authorized Party"), consideration for such authorization is the Authorized Party's acceptance of these Limitations on Use of this Document as well as any limitations on liability contained in the Contract with the Client (all of which is collectively termed the "Limitations on Liability"). The Authorized Party should carefully review both these Limitations on Use of this Document and the Contract prior to making any use of the Professional Document. Any use made of the Professional Document by an Authorized Party constitutes the Authorized Party's express acceptance of, and agreement to, the Limitations on Liability.

The Professional Document and any other form or type of data or documents generated by TETRA TECH during the performance of the work are TETRA TECH's professional work product and shall remain the copyright property of TETRA TECH.

The Professional Document is subject to copyright and shall not be reproduced either wholly or in part without the prior, written permission of TETRA TECH. Additional copies of the Document, if required, may be obtained upon request.

1.2 ALTERNATIVE DOCUMENT FORMAT

Where TETRA TECH submits electronic file and/or hard copy versions of the Professional Document or any drawings or other project-related documents and deliverables (collectively termed TETRA TECH's "Instruments of Professional Service"), only the signed and/or sealed versions shall be considered final. The original signed and/or sealed electronic file and/or hard copy version archived by TETRA TECH shall be deemed to be the original. TETRA TECH will archive a protected digital copy of the original signed and/or sealed version for a period of 10 years.

Both electronic file and/or hard copy versions of TETRA TECH's Instruments of Professional Service shall not, under any circumstances, be altered by any party except TETRA TECH. TETRA TECH's Instruments of Professional Service will be used only and exactly as submitted by TETRA TECH.

Electronic files submitted by TETRA TECH have been prepared and submitted using specific software and hardware systems. TETRA TECH makes no representation about the compatibility of these files with the Client's current or future software and hardware systems.

1.3 STANDARD OF CARE

Services performed by TETRA TECH for the Professional Document have been conducted in accordance with the Contract, in a manner

consistent with the level of skill ordinarily exercised by members of the profession currently practicing under similar conditions in the jurisdiction in which the services are provided. Professional judgment has been applied in developing the conclusions and/or recommendations provided in this Professional Document. No warranty or guarantee, express or implied, is made concerning the test results, comments, recommendations, or any other portion of the Professional Document.

If any error or omission is detected by the Client or an Authorized Party, the error or omission must be immediately brought to the attention of TETRA TECH.

1.4 DISCLOSURE OF INFORMATION BY CLIENT

The Client acknowledges that it has fully cooperated with TETRA TECH with respect to the provision of all available information on the past, present, and proposed conditions on the site, including historical information respecting the use of the site. The Client further acknowledges that in order for TETRA TECH to properly provide the services contracted for in the Contract, TETRA TECH has relied upon the Client with respect to both the full disclosure and accuracy of any such information.

1.5 INFORMATION PROVIDED TO TETRA TECH BY OTHERS

During the performance of the work and the preparation of this Professional Document, TETRA TECH may have relied on information provided by third parties other than the Client.

While TETRA TECH endeavours to verify the accuracy of such information, TETRA TECH accepts no responsibility for the accuracy or the reliability of such information even where inaccurate or unreliable information impacts any recommendations, design or other deliverables and causes the Client or an Authorized Party loss or damage.

1.6 GENERAL LIMITATIONS OF DOCUMENT

This Professional Document is based solely on the conditions presented and the data available to TETRA TECH at the time the data were collected in the field or gathered from available databases.

The Client, and any Authorized Party, acknowledges that the Professional Document is based on limited data and that the conclusions, opinions, and recommendations contained in the Professional Document are the result of the application of professional judgment to such limited data.

The Professional Document is not applicable to any other sites, nor should it be relied upon for types of development other than those to which it refers. Any variation from the site conditions present, or variation in assumed conditions which might form the basis of design or recommendations as outlined in this report, at or on the development proposed as of the date of the Professional Document requires a supplementary exploration, investigation, and assessment.

TETRA TECH is neither qualified to, nor is it making, any recommendations with respect to the purchase, sale, investment or development of the property, the decisions on which are the sole responsibility of the Client.

1.7 NOTIFICATION OF AUTHORITIES

In certain instances, the discovery of hazardous substances or conditions and materials may require that regulatory agencies and other persons be informed and the client agrees that notification to such bodies or persons as required may be done by TETRA TECH in its reasonably exercised discretion.

APPENDIX B

SITE HISTORY, HISTORICAL INFORMATION, SITE SETTING, 2019 HAZARD QUOTIENTS, AND 2014 RISK MANAGEMENT PLAN REVIEW

Sections 1.0 to Section 4.0 are a summary from the 2019 Groundwater and Soil Vapour Monitoring Report – McKenzie Trails Recreation Area¹.

1.0 SITE HISTORY

Municipal records indicate that the waste disposal at the site occurred in two phases. Disposal in the southern portion occurred from 1930 to 1959 (approximately 29 years) and in the northern portion from 1960 to 1964 (approximately 4 years). The estimated age of the waste material post closure of the landfill is interpreted to be 55 to 60 years. Historical information indicates the waste as being municipal solid waste (MSW) including a mixture of plastics, cans, paper, scrap metals, wires, and glass. Bricks, wood, and ash were also encountered during the Phase II investigation².

Historical waste disposal was identified during the 2014 Phase II environmental site assessment (ESA) to be north of the man-made pond area. The waste area extends to the north end of the recreation area and to the west towards the Red Deer River. The Phase II ESA estimated the total area of buried waste at approximately 64,250 m². The status of the former landfill is inactive and closed.

Results of the 2014 Phase II ESA conducted by Tiamat Environmental Consultants Ltd. (Tiamat) indicate that surface material of sod and loam was overlying the buried MSW material. There were no indications of a formal barrier layer (e.g., clay) overlying the waste. The thickness of the layer or sod and loam varied between 8 cm and 15 cm. The MSW was mixed with fill consisting of sand, gravel, silt, and clay, located below the sod to a depth of approximately 5 m in the north-central area of the site. A portion of the waste material consists of burned garbage. The waste material was overlying silt (fill), sand and gravel (native), and siltstone (bedrock) in the northwest to southeast and the MSW was overlying silty sand (fill), sand and gravel (native), and siltstone and shale (bedrock) in the northeast to southwest with some clay (till) in the southwest. The base of the MSW material is similar to the level of the adjacent Red Deer River.

2.0 HISTORICAL GROUNDWATER MONITORING AND INVESTIGATION SUMMARY

Alberta Environment³ (AENV) installed monitoring wells in 1982, including seven groundwater monitoring wells within and beside the waste material boundary. In June 2013, the Red Deer River experienced flooding and the west side of the site was impacted. Groundwater monitoring wells located on the east riverbank were damaged or destroyed, with the exception of MW-203.

Previous reports prepared by Tiamat for the site include the following:

- Phase I ESA, Historic Waste Disposal Site, McKenzie Trail, The City of Red Deer. September 24, 2013⁴.
- Phase II ESA, Historic Waste Disposal Site, McKenzie Trails Recreation Area, The City of Red Deer. February 12, 2014².

¹ Tetra Tech Canada Inc. 2020. 2019 Groundwater and Soil Vapour Monitoring Report – McKenzie Trails Recreation Area. Prepared for The City of Red Deer. October 2020. Project Number: 704-SWM.SWOP04071-01.003.

² Tiamat Environmental Consultants Ltd. 2014a. Phase II Environmental Site Assessment, Historic Waste Disposal Site, McKenzie Trails Recreation Area, The City of Red Deer. February 12, 2014.

³ Currently Alberta Environment and Parks (AEP).

⁴ Tiamat Environmental Consultants Ltd. 2013. Phase I Environmental Site Assessment, Historic Waste Disposal Site, McKenzie Trail, The City of Red Deer. September 24, 2013

 Environmental Risk Management Plan (RMP), Historic Waste Disposal Sites, McKenzie Trails Recreation Area, The City of Red Deer. November 26, 2014⁵.

Two testholes (TH-03 and TH-04) were advanced in June 2013 as part of the Phase II ESA; one vapour well (VW-01) and one monitoring well (MW-01) were installed.

The results of the Phase II ESA conducted by Tiamat in 2014 indicated the following:

- There were no obvious activities that pose a high potential to adversely impact the site from activities on adjacent developments. The historical waste area is within the boundaries of the park.
- The waste area underlies the park space north of the man-made pond and extends to a setback from the Red Deer River. The plan area of the waste was calculated to be approximately 64,520 m², calculated from aerial photography and site observations based on topography.
- Groundwater samples demonstrated a varying level of contamination for petroleum hydrocarbons (PHCs), volatile organic compounds (VOCs), and chlorinated hydrocarbons.

A soil vapour sample indicated VOCs, aliphatic and aromatic hydrocarbons, and siloxanes. The concentrations were considered trace to low and not identified as an environmental concern to the residential developments southeast of the area.

The recommendations of the program were as follows:

- Monitor groundwater elevations and soil vapour data quarterly for one hydrogeological cycle.
- Determine if surface water sampling should be included along with additional groundwater monitoring locations to determine exposure from leachate contaminants.
- Collect an additional set of soil vapour and groundwater analytical data, groundwater elevations, and volatile headspace measurement during the winter months to determine seasonal changes in soil vapour concentrations.
- Develop a RMP to consider future land uses and address environmental concerns.
- Review all data to update the RMP with new information.

The results of the subsequent RMP conducted by Tiamat in 2014 indicated the following:

- Information in the preliminary quantitative risk assessment (PQRA) should be updated as new site information is obtained.
- A review of the RMP should be completed when the PQRA information is updated, if there are changes to the chemicals of potential concern (COPCs).
- The RMP should be reviewed and updated at five-year intervals.

⁵ Tiamat Environmental Consultants Ltd. 2014. Environmental Risk Management Plan, Historic Waste Disposal Sites, McKenzie Trails Recreation Area, The City of Red Deer. November 26, 2014.

3.0 SITE SETTING

The following section presents an overview of the regional and local setting for the site.

3.1 Geology

The following sections summarize the regional and local geology.

3.1.1 Geological Setting and Stratigraphy

The following description of regional geological setting was obtained from Tiamat's 2013 Phase I report⁴:

"The City of Red Deer and area are located within the Red Deer River drainage basin in the western Alberta Plains. The Red Deer River valley is the principal drainage way. The fertile black soil in the region (Penhold Loam) is of alluvial lacustrine origin. The Penhold Loam is a well-drained fine sandy loam classified as Chernozemic. It is generally stone free and in natural areas, is typically 1.5 m thick, more or less.

The local topography is characterized with gentle slopes bordered on the east and west by uplands and incised at its lowest part by the valley of the Red Deer River. The Tertiary bedrock consists of sequences of alternating shales and sandstones of the Paskapoo Formation whereas the Quaternary deposits consist of drift deposits of clay, silt, gravel and sand. Published information indicates the banks of the Red Deer River comprise of dirty gravel with thickness ranging from 6 to 12 m, more or less. The Paskapoo Formation underlies the gravel sediments. This non-marine bedrock is composed of mudstone, siltstone and sandstone. The formation of the Rocky Mountains subjected the Paskapoo Formation to a regional stress-induced fracture pattern.

Generally, the fracture pattern resembles a series of vertical fractures that trend southwest to northeast, perpendicular to the Rocky Mountains. A report from the Alberta Energy and Utilities Board EUB/AGS Earth Sciences Report 2002-04, suggest the pattern of fractures may be complemented with sub-horizontal fractures resulting from conjugate fracture patterns, differential stress release or pressure release events. In the valley, lies preglacial Saskatchewan gravels and sand. Terrace gravels hydraulically connected to the Red Deer River are a known groundwater resource.

Surficial soils comprise largely of poorly to moderately sorted sand, silt and gravel with a varying amount of clay. The fluvial sediments generally have obscure bedding planes. Medium to coarse sized gravel with cross-bedded sand have been documented."

3.1.2 Local Geology

Based on the findings from the 2014 Phase II ESA, McKenzie Trails Park consisted of 8 cm to 15 cm of sod and loam overlying municipal solid waste. The MSW is overlying a mix of silt (fill), sand and gravel (native) and siltstone and shale (bedrock). The maximum depth of waste encountered was approximately 6 m. There are no indications of a prepared landfill foundation (e.g. compacted clay liner) based on the drilling logs.

Mapping by the Alberta Geological Survey⁶ indicates that a buried valley could be present approximately 300 m east of the site trending in a north-northeast direction; however, the width of the valley is not defined.

⁶ Andriashek, L. comp. (2018): Thalwegs of bedrock valleys, Alberta (GIS data, line features); Alberta Energy Regulator, AER/AGS Digital Data 2018-0001.

3.2 Hydrogeology

The following sections summarize the regional and local hydrogeology.

3.2.1 Regional Hydrogeology

The following description is taken from regional hydrogeology information from Tiamat's 2013 Phase I report⁴:

"A significant buried valley and aquifer resource trending northeastward through the city has been partially mapped and lies in the SE 28-38-27 W4M (MacKenzie Trail and Riverside). This buried valley extends to a depth of 21 m, more or less and may extend to the south into north portions of 21-28-27 W4M."

"The dominant type of near-surface groundwater in the Paskapoo Formation in the area of assessment is sodium bicarbonate. Notable concentrations of sodium sulfate type groundwater have also been reported. The quality of groundwater for potable use is generally suitable to depths of 300 m on the west side of Red Deer and decreases to 90 m, more or less in the east.

Areas of recharge (downward flow) in unsaturated heterogeneous sediments include most areas above the river and creek valleys, whereas; the river valleys will generally exhibit discharge. The distribution of groundwater in the area can also be influenced by the local geology, topographic relief, areas of artesian flow, springs and reasonable yielding water source wells.

Numerous permanent surface water features within The City of Red Deer and vicinity include Red Deer River, Waskasoo Creek, Gaetz Lakes, Hazlett Lake, Bower Ponds (result of formerly mining gravel resources), various sloughs in the fringe areas of the city and an assortment of other smaller creeks and springs. These water bodies can be relevant to the environmental sensitivity of the site assessment."

There is a hydrologic relation between the gravel deposit and the Red Deer River. Depending on local sediments and flow dynamics, some sections of the Red Deer River may experience an influent flow pattern and river water may enter the gravel beds and remain as riverbank storage. The bank storage is typically gradually released when the river becomes effluent, usually between July and August. These seasonal fluctuations of the river level have notable influences with the magnitude and direction of groundwater. Discharges generally occur at some point downstream from the point of entry.

The regional groundwater generally follows the bedrock topography. It should be noted that local topography, geology, land development, and soil disturbances may influence the local movement and pattern of groundwater and in conjunction; groundwater levels may fluctuate seasonally and in response to climatic conditions. The shallow pattern of flow can also be influenced by the physical attributes of the fluvial sediments and the glacially formed Red Deer River Valley."

3.2.2 Local Hydrogeology

The Red Deer River is located on the west and north sides of McKenzie Trails Park and flows in a northerly direction. Shallow groundwater is assumed to flow towards or parallel to the river. A man-made pond is located in the central portion of McKenzie Trails Park, south of the closed landfill, and collects some of the site drainage.

3.3 Groundwater Resource Usage

A search of the Alberta Water Well Database conducted in January 2020 for groundwater users within a 1 km radius of the McKenzie Trails area identified 65 groundwater wells; 24 of the wells are listed as domestic use, 2 are listed

as domestic and stock use, 21 are listed as investigation, 2 are listed as injection use, 8 are listed as industrial use, 3 are listed as "other", 1 as observation use, and 4 are listed as unknown use⁷.

The nearest water well identified through the Water Well Database to site is located approximately 100 m west of site and the Red Deer River. The proposed well use was for investigation purposes. The water wells within a 1 km radius of site range from 2.4 m to 190 m deep. The status and use of the surrounding groundwater wells were not confirmed and they were not field verified.

4.0 HAZARD QUOTIENTS

4.1 2019 Hazard Quotient Calculations

Using the soil vapour screening levels described above and the soil vapour sampling results, estimated cancer risks (for carcinogens) and estimated hazard quotients (HQs; for non-carcinogens) were calculated for the site.

Estimated risks were calculated by dividing the soil vapour concentration by the corresponding soil vapour screening level for carcinogenic effects and multiplying the ratio by the target risk level of 1×10^{-5} . Similarly, the estimated HQs represent the soil vapour concentration divided by the corresponding soil vapour screening level for non-carcinogenic effects.

Risk estimates for non-carcinogenic COPCs are defined as HQ. HQs are calculated based on a ratio of the estimated exposure and the toxicity reference values identified as the tolerable daily intake (TDI) or tolerable concentration (TC) according to the following equation:

Hazard Quotient = <u>Estimated Daily Dose (mg/kg-day or mg/m³)</u> Tolerable Daily Intake (mg/kg-day) or Tolerable Concentration (mg/m³)

Non-carcinogenic risk characterization in the assessment was completed for all COPCs.

When the HQ is greater than the target risk value, the scenario poses a potential concern and requires further evaluation or risk management. It is important to note that HQs greater than the target risk value do not necessarily indicate that adverse health effects will occur. This is because of the conservative assumptions used in estimating concentrations and in setting the target values. HQs that are less than the target risk value indicate that exposure is within acceptable levels and no further risk management is necessary. HQs greater than the target risk value suggest that further investigation or risk management (e.g., remediation) may be warranted.

For non-carcinogens, the cumulative target risk value used was 1.0. This target risk value accounts for additional exposure to the chemicals of concern from sources other than the site. Therefore, the cumulative target risk value of 1.0 represents an allocation of 20% of a person's daily exposure from site sources and the remaining 80% would come from other sources. Other sources of exposure include ambient air, household products, and soil and water contact from locations other than the site.

For carcinogens, the risk of cancer is assumed to be proportional to dose with the assumption that any exposure results in a nonzero probability of risk. Carcinogenic risk probabilities were calculated by multiplying the estimated exposure level by the route-specific cancer slope factor (SF) or unit risk factor (URF) for each carcinogen:

⁷ Alberta Environment and Parks. 2019b. Water Well Database. Information obtained http://www.telusgeomatics.com/tgpub/ag_water/.

R = E X SF (or URF)

Where:

- R = Estimated individual excess lifetime cancer risk;
- E = Exposure level for each chemical of potential concern (mg/kg/day or mg/m³); and
- SF = Route- and chemical-specific SF $(mg/kg/day)^{-1}$ or URF $((mg/m^3)^{-1})$.

Risk probabilities determined for each carcinogen were also considered to be additive over all exposure pathways so that an overall risk of cancer was estimated for each group of potentially exposed receptors.

When assessing risks posed by exposure to carcinogenic substances, Health Canada and other regulatory agencies assume that any level of exposure is associated with some hypothetical cancer risk. As a result, it is necessary for regulatory agencies to specify an acceptable risk level. Per Health Canada guidance (2010a, 2010b), cancer risks are deemed essentially negligible where the estimated cumulative incremental lifetime cancer risk is less than or equal to 1 in 100,000 (1×10^{-5}).

For this evaluation, target risk and hazard levels were determined in accordance with the Alberta Tier 2 Guidelines. For carcinogens, the cumulative target risk level is 1×10^{-5} , as this value is considered by Health Canada to represent a negligible risk. For non-carcinogens a cumulative target hazard level of 1 is used as potential exposures that result in hazard indices equal to or less than 1 signify negligible potential for adverse health effects. Each sampling location was screened individually for every chemical detected.

A cumulative risk level for carcinogens was not calculated as none of the carcinogenic parameters were detected greater than the laboratory detection limits. A cumulative hazard level identified in the sample and its duplicate collected for the non-carcinogens ranged between 0.001 to 0.003.

The estimated cumulative risks and hazards associated with the soil vapour samples collected in December 2019 did not exceed the corresponding target risk and hazard levels.

4.2 Review of the 2014 Hazard Quotients from the Risk Management Plan

The following section is a review of the 2014 RMP⁵ for the site that was completed by Tiamat. The review of the 2014 RMP was completed for the 2019 groundwater and soil vapour monitoring report¹.

The 2014 RMP presented a proposed site-specific environmental risk management plan as a tool to assist with the review of future subdivision applications on lands lying within the regulated setback distance from the site (300 m). The focus was on potential ingress of soil gas for COPCs with a HQ greater than 1.0. Residential land use was considered most sensitive, and exposure ratings for other land uses (e.g., school, public institutions, commercial complexes) were considered to not be greater than residential; however, unique exceptions would have to be reviewed and addressed on a site-specific basis⁵. Further, underground utility workers and subsurface utility infrastructure were considered relevant to potential exposure.

The RMP applied a 10x factor of safety to the HQs to address uncertainties. HQs from the RMP ranged up to 566 (including the 10x factor of safety). Based on these, the RMP then provided recommended generic mitigative measures based on the calculated HQs, ranging from passive to active measures, recognizing that the ultimate approach would require a design professional for the proposed development.

Following the 2014 RMP, CCME released the document A Protocol for the Derivation of Soil Vapour Quality Guidelines for Protection of Human Exposures Via Inhalation of Vapours⁸, designed to provide guidance for developing site-appropriate soil vapour quality guidelines. The guidelines developed using the methods outlined in the CCME document were used for this current study and are included with the vapour sampling results in Table 4. HQs were calculated using estimated dose (based on concentrations measured at the site) and divided by tolerable daily intake. Soil vapour concentrations from the Phase II ESA conducted in 2013 were not compared to soil vapour quality guidelines; however, spot checks of five target compounds with the highest HQs in the 2013 work (benzene, tetrachloroethylene, chloromethane, 1,2,4-trimethylbenzene, and styrene) identified that none of the 2013 concentrations would have unacceptable HQs using the updated CCME methodology.

The 2014 RMP was prepared concurrent to RMPs at several other former City landfills, and a common set of mitigative measures was applied based on the HQs. Subsequent to the 2014 RMP and to the release of the CCME Protocol document, The City undertook additional assessment at another former City Landfill (Montfort); as part of that work, their consultant XCG Consulting Limited (XCG) revised the 2014 RMP criteria ranges for each generic mitigative measure category to include a Cancer Risk range to allow comparison of the 2014 RMP ranges with the HQ and Cancer Risks calculated by XCG⁹. From that work, XCG identified the following generic mitigative measures for developments within a 300 m setback of these landfills (based on Tiamat 2014), and these have been adopted for this site:

Passive Measures

1. Passive Measures – Level A: for Cancer Risk of > $1E^{-5}$ and < $5E^{-5}$ and/or HQ >0.2 and <1.

Compacted clay liner with a minimum thickness of 1m and confirmed maximum hydraulic conductivity of 10⁻⁶ cm/sec.

2. Passive Measures – Level B: for Cancer Risk of > $5E^{-5}$ and < $5E^{-4}$ and/or HQ >1 and <5.

Synthetic liner with type of material, thickness and installation details dependent on the design professional.

3. Passive Measures – Level C: for Cancer Risk of $> 5E^{-4}$ and $< 1E^{-3}$ and/or HQ >5 and <50.

Passive sub-slab depressurization (SSD) system with a minimum depressurization of 4 Pa to 10 Pa. In some instances (such as a pervious subgrade), the actual depressurization necessary may require an active SSD or alternative active ventilation system.

Active Measures

Field verify the presence of the identified chemicals of concern and other potential chemicals in the soil gas state at the development site. If confirmed, determine the most appropriate manner to prevent soil vapour intrusion.

1. Active Measures – Level D: for Cancer Risk of > $1E^{-3}$ and < $2E^{-3}$ and/or HQ values >50 and <100.

Active SSD must be configured to compensate for depressurization of the building and have adequate negative pressure gradients across the entire footprint of the foundation.

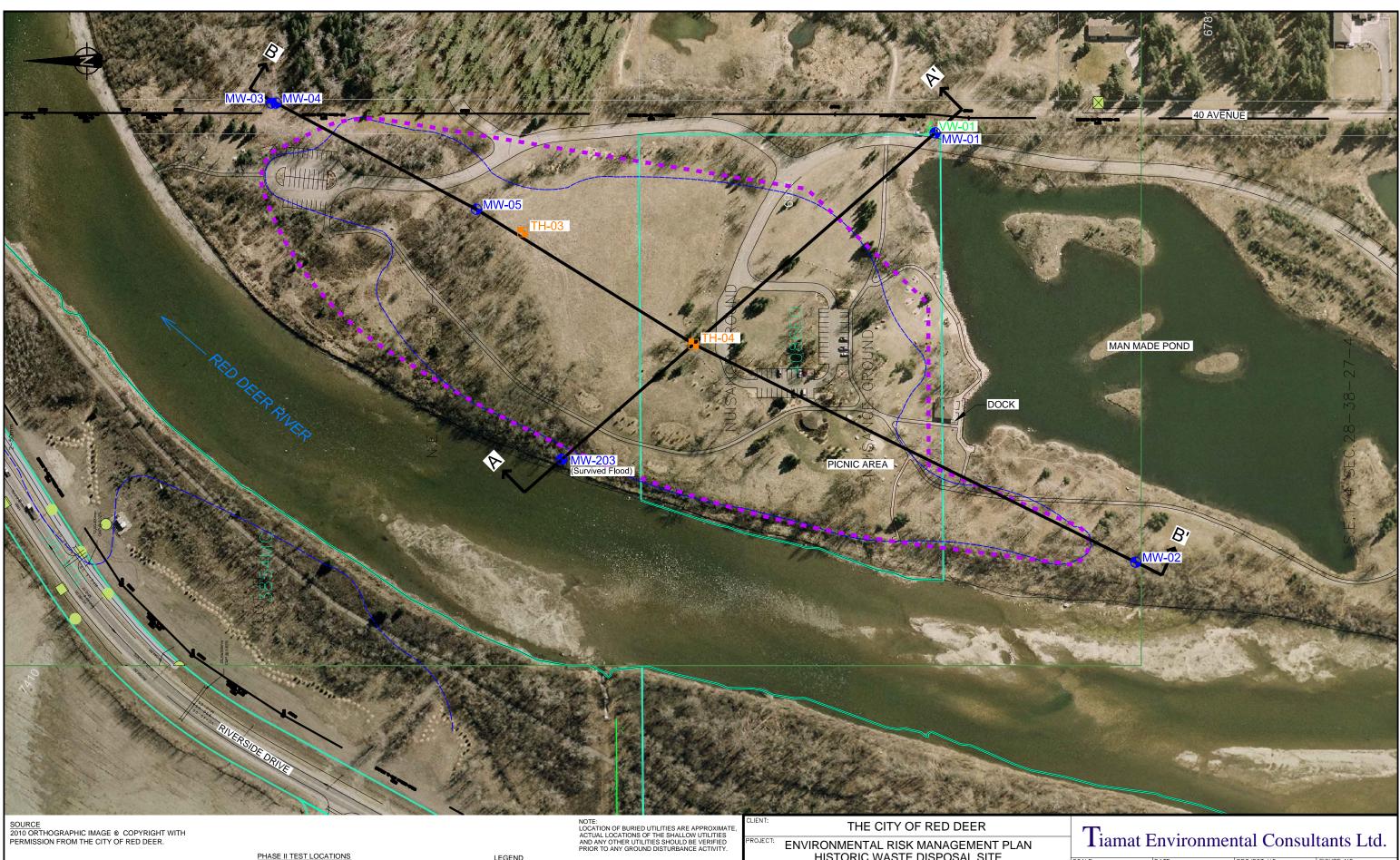
2. Active Measures - Level E: for Cancer Risk of >2E⁻³ and/or HQ values >100.

Installation of geomembrane and active soil vapour extraction with system fault notification alarm.

⁸ Canadian Council of Ministers of the Environment. 2014. A Protocol for the Derivation of Soil Vapour Quality Guidelines for Exposure Protection of Human Exposures via Inhalation of Vapours. Available online: http://ceqg-rcqe.ccme.ca/en/index.html#void.

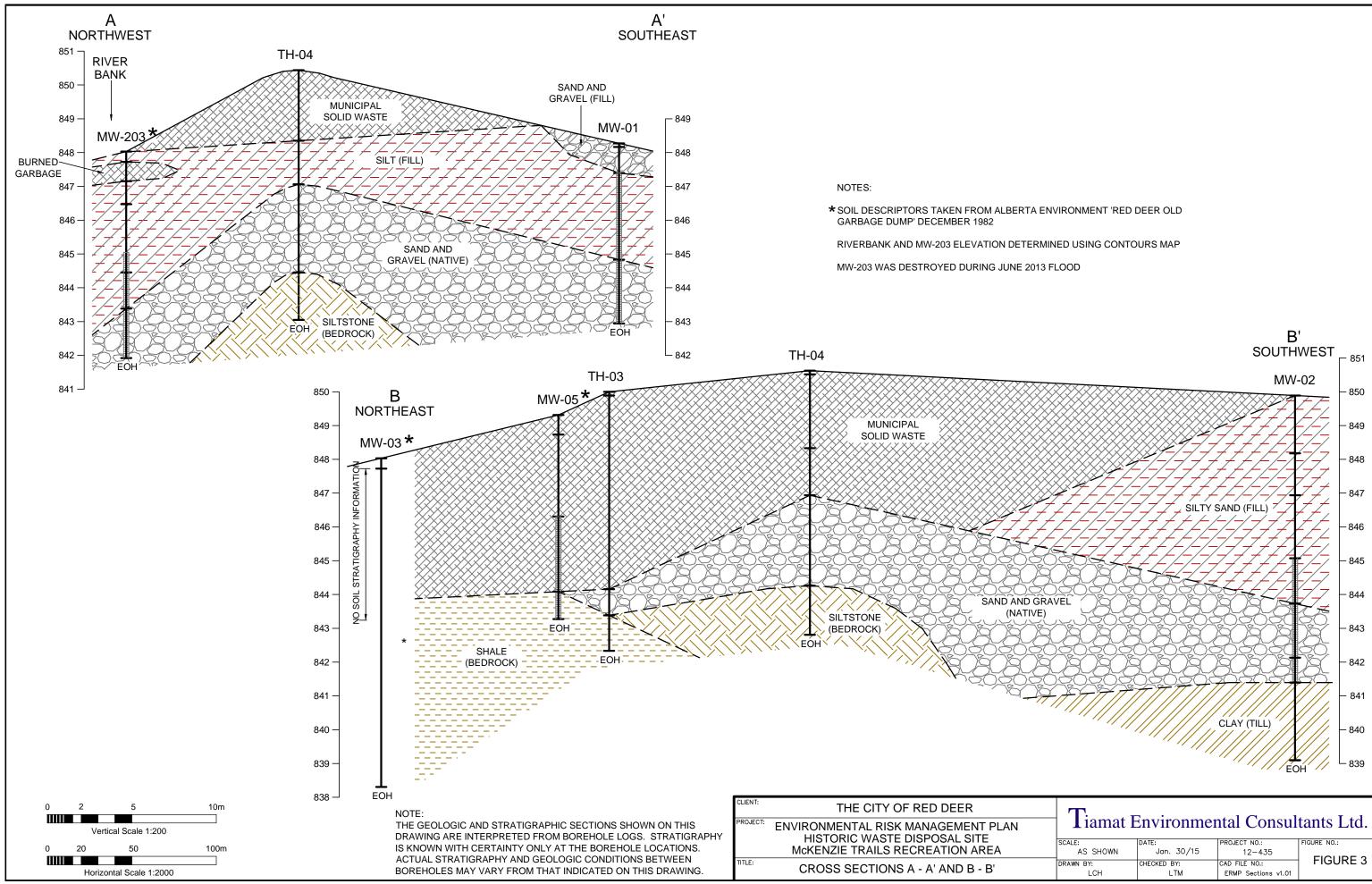
⁹ XCG Consulting Limited, 2018. Vapour Intrusion Assessment and Environmental Monitoring Report, prepared for the City of Red Deer's Montfort Landfill.

For consistency with XCG's approach from 2017, we compared individual HQs with the individual target hazard level (0.2). Based on the 2019 program, the greatest HG calculated for the site was 0.001 (vs target individual hazard level of 0.2) and the estimated cancer risk was not calculated as no carcinogenic parameters were detected above the detection limits. The greatest cumulative HQ calculated for the site was 0.003 (vs target cumulative hazard level of 1.0). While development at the site is not currently proposed, for illustrative purposes, based on these HQs calculated from the 2019 vapour data no passive or active measures would be required for the site. It is noted that even if the 10x factor of safety is applied, mitigative measures would still not be required. It should also be notes that assumptions made in the calculations of HQs and cancer risk above are inherently conservative; therefore, applying a factor of safety is not needed.


Future applications for development within the setback are subject to review by The City. The developer's team would be responsible for reviewing and verifying the available data relative to their proposed development. The mitigative measures presented above are generic and can be used as a general guide for expectations by The City; ultimately, the developer's design engineer would be responsible for developing measures specific to the intended development based on the above or an appropriate equivalent. Protection of workers (e.g., construction and utility) should form part of any development plan.

APPENDIX C

CROSS-SECTIONS (TIAMAT 2014A)


0	20		50	100m
ШП				
		Scale	e 1:2000	

PHASE II TEST LOCATIONS WW-## GROUNDWATER MONITORING WELL (5) TH-## TESTHOLE (2) VP-## SOIL VAPOUR MONITORING WELL (1) REFER TO TABLE 1 FOR TESTHOLE INFORMATION LEGEND HISTORIC WASTE DISPOSAL LOT BOUNDARY 100 YEAR FLOOD LINE CROSS SECTION LOCATION

ELECTRICAL
 SANITARY
 STORM
 WATER

ENVIRONMENTAL RISK MANAGEMENT PLAN HISTORIC WASTE DISPOSAL SITE McKENZIE TRAILS RECREATION AREA

	SCALE:	DATE:	PROJECT NO .:	FIGURE NO .:
	1 : 2000	June 24/14	12-435	
	DRAWN BY:	CHECKED BY:	CAD FILE NO.:	FIGURE 2
STE	LCH	LTM	ERMP v1.00.dwg	

 Tiamat H	Environme	ntal Consul	tants Ltd.
SCALE:	DATE:	PROJECT NO .:	FIGURE NO .:
 AS SHOWN	Jan. 30/15	12-435	FIGURE 3
DRAWN BY:	CHECKED BY:	CAD FILE NO.:	FIGURE 3
LCH	LTM	ERMP Sections v1.01	

APPENDIX D

LABORATORY ANALYTICAL REPORTS

CERTIFICATE OF ANALYSIS

Work Order	÷ CG2105892	Page	: 1 of 7
Client	: Tetra Tech Canada Inc.	Laboratory	: Calgary - Environmental
Contact	: Darby Madalena	Account Manager	Milica Papic
Address	: 115 - 200 Rivercrest Dr SE	Address	2559 29th Street NE
	Calgary AB Canada T2C 2X5		Calgary AB Canada T1Y 7B5
Telephone	: 403 203 3355	Telephone	: +1 403 407 1800
Project	: SWM.SWOP04071-02.003	Date Samples Received	: 23-Nov-2021 05:55
PO	: SWM.SWOP04071-02.003	Date Analysis Commenced	: 23-Nov-2021
C-O-C number	: CORD MCKENZIE TRAILS	Issue Date	: 01-Dec-2021 16:03
Sampler	: RYAN MILLER		
Site	:		
Quote number	: Q71650 City of Red Deer Pre-1972 Landfill Monitoring		
No. of samples received	: 4		
No. of samples analysed	: 4		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Daniel Ching	Lab Analyst	Metals, Calgary, Alberta
Jeanie Mark	Laboratory Analyst	Organics, Calgary, Alberta
Millicent Brentnall	Laboratory Analyst	Metals, Calgary, Alberta
Parker Sgarbossa	Laboratory Analyst	Inorganics, Calgary, Alberta
Sara Niroomand		Inorganics, Calgary, Alberta
Sara Niroomand		Metals, Calgary, Alberta
Shirley Li		Metals, Calgary, Alberta
Vladka Stamenova	Analyst	Inorganics, Calgary, Alberta

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference. Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key : CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances LOR: Limit of Reporting (detection limit).

Unit	Description
-	No Unit
%	percent
µg/L	micrograms per litre
µS/cm	Microsiemens per centimetre
meq/L	milliequivalents per litre
mg/L	milligrams per litre
pH units	pH units

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Qualifiers

Qualifier	Description
DLDS	Detection Limit Raised: Dilution required due to high Dissolved Solids / Electrical
	Conductivity.
RRV	Reported result verified by repeat analysis.

(Matrix: Water)									
			Client samp	ling date / time	21-Nov-2021 14:20	21-Nov-2021 14:30	21-Nov-2021 14:40	21-Nov-2021	
Analyte	CAS Number	Method	LOR	Unit	CG2105892-001	CG2105892-002	CG2105892-003	CG2105892-004	
					Result	Result	Result	Result	
Physical Tests									
alkalinity, bicarbonate (as HCO3)	71-52-3	E290	1.0	mg/L	1140	1140	906	1070	
alkalinity, carbonate (as CO3)	3812-32-6	E290	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	
alkalinity, hydroxide (as OH)	14280-30-9	E290	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	
alkalinity, total (as CaCO3)		E290	1.0	mg/L	937	939	743	878	
conductivity		E100	1.0	μS/cm	1690	1700	1410	1650	
hardness (as CaCO3), dissolved		EC100	0.60	mg/L	537	714	421	534	
pH		E108	0.10	pH units	7.85	7.71	7.79	7.89	
solids, total dissolved [TDS], calculated		EC103	1.0	mg/L	1100	1080	803	1060	
Anions and Nutrients									
ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	5.51	11.2	12.9	5.23	
chloride	16887-00-6	E235.Cl	0.50	mg/L	43.2	29.4	24.0	42.8	
fluoride	16984-48-8	E235.F	0.020	mg/L	<0.100 DLDS	<0.100 DLDS	<0.100 DLDS	<0.100 DLDS	
nitrate (as N)	14797-55-8	E235.NO3	0.020	mg/L	<0.100 DLDS	0.301	0.121	<0.100 DLDS	
nitrite (as N)	14797-65-0	E235.NO2	0.010	mg/L	< 0.050 DLDS	< 0.050 DLDS	< 0.050 DLDS	< 0.050 DLDS	
sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	64.4	71.4	78.3	63.7	
Ion Balance									
anion sum		EC101	0.10	meq/L	21.3	21.1	17.2	20.1	
cation sum		EC101	0.10	meq/L	20.4	20.7	12.5	20.4	
ion balance (cation-anion difference)		EC101	0.010	%	2.16	0.957	15.8 RRV	0.741	
Dissolved Metals									
aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0069	<0.0050 DLDS	0.0080	0.0061	
antimony, dissolved	7440-36-0	E421	0.00010	mg/L	<0.00050 DLDS	<0.00050 DLDS	<0.00050 DLDS	<0.00050 DLDS	
arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00158	0.00618	0.00209	0.00179	
barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.371	0.278	0.211	0.372	
beryllium, dissolved	7440-41-7	E421	0.000020	mg/L	<0.000100 DLDS	<0.000100 DLDS	<0.000100 DLDS	<0.000100 DLDS	
bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000250 DLDS	<0.000250 DLDS	<0.000250 DLDS	<0.000250 DLDS	
boron, dissolved	7440-42-8	E421	0.010	mg/L	0.907	1.47	0.617	0.882	
cadmium, dissolved	7440-43-9	E421	0.0000050	mg/L	0.0000286	0.000120	<0.0000250 DLDS	0.0000274	
calcium, dissolved	7440-70-2	E421	0.050	mg/L	144	185	110	142	
chromium, dissolved	7440-47-3	E421	0.00050	mg/L	<0.00250 DLDS	<0.00250 DLDS	<0.00250 DLDS	<0.00250 DLDS	

Sub-Matrix: Water			Cli	ent sample ID	MW-03	MW-04	MW203	DUPLICATE	
(Matrix: Water)									
			Client samp	ling date / time	21-Nov-2021 14:20	21-Nov-2021 14:30	21-Nov-2021 14:40	21-Nov-2021	
Analyte	CAS Number	Method	LOR	Unit	CG2105892-001	CG2105892-002	CG2105892-003	CG2105892-004	
					Result	Result	Result	Result	
Dissolved Metals									
cobalt, dissolved	7440-48-4	E421	0.00010	mg/L	0.00225	0.00444	<0.00050 DLDS	0.00214	
copper, dissolved	7440-50-8	E421	0.00020	mg/L	< 0.00100 DLDS	<0.00100 DLDS	< 0.00100 DLDS	< 0.00100 DLDS	
iron, dissolved	7439-89-6	E421	0.010	mg/L	0.534	5.34	0.680	0.538	
lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000250 DLDS	<0.000250 DLDS	<0.000250 DLDS	<0.000250 DLDS	
lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0499	0.0304	0.0169	0.0490	
magnesium, dissolved	7439-95-4	E421	0.100	mg/L	43.0	61.1	35.5	43.5	
manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.780	1.16	0.297	0.785	
mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.000050	<0.000050	<0.000050	<0.0000050	
molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.00100	0.00259	<0.000250 DLDS	0.000941	
nickel, dissolved	7440-02-0	E421	0.00050	mg/L	0.00532	0.00910	0.00307	0.00470	
phosphorus, dissolved	7723-14-0	E421	0.050	mg/L	<0.250 DLDS	<0.250 DLDS	0.977	<0.250 DLDS	
potassium, dissolved	7440-09-7	E421	0.100	mg/L	8.04	18.9	13.0	8.16	
selenium, dissolved	7782-49-2	E421	0.000050	mg/L	<0.000250 DLDS	<0.000250 DLDS	0.00254	<0.000250 DLDS	
silicon, dissolved	7440-21-3	E421	0.050	mg/L	6.45	7.02	4.84	6.36	
silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000050 DLDS	<0.000050 DLDS	<0.000050 DLDS	<0.000050 DLDS	
sodium, dissolved	17341-25-2	E421	0.050	mg/L	207	113	64.8	209	
strontium, dissolved	7440-24-6	E421	0.00020	mg/L	1.80	1.81	1.21	1.77	
sulfur, dissolved	7704-34-9	E421	0.50	mg/L	27.6	29.7	19.1	28.3	
thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000050 DLDS	<0.000050 DLDS	<0.000050 DLDS	<0.000050 DLDS	
tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00050 DLDS	<0.00050 DLDS	<0.00050 DLDS	<0.00050 DLDS	
titanium, dissolved	7440-32-6	E421	0.00030	mg/L	< 0.00150 DLDS	<0.00150 DLDS	<0.00150 DLDS	<0.00150 DLDS	
uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.00238	0.00351	0.000228	0.00229	
vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00250 DLDS	<0.00250 DLDS	<0.00250 DLDS	<0.00250 DLDS	
zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0054	0.0087	<0.0050 DLDS	<0.0050 DLDS	
zirconium, dissolved	7440-67-7	E421	0.00020	mg/L	0.00141	<0.00100 DLDS	<0.00100 DLDS	0.00135	
dissolved mercury filtration location		EP509	-	-	Field	Field	Field	Field	
dissolved metals filtration location		EP421	-	-	Field	Field	Field	Field	
Volatile Organic Compounds									
benzene	71-43-2	E611E	0.50	µg/L	<0.50	<0.50	0.58	<0.50	
bromobenzene	108-86-1	E611E	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
bromochloromethane	74-97-5	E611E	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	

Sub-Matrix: Water			С	lient sample ID	MW-03	MW-04	MW203	DUPLICATE	
(Matrix: Water)									
			Client sam	oling date / time	21-Nov-2021 14:20	21-Nov-2021 14:30	21-Nov-2021 14:40	21-Nov-2021	
Analyte	CAS Number	Method	LOR	Unit	CG2105892-001	CG2105892-002	CG2105892-003	CG2105892-004	
					Result	Result	Result	Result	
Volatile Organic Compounds									
bromodichloromethane	75-27-4	E611E	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
bromoform	75-25-2	E611E	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
bromomethane	74-83-9	E611E	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
butylbenzene, n-	104-51-8	E611E	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
butylbenzene, sec-	135-98-8	E611E	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
butylbenzene, tert-	98-06-6	E611E	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
carbon tetrachloride	56-23-5	E611E	0.50	µg/L	<0.50	<0.50	<0.50	<0.50	
chlorobenzene	108-90-7	E611E	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
chloroethane	75-00-3	E611E	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
chloroform	67-66-3	E611E	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
chloromethane	74-87-3	E611E	5.0	µg/L	<5.0	<5.0	<5.0	<5.0	
chlorotoluene, 2-	95-49-8	E611E	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
chlorotoluene, 4-	106-43-4	E611E	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
cymene, p-	99-87-6	E611E	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
dibromo-3-chloropropane, 1,2-	96-12-8	E611E	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
dibromochloromethane	124-48-1	E611E	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
dibromoethane, 1,2-	106-93-4	E611E	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
dibromomethane	74-95-3	E611E	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
dichlorobenzene, 1,2-	95-50-1	E611E	0.50	µg/L	<0.50	<0.50	<0.50	<0.50	
dichlorobenzene, 1,3-	541-73-1	E611E	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
dichlorobenzene, 1,4-	106-46-7	E611E	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
dichlorodifluoromethane	75-71-8	E611E	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
dichloroethane, 1,1-	75-34-3	E611E	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
dichloroethane, 1,2-	107-06-2	E611E	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	
dichloroethylene, 1,1-	75-35-4	E611E	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	
dichloroethylene, cis-1,2-	156-59-2	E611E	1.0	μg/L	4.2	7.7	9.8	3.9	
dichloroethylene, trans-1,2-	156-60-5	E611E	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	
dichloromethane	75-09-2	E611E	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	
dichloropropane, 1,2-	78-87-5	E611E	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	
dichloropropane, 1,3-	142-28-9	E611E	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	
dichloropropane, 2,2-	594-20-7	E611E	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	

Sub-Matrix: Water			С	lient sample ID	MW-03	MW-04	MW203	DUPLICATE	
(Matrix: Water)									
			Client sam	oling date / time	21-Nov-2021 14:20	21-Nov-2021 14:30	21-Nov-2021 14:40	21-Nov-2021	
Analyte	CAS Number	Method	LOR	Unit	CG2105892-001	CG2105892-002	CG2105892-003	CG2105892-004	
					Result	Result	Result	Result	
Volatile Organic Compounds									
dichloropropylene, 1,1-	563-58-6	E611E	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
dichloropropylene, cis+trans-1,3-	542-75-6	E611E	1.5	µg/L	<1.5	<1.5	<1.5	<1.5	
dichloropropylene, cis-1,3-	10061-01-5	E611E	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
dichloropropylene, trans-1,3-	10061-02-6	E611E	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
ethylbenzene	100-41-4	E611E	0.50	µg/L	<0.50	<0.50	<0.50	<0.50	
hexachlorobutadiene	87-68-3	E611E	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
isopropylbenzene	98-82-8	E611E	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
methyl-tert-butyl ether [MTBE]	1634-04-4	E611E	0.50	µg/L	<0.50	<0.50	<0.50	<0.50	
propylbenzene, n-	103-65-1	E611E	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
styrene	100-42-5	E611E	0.50	µg/L	<0.50	<0.50	<0.50	<0.50	
tetrachloroethane, 1,1,1,2-	630-20-6	E611E	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
tetrachloroethane, 1,1,2,2-	79-34-5	E611E	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
tetrachloroethylene	127-18-4	E611E	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
toluene	108-88-3	E611E	0.50	µg/L	<0.50	<0.50	<0.50	<0.50	
trichlorobenzene, 1,2,3-	87-61-6	E611E	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
trichlorobenzene, 1,2,4-	120-82-1	E611E	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
trichloroethane, 1,1,1-	71-55-6	E611E	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
trichloroethane, 1,1,2-	79-00-5	E611E	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
trichloroethylene	79-01-6	E611E	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
trichlorofluoromethane	75-69-4	E611E	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
trichloropropane, 1,2,3-	96-18-4	E611E	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
trimethylbenzene, 1,2,4-	95-63-6	E611E	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	
trimethylbenzene, 1,3,5-	108-67-8	E611E	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	
vinyl chloride	75-01-4	E611E	1.0	μg/L	2.1	3.2	4.6	1.8	
xylene, m+p-	179601-23-1	E611E	0.40	μg/L	<0.40	<0.40	<0.40	<0.40	
xylene, o-	95-47-6	E611E	0.30	μg/L	<0.30	<0.30	<0.30	<0.30	
xylenes, total	1330-20-7	E611E	0.50	μg/L	<0.50	<0.50	<0.50	<0.50	
BTEX, total		E611E	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	
trihalomethanes [THMs], total		E611E	2.0	μg/L	<2.0	<2.0	<2.0	<2.0	
Volatile Organic Compounds Surrogates									
bromofluorobenzene, 4-	460-00-4	E611E	1.0	%	83.5	84.0	80.5	80.9	

Sub-Matrix: Water			Cl	lient sample ID	MW-03	MW-04	MW203	DUPLICATE	
(Matrix: Water)									
			Client samp	ling date / time	21-Nov-2021 14:20	21-Nov-2021 14:30	21-Nov-2021 14:40	21-Nov-2021	
Analyte	CAS Number	Method	LOR	Unit	CG2105892-001	CG2105892-002	CG2105892-003	CG2105892-004	
					Result	Result	Result	Result	
Volatile Organic Compounds Surrogates									
difluorobenzene, 1,4-	540-36-3	E611E	1.0	%	105	103	100	103	
Polycyclic Aromatic Hydrocarbons									
naphthalene	91-20-3	E611E	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Vork Order	: CG2105892	Page	: 1 of 12
Client	: Tetra Tech Canada Inc.	Laboratory	: Calgary - Environmental
Contact	: Darby Madalena	Account Manager	: Milica Papic
Address	: 115 - 200 Rivercrest Dr SE	Address	2559 29th Street NE
	Calgary AB Canada T2C 2X5		Calgary, Alberta Canada T1Y 7B5
elephone	403 203 3355	Telephone	+1 403 407 1800
roject	: SWM.SWOP04071-02.003	Date Samples Received	: 23-Nov-2021 05:55
0	: SWM.SWOP04071-02.003	Issue Date	: 01-Dec-2021 16:03
-O-C number	: CORD MCKENZIE TRAILS		
ampler	: RYAN MILLER		
lite	:		
uote number	: Q71650 City of Red Deer Pre-1972 Landfill Monitoring		
o. of samples received	:4		
lo. of samples analysed	:4		

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summarizes.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Summary of Outliers

Outliers : Quality Control Samples

- No Method Blank value outliers occur.
- <u>No</u> Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- <u>No</u> Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• <u>No</u> Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• <u>No</u> Quality Control Sample Frequency Outliers occur.

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and /or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water					E١	aluation: × =	Holding time exce	edance ; •	<pre>< = Within</pre>	Holding Tim
Analyte Group	Method	Sampling Date	Ext	traction / Pr	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
DUPLICATE	E298	21-Nov-2021	27-Nov-2021				27-Nov-2021	28 days	6 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
MW-03	E298	21-Nov-2021	27-Nov-2021				27-Nov-2021	28 days	6 days	1
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
MW-04	E298	21-Nov-2021	27-Nov-2021				27-Nov-2021	28 days	6 days	1
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)	5000	04 No. 0004	07.N. 000.4				07.11 0004			,
MW203	E298	21-Nov-2021	27-Nov-2021				27-Nov-2021	28 days	6 days	1
Anions and Nutrients : Chloride in Water by IC							1			
HDPE DUPLICATE	E235.Cl	21-Nov-2021					23-Nov-2021	28 days	0 dava	1
DOPLICATE	E235.CI	21-100-2021					23-1100-2021	20 days	2 days	•
Anions and Nutrients : Chloride in Water by IC							1			
HDPE MW-03	E235.Cl	21-Nov-2021					23-Nov-2021	28 days	2 days	1
MIV-03	L233.01	21-1100-2021					23-1100-2021	20 uays	z uays	•
Anions and Nutrients : Chloride in Water by IC HDPE										
MW-04	E235.Cl	21-Nov-2021					23-Nov-2021	28 days	2 days	1
	L200.01	21-1100-2021					20-1404-2021	20 uays	z uays	•

Apolyto Croup	Mathead	Commission Doto	E.a	traction / Pr			Holding time exce	Analys		
Analyte Group Container / Client Sample ID(s)	Method	Sampling Date	Preparation Date		g Times Actual	Eval	Analysis Date	-	ns Times Actual	Eval
Anions and Nutrients : Chloride in Water by IC										
HDPE MW203	E235.Cl	21-Nov-2021					23-Nov-2021	28 days	2 days	1
nions and Nutrients : Fluoride in Water by IC										
HDPE DUPLICATE	E235.F	21-Nov-2021					23-Nov-2021	28 days	2 days	1
nions and Nutrients : Fluoride in Water by IC										
HDPE MW-03	E235.F	21-Nov-2021					23-Nov-2021	28 days	2 days	1
nions and Nutrients : Fluoride in Water by IC										
HDPE MW-04	E235.F	21-Nov-2021					23-Nov-2021	28 days	2 days	~
nions and Nutrients : Fluoride in Water by IC										
HDPE MW203	E235.F	21-Nov-2021					23-Nov-2021	28 days	2 days	~
nions and Nutrients : Nitrate in Water by IC										
HDPE DUPLICATE	E235.NO3	21-Nov-2021					23-Nov-2021	3 days	2 days	1
Anions and Nutrients : Nitrate in Water by IC										
HDPE MW-03	E235.NO3	21-Nov-2021					23-Nov-2021	3 days	2 days	1
nions and Nutrients : Nitrate in Water by IC										
HDPE MW-04	E235.NO3	21-Nov-2021					23-Nov-2021	3 days	2 days	1
Anions and Nutrients : Nitrate in Water by IC										
HDPE MW203	E235.NO3	21-Nov-2021					23-Nov-2021	3 days	2 days	1

Aatrix: Water						aluation: × =	Holding time excee	edance ; •		Holding T
Analyte Group	Method	Sampling Date	Ext	raction / Pr	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation Date	Holding Rec	g Times Actual	Eval	Analysis Date	Holding Rec	g Times Actual	Eval
Anions and Nutrients : Nitrite in Water by IC										
HDPE DUPLICATE	E235.NO2	21-Nov-2021					23-Nov-2021	3 days	2 days	1
Anions and Nutrients : Nitrite in Water by IC										
HDPE MW-03	E235.NO2	21-Nov-2021					23-Nov-2021	3 days	2 days	~
Anions and Nutrients : Nitrite in Water by IC										
HDPE MW-04	E235.NO2	21-Nov-2021					23-Nov-2021	3 days	2 days	1
Anions and Nutrients : Nitrite in Water by IC				1						
HDPE MW203	E235.NO2	21-Nov-2021					23-Nov-2021	3 days	2 days	~
nions and Nutrients : Sulfate in Water by IC										
HDPE DUPLICATE	E235.SO4	21-Nov-2021					23-Nov-2021	28 days	2 days	1
nions and Nutrients : Sulfate in Water by IC										
HDPE MW-03	E235.SO4	21-Nov-2021					23-Nov-2021	28 days	2 days	1
nions and Nutrients : Sulfate in Water by IC										
HDPE MW-04	E235.SO4	21-Nov-2021					23-Nov-2021	28 days	2 days	~
Anions and Nutrients : Sulfate in Water by IC										
HDPE MW203	E235.SO4	21-Nov-2021					23-Nov-2021	28 days	2 days	1
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid) DUPLICATE	E509	21-Nov-2021	23-Nov-2021				23-Nov-2021	28 days	2 days	✓

trix: Water							Holding time exce			Holding
nalyte Group	Method	Sampling Date		traction / Pi				Analys		
Container / Client Sample ID(s)			Preparation		g Times	Eval	Analysis Date	-	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
issolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)										
MW-03	E509	21-Nov-2021	23-Nov-2021				23-Nov-2021	28 days	2 days	1
issolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)										
MW-04	E509	21-Nov-2021	23-Nov-2021				23-Nov-2021	28 days	2 days	1
issolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)										
MW203	E509	21-Nov-2021	23-Nov-2021				23-Nov-2021	28 days	2 days	1
issolved Metals : Dissolved Metals in Water by CRC ICPMS										
IDPE dissolved (nitric acid)										
DUPLICATE	E421	21-Nov-2021	29-Nov-2021				29-Nov-2021	180	8 days	1
								days		
issolved Metals : Dissolved Metals in Water by CRC ICPMS										
IDPE dissolved (nitric acid)										
MW-03	E421	21-Nov-2021	29-Nov-2021				29-Nov-2021	180	8 days	1
								days	-	
issolved Metals : Dissolved Metals in Water by CRC ICPMS								,		
IDPE dissolved (nitric acid)										
MW-04	E421	21-Nov-2021	29-Nov-2021				29-Nov-2021	180	8 days	1
								days	,	
incolved Metale - Dissolved Metale in Water by CDC ICDMC										
issolved Metals : Dissolved Metals in Water by CRC ICPMS IDPE dissolved (nitric acid)										
MW203	E421	21-Nov-2021	29-Nov-2021				29-Nov-2021	180	8 days	1
1111200		211101 2021	201107 2021				201107 2021	days	ouuyo	
								days		
hysical Tests : Alkalinity Species by Titration										
IDPE DUPLICATE	E290	21-Nov-2021					23-Nov-2021	14 days	2 dave	1
	L230	21-1000-2021					20-1100-2021	14 uays	z uays	•
hysical Tests : Alkalinity Species by Titration										
HDPE MW-03	E290	01 Nov 0001					02 Nov 0004	14 days	Odava	,
	E.200	21-Nov-2021					23-Nov-2021	14 davs	2 davs	 Image: A second s

Matrix: Water	Matheast			traction / Dr		aluation: × =	Holding time exce			noiaing Ti
Analyte Group Container / Client Sample ID(s)	Method	Sampling Date	Preparation Date	traction / Pr Holding Rec	g Times Actual	Eval	Analysis Date	Analys Holding Rec	g Times Actual	Eval
Physical Tests : Alkalinity Species by Titration										
HDPE MW-04	E290	21-Nov-2021					23-Nov-2021	14 days	2 days	4
Physical Tests : Alkalinity Species by Titration										
HDPE MW203	E290	21-Nov-2021					23-Nov-2021	14 days	2 days	4
Physical Tests : Conductivity in Water										
HDPE DUPLICATE	E100	21-Nov-2021					23-Nov-2021	28 days	2 days	1
Physical Tests : Conductivity in Water										
HDPE MW-03	E100	21-Nov-2021					23-Nov-2021	28 days	2 days	4
Physical Tests : Conductivity in Water										
HDPE MW-04	E100	21-Nov-2021					23-Nov-2021	28 days	2 days	1
Physical Tests : Conductivity in Water										
HDPE MW203	E100	21-Nov-2021					23-Nov-2021	28 days	2 days	~
Physical Tests : pH by Meter										
HDPE DUPLICATE	E108	21-Nov-2021					23-Nov-2021	0.25 hrs	42 hrs	¥ EHTR-FN
Physical Tests : pH by Meter										
HDPE MW-03	E108	21-Nov-2021					23-Nov-2021	0.25 hrs	43 hrs	¥ EHTR-FN
Physical Tests : pH by Meter									1	
HDPE MW-04	E108	21-Nov-2021					23-Nov-2021	0.25 hrs	43 hrs	¥ EHTR-FN

Matrix: Water					Ev	aluation: × =	Holding time exce	edance ; •	= Within	Holding Tin
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : pH by Meter										
HDPE										
MW203	E108	21-Nov-2021					23-Nov-2021	0.25	43 hrs	*
								hrs		EHTR-FM
Polycyclic Aromatic Hydrocarbons : VOCs (Prairies List) by Headspace GC-MS										
Glass vial (sodium bisulfate)										
DUPLICATE	E611E	21-Nov-2021	23-Nov-2021				24-Nov-2021			
Polycyclic Aromatic Hydrocarbons : VOCs (Prairies List) by Headspace GC-MS										
Glass vial (sodium bisulfate)										
MW-03	E611E	21-Nov-2021	23-Nov-2021				24-Nov-2021			
Polycyclic Aromatic Hydrocarbons : VOCs (Prairies List) by Headspace GC-MS										
Glass vial (sodium bisulfate)										
MW-04	E611E	21-Nov-2021	23-Nov-2021				24-Nov-2021			
Polycyclic Aromatic Hydrocarbons : VOCs (Prairies List) by Headspace GC-MS										
Glass vial (sodium bisulfate)										
MW203	E611E	21-Nov-2021	23-Nov-2021				24-Nov-2021			
Volatile Organic Compounds : VOCs (Prairies List) by Headspace GC-MS										
Glass vial (sodium bisulfate)										
DUPLICATE	E611E	21-Nov-2021	23-Nov-2021				24-Nov-2021	14 days	3 days	✓
Volatile Organic Compounds : VOCs (Prairies List) by Headspace GC-MS										
Glass vial (sodium bisulfate)										
MW-03	E611E	21-Nov-2021	23-Nov-2021				24-Nov-2021	14 days	3 days	✓
Volatile Organic Compounds : VOCs (Prairies List) by Headspace GC-MS								1	1	
Glass vial (sodium bisulfate)										
MW-04	E611E	21-Nov-2021	23-Nov-2021				24-Nov-2021	14 days	3 days	1
Volatile Organic Compounds : VOCs (Prairies List) by Headspace GC-MS							1		1	
Glass vial (sodium bisulfate)										
MW203	E611E	21-Nov-2021	23-Nov-2021				24-Nov-2021	14 days	3 days	1
								1	· ·	

Legend & Qualifier Definitions

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended

Page	: 8 of 12
Work Order	: CG2105892
Client	: Tetra Tech Canada Inc.
Project	: SWM.SWOP04071-02.003

Rec. HT: ALS recommended hold time (see units).

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Quality Control Sample Type			Co	ount		Frequency (%))
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Alkalinity Species by Titration	E290	350541	1	20	5.0	5.0	1
Ammonia by Fluorescence	E298	354131	1	20	5.0	5.0	✓ ✓
Chloride in Water by IC	E235.CI	350471	1	20	5.0	5.0	<u> </u>
Conductivity in Water	E100	350543	1	20	5.0	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	350827	1	18	5.5	5.0	~
Dissolved Metals in Water by CRC ICPMS	E421	354974	1	18	5.5	5.0	~
Fluoride in Water by IC	E235.F	350470	1	20	5.0	5.0	✓
Nitrate in Water by IC	E235.NO3	350468	1	20	5.0	5.0	~
Nitrite in Water by IC	E235.NO2	350469	1	20	5.0	5.0	~
pH by Meter	E108	350542	1	20	5.0	5.0	~
Sulfate in Water by IC	E235.SO4	350467	1	20	5.0	5.0	✓
VOCs (Prairies List) by Headspace GC-MS	E611E	350431	1	11	9.0	5.0	✓
Laboratory Control Samples (LCS)							
Alkalinity Species by Titration	E290	350541	1	20	5.0	5.0	1
Ammonia by Fluorescence	E298	354131	1	20	5.0	5.0	 ✓
Chloride in Water by IC	E235.CI	350471	1	20	5.0	5.0	
Conductivity in Water	E100	350543	1	20	5.0	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	350827	1	18	5.5	5.0	<u> </u>
Dissolved Metals in Water by CRC ICPMS	E421	354974	1	18	5.5	5.0	✓
Fluoride in Water by IC	E235.F	350470	1	20	5.0	5.0	✓
Nitrate in Water by IC	E235.NO3	350468	1	20	5.0	5.0	~
Nitrite in Water by IC	E235.NO2	350469	1	20	5.0	5.0	~
pH by Meter	E108	350542	1	20	5.0	5.0	~
Sulfate in Water by IC	E235.SO4	350467	1	20	5.0	5.0	✓
VOCs (Prairies List) by Headspace GC-MS	E611E	350431	1	11	9.0	5.0	~
Method Blanks (MB)							
Alkalinity Species by Titration	E290	350541	1	20	5.0	5.0	1
Ammonia by Fluorescence	E298	354131	1	20	5.0	5.0	- -
Chloride in Water by IC	E235.Cl	350471	1	20	5.0	5.0	
Conductivity in Water	E100	350543	1	20	5.0	5.0	
Dissolved Mercury in Water by CVAAS	E509	350827	1	18	5.5	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	354974	1	18	5.5	5.0	~
Fluoride in Water by IC	E235.F	350470	1	20	5.0	5.0	✓
Nitrate in Water by IC	E235.NO3	350468	1	20	5.0	5.0	✓
Nitrite in Water by IC	E235.NO2	350469	1	20	5.0	5.0	
Sulfate in Water by IC	E235.SO4	350467	1	20	5.0	5.0	✓
VOCs (Prairies List) by Headspace GC-MS	E611E	350431	1	11	9.0	5.0	4

Page	: 10 of 12
Work Order	: CG2105892
Client	: Tetra Tech Canada Inc.
Project	: SWM.SWOP04071-02.003

Matrix: Water		Evaluati	ion: × = QC frequ	ency outside sp	ecification; ✓ =	QC frequency wit	thin specificatio
Quality Control Sample Type			C	ount		Frequency (%))
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Matrix Spikes (MS)							
Ammonia by Fluorescence	E298	354131	1	20	5.0	5.0	1
Chloride in Water by IC	E235.Cl	350471	1	20	5.0	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	350827	1	18	5.5	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	354974	1	18	5.5	5.0	✓
Fluoride in Water by IC	E235.F	350470	1	20	5.0	5.0	✓
Nitrate in Water by IC	E235.NO3	350468	1	20	5.0	5.0	✓
Nitrite in Water by IC	E235.NO2	350469	1	20	5.0	5.0	✓
Sulfate in Water by IC	E235.SO4	350467	1	20	5.0	5.0	✓
VOCs (Prairies List) by Headspace GC-MS	E611E	350431	1	11	9.0	5.0	✓

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Conductivity in Water	E100	Water	APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is
	Calgary - Environmental			measured by immersion of a conductivity cell with platinum electrodes into a water sample. Conductivity measurements are temperature-compensated to 25°C.
pH by Meter	E108	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted
	2100			at ambient laboratory temperature (normally $20 \pm 5^{\circ}$ C). For high accuracy test results,
	Calgary - Environmental			pH should be measured in the field within the recommended 15 minute hold time.
Chloride in Water by IC	E235.CI	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV
				detection.
	Calgary - Environmental			
Fluoride in Water by IC	E235.F	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV
	Calgary - Environmental			detection.
Nitrite in Water by IC	E235.NO2	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV
Nittle in Water by IC	L233.NO2	Water		detection.
	Calgary - Environmental			
Nitrate in Water by IC	E235.NO3	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV
				detection.
	Calgary - Environmental			
Sulfate in Water by IC	E235.SO4	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV
	Calgary - Environmental			detection.
Alkalinity Species by Titration	E290	Water	APHA 2320 B (mod)	Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate,
· ····································	2200			carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total
	Calgary - Environmental			alkalinity values.
Ammonia by Fluorescence	E298	Water	J. Environ. Monit.,	Ammonia in water is analyzed by flow-injection analysis with fluorescence detection
			2005, 7, 37-42 (mod)	after reaction with orthophthaldialdehyde (OPA).
	Calgary - Environmental			
Dissolved Metals in Water by CRC ICPMS	E421	Water	APHA 3030B/EPA	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by
	Calgary - Environmental		6020B (mod)	Collision/Reaction Cell ICPMS.
	Calgary Environmental			Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered
				by this method.
Dissolved Mercury in Water by CVAAS	E509	Water	APHA 3030B/EPA	Water samples are filtered (0.45 um), preserved with HCl, then undergo a cold-oxidation
			1631E (mod)	using bromine monochloride prior to reduction with stannous chloride, and analyzed by
	Calgary - Environmental			CVAAS.
VOCs (Prairies List) by Headspace GC-MS	E611E	Water	EPA 8260D (mod)	Volatile Organic Compounds (VOCs) are analyzed by static headspace GC-MS.
	Colgony Environmental			Samples are prepared in headspace vials and are heated and agitated on the
	Calgary - Environmental			headspace autosampler, causing VOCs to partition between the aqueous phase and
				the headspace in accordance with Henry's law.

Page	: 12 of 12
Work Order	: CG2105892
Client	: Tetra Tech Canada Inc.
Project	: SWM.SWOP04071-02.003

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions	
Dissolved Hardness (Calculated)	EC100 Calgary - Environmental	Water	APHA 2340B	"Hardness (as CaCO3), dissolved" is calculated from the sum of dissolved Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially calculated from dissolved Calcium and Magnesium concentrations, because it is a property of water due to dissolved divalent cations.	
Ion Balance using Dissolved Metals	EC101 Calgary - Environmental	Water	APHA 1030E	Cation Sum, Anion Sum, and Ion Balance are calculated based on guidance from APHA Standard Methods (1030E Checking Correctness of Analysis). Dissolved species are used where available. Minor ions are included where data is present. Ion Balance cannot be calculated accurately for waters with very low electrical conductivity (EC).	
TDS in Water (Calculation)	EC103 Calgary - Environmental	Water	APHA 1030E (mod)	Total Dissolved Solids is calculated based on guidance from APHA Standard Methods (1030E Checking Correctness of Analysis). Dissolved species are used where available. Minor ions are included where data is present.	
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions	
Preparation for Ammonia	EP298 Calgary - Environmental	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.	
Dissolved Metals Water Filtration	EP421 Calgary - Environmental	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HNO3.	
Dissolved Mercury Water Filtration	EP509 Calgary - Environmental	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HCl.	
VOCs Preparation for Headspace Analysis	EP581 Calgary - Environmental	Water	EPA 5021A (mod)	Samples are prepared in headspace vials and are heated and agitated on the headspace autosampler. An aliquot of the headspace is then injected into the GC/MS-FID system.	

QUALITY CONTROL REPORT

Work Order	CG2105892	Page	: 1 of 18
Client	: Tetra Tech Canada Inc.	Laboratory	: Calgary - Environmental
Contact	: Darby Madalena	Account Manager	Milica Papic
Address	: 115 - 200 Rivercrest Dr SE Calgary AB Canada T2C 2X5	Address	∶2559 29th Street NE Calgary, Alberta Canada T1Y 7B5
Telephone	:403 203 3355	Telephone	:+1 403 407 1800
Project	: SWM.SWOP04071-02.003	Date Samples Received	: 23-Nov-2021 05:55
PO	:SWM.SWOP04071-02.003	Date Analysis Commenced	: 23-Nov-2021
C-O-C number	CORD MCKENZIE TRAILS	Issue Date	:01-Dec-2021 16:03
Sampler	: RYAN MILLER		
Site	:		
Quote number	: Q71650 City of Red Deer Pre-1972 Landfill Monitoring		
No. of samples received	:4		
No. of samples analysed	: 4		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

• Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

- Matrix Spike (MS) Report; Recovery and Acceptance Limits
- Reference Material (RM) Report; Recovery and Acceptance Limits
- Method Blank (MB) Report; Recovery and Acceptance Limits
- Laboratory Control Sample (LCS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Daniel Ching	Lab Analyst	Metals, Calgary, Alberta
Jeanie Mark	Laboratory Analyst	Organics, Calgary, Alberta
Millicent Brentnall	Laboratory Analyst	Metals, Calgary, Alberta
Parker Sgarbossa	Laboratory Analyst	Inorganics, Calgary, Alberta
Sara Niroomand		Inorganics, Calgary, Alberta
Sara Niroomand		Metals, Calgary, Alberta
Shirley Li		Metals, Calgary, Alberta
Vladka Stamenova	Analyst	Inorganics, Calgary, Alberta

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key :

- Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.
- CAS Number = Chemical Abstracts Services number is a unique identifier assigned to discrete substances.
- DQO = Data Quality Objective.
- LOR = Limit of Reporting (detection limit).
- RPD = Relative Percentage Difference
- # = Indicates a QC result that did not meet the ALS DQO.

Page	: 3 of 18
Work Order	: CG2105892
Client	: Tetra Tech Canada Inc.
Project	: SWM.SWOP04071-02.003

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test specific).

ub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
aboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
Physical Tests (QC	Lot: 350541)										
CG2105814-020	Anonymous	alkalinity, total (as CaCO3)		E290	1.0	mg/L	644	642	0.404%	20%	
Physical Tests (QC	Lot: 350542)										
CG2105814-020	Anonymous	рН		E108	0.10	pH units	8.20	8.20	0.00%	4%	
Physical Tests (QC	Lot: 350543)										
CG2105814-020	Anonymous	conductivity		E100	1.0	µS/cm	1750	1740	0.516%	10%	
Anions and Nutrient	ts (QC Lot: 350467)										
CG2105814-008	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	1.50	mg/L	179	180	0.299%	20%	
Anions and Nutrient	ts (QC Lot: 350468)										I
CG2105814-008	Anonymous	nitrate (as N)	14797-55-8	E235.NO3	0.100	mg/L	0.129	0.121	0.008	Diff <2x LOR	
Anions and Nutrient	ts (QC Lot: 350469)										
CG2105814-008	Anonymous	nitrite (as N)	14797-65-0	E235.NO2	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
Anions and Nutrient	ts (QC Lot: 350470)										
CG2105814-008	Anonymous	fluoride	16984-48-8	E235.F	0.100	mg/L	0.139	0.132	0.007	Diff <2x LOR	
Anions and Nutrient	ts (QC Lot: 350471)										
CG2105814-008	Anonymous	chloride	16887-00-6	E235.Cl	2.50	mg/L	122	122	0.327%	20%	
Anions and Nutrient	ts (QC Lot: 354131)										
CG2105892-001	MW-03	ammonia, total (as N)	7664-41-7	E298	0.500	mg/L	5.51	5.35	3.03%	20%	
Dissolved Metals (C	OC Lot: 350827)										
CG2105892-001	MW-03	mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	
Dissolved Metals (C	OC Lot: 354974)										
CG2105890-001	Anonymous	aluminum, dissolved	7429-90-5	E421	0.0050	mg/L	<0.0050	<0.0050	0	Diff <2x LOR	
		antimony, dissolved	7440-36-0	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		arsenic, dissolved	7440-38-2	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		barium, dissolved	7440-39-3	E421	0.00050	mg/L	0.0223	0.0220	1.44%	20%	
		beryllium, dissolved	7440-41-7	E421	0.100	mg/L	<0.100 µg/L	<0.000100	0	Diff <2x LOR	
		bismuth, dissolved	7440-69-9	E421	0.000250	mg/L	<0.000250	<0.000250	0	Diff <2x LOR	
		boron, dissolved	7440-42-8	E421	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
		cadmium, dissolved	7440-43-9	E421	0.0250	mg/L	<0.0250 µg/L	<0.0000250	0	Diff <2x LOR	
		calcium, dissolved	7440-70-2	E421	0.250	mg/L	228	228	0.108%	20%	
		chromium, dissolved	7440-47-3	E421	0.00250	mg/L	<0.00250	<0.00250	0	Diff <2x LOR	
		cobalt, dissolved	7440-48-4	E421	0.50		2.69 µg/L	0.00272	0.00002	Diff <2x LOR	

Page	: 4 of 18
Work Order	: CG2105892
Client	: Tetra Tech Canada Inc.
Project	: SWM.SWOP04071-02.003

ub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
aboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
Dissolved Metals(C	QC Lot: 354974) - contin	ued									
CG2105890-001	Anonymous	copper, dissolved	7440-50-8	E421	0.00100	mg/L	<0.00100	<0.00100	0	Diff <2x LOR	
		iron, dissolved	7439-89-6	E421	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
		lead, dissolved	7439-92-1	E421	0.000250	mg/L	<0.000250	<0.000250	0	Diff <2x LOR	
		lithium, dissolved	7439-93-2	E421	0.0050	mg/L	0.0502	0.0497	0.0005	Diff <2x LOR	
		magnesium, dissolved	7439-95-4	E421	0.0250	mg/L	140	139	0.716%	20%	
		manganese, dissolved	7439-96-5	E421	0.00050	mg/L	0.0422	0.0402	4.88%	20%	
		molybdenum, dissolved	7439-98-7	E421	0.000250	mg/L	0.0158	0.0160	1.28%	20%	
		nickel, dissolved	7440-02-0	E421	0.00250	mg/L	0.0266	0.0266	0.0322%	20%	
		phosphorus, dissolved	7723-14-0	E421	0.250	mg/L	<0.250	<0.250	0	Diff <2x LOR	
		potassium, dissolved	7440-09-7	E421	0.250	mg/L	4.14	4.08	1.37%	20%	
		selenium, dissolved	7782-49-2	E421	0.250	mg/L	22.9 µg/L	0.0229	0.187%	20%	
		silicon, dissolved	7440-21-3	E421	0.250	mg/L	3.11	3.06	1.34%	20%	
		silver, dissolved	7440-22-4	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		sodium, dissolved	17341-25-2	E421	0.250	mg/L	5.97	5.92	0.946%	20%	
		strontium, dissolved	7440-24-6	E421	0.00100	mg/L	0.320	0.316	1.49%	20%	
		sulfur, dissolved	7704-34-9	E421	2.50	mg/L	291	288	0.956%	20%	
		thallium, dissolved	7440-28-0	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		tin, dissolved	7440-31-5	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		titanium, dissolved	7440-32-6	E421	0.00150	mg/L	<0.00150	<0.00150	0	Diff <2x LOR	
		uranium, dissolved	7440-61-1	E421	0.000050	mg/L	0.0118	0.0118	0.0238%	20%	
		vanadium, dissolved	7440-62-2	E421	0.00250	mg/L	<0.00250	<0.00250	0	Diff <2x LOR	
		zinc, dissolved	7440-66-6	E421	0.0050	mg/L	<0.0050	<0.0050	0	Diff <2x LOR	
		zirconium, dissolved	7440-67-7	E421	0.00150	mg/L	<0.00150	<0.00150	0	Diff <2x LOR	
/olatile Organic Co	mpounds (QC Lot: 3504	31)									
CG2105892-001	MW-03	benzene	71-43-2	E611E	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		bromobenzene	108-86-1	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR	
		bromochloromethane	74-97-5	E611E	1.0	µg/L	<1.0	<1.0	0	Diff <2x LOR	
		bromodichloromethane	75-27-4	E611E	1.0	µg/L	<1.0	<1.0	0	Diff <2x LOR	
		bromoform	75-25-2	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR	
		bromomethane	74-83-9	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR	
		butylbenzene, n-	104-51-8	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR	
		butylbenzene, sec-	135-98-8	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR	
		butylbenzene, tert-	98-06-6	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR	
		carbon tetrachloride	56-23-5	E611E	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		chlorobenzene		E611E	1.0				0		

Page	: 5 of 18
Work Order	: CG2105892
Client	: Tetra Tech Canada Inc.
Project	: SWM.SWOP04071-02.003

Sub-Matrix: Water						Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie	
/olatile Organic Co	mpounds (QC Lot: 350	0431) - continued										
CG2105892-001	MW-03	chloroethane	75-00-3	E611E	1.0	µg/L	<1.0	<1.0	0	Diff <2x LOR		
		chloroform	67-66-3	E611E	1.0	µg/L	<1.0	<1.0	0	Diff <2x LOR		
		chloromethane	74-87-3	E611E	5.0	µg/L	<5.0	<5.0	0	Diff <2x LOR		
		chlorotoluene, 2-	95-49-8	E611E	1.0	µg/L	<1.0	<1.0	0	Diff <2x LOR		
		chlorotoluene, 4-	106-43-4	E611E	1.0	µg/L	<1.0	<1.0	0	Diff <2x LOR		
		cymene, p-	99-87-6	E611E	1.0	µg/L	<1.0	<1.0	0	Diff <2x LOR		
		dibromo-3-chloropropane, 1,2-	96-12-8	E611E	1.0	µg/L	<1.0	<1.0	0	Diff <2x LOR		
		dibromochloromethane	124-48-1	E611E	1.0	µg/L	<1.0	<1.0	0	Diff <2x LOR		
		dibromoethane, 1,2-	106-93-4	E611E	1.0	µg/L	<1.0	<1.0	0	Diff <2x LOR		
		dibromomethane	74-95-3	E611E	1.0	µg/L	<1.0	<1.0	0	Diff <2x LOR		
		dichlorobenzene, 1,2-	95-50-1	E611E	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR		
		dichlorobenzene, 1,3-	541-73-1	E611E	1.0	µg/L	<1.0	<1.0	0	Diff <2x LOR		
		dichlorobenzene, 1,4-	106-46-7	E611E	1.0	µg/L	<1.0	<1.0	0	Diff <2x LOR		
		dichlorodifluoromethane	75-71-8	E611E	1.0	µg/L	<1.0	<1.0	0	Diff <2x LOR		
		dichloroethane, 1,1-	75-34-3	E611E	1.0	µg/L	<1.0	<1.0	0	Diff <2x LOR		
		dichloroethane, 1,2-	107-06-2	E611E	1.0	µg/L	<1.0	<1.0	0	Diff <2x LOR		
		dichloroethylene, 1,1-	75-35-4	E611E	1.0	µg/L	<1.0	<1.0	0	Diff <2x LOR		
		dichloroethylene, cis-1,2-	156-59-2	E611E	1.0	µg/L	4.2	4.3	0.09	Diff <2x LOR		
		dichloroethylene, trans-1,2-	156-60-5	E611E	1.0	µg/L	<1.0	<1.0	0	Diff <2x LOR		
		dichloromethane	75-09-2	E611E	1.0	µg/L	<1.0	<1.0	0	Diff <2x LOR		
		dichloropropane, 1,2-	78-87-5	E611E	1.0	µg/L	<1.0	<1.0	0	Diff <2x LOR		
		dichloropropane, 1,3-	142-28-9	E611E	1.0	µg/L	<1.0	<1.0	0	Diff <2x LOR		
		dichloropropane, 2,2-	594-20-7	E611E	1.0	µg/L	<1.0	<1.0	0	Diff <2x LOR		
		dichloropropylene, 1,1-	563-58-6	E611E	1.0	µg/L	<1.0	<1.0	0	Diff <2x LOR		
		dichloropropylene, cis-1,3-	10061-01-5	E611E	1.0	µg/L	<1.0	<1.0	0	Diff <2x LOR		
		dichloropropylene, trans-1,3-	10061-02-6	E611E	1.0	µg/L	<1.0	<1.0	0	Diff <2x LOR		
		ethylbenzene	100-41-4	E611E	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR		
		hexachlorobutadiene	87-68-3	E611E	1.0	µg/L	<1.0	<1.0	0	Diff <2x LOR		
		isopropylbenzene	98-82-8	E611E	1.0	µg/L	<1.0	<1.0	0	Diff <2x LOR		
		methyl-tert-butyl ether [MTBE]	1634-04-4	E611E	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR		
		naphthalene	91-20-3	E611E	1.0	µg/L	<1.0	<1.0	0	Diff <2x LOR		
		propylbenzene, n-	103-65-1	E611E	1.0	µg/L	<1.0	<1.0	0	Diff <2x LOR		
		styrene	100-42-5	E611E	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR		
		tetrachloroethane, 1,1,1,2-	630-20-6	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR		
		tetrachloroethane, 1,1,2,2-	79-34-5	E611E	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR		

Page	: 6 of 18
Work Order	: CG2105892
Client	: Tetra Tech Canada Inc.
Project	: SWM.SWOP04071-02.003

Sub-Matrix: Water					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Volatile Organic Co	mpounds (QC Lot: 3	50431) - continued									
CG2105892-001	MW-03	tetrachloroethylene	127-18-4	E611E	1.0	µg/L	<1.0	<1.0	0	Diff <2x LOR	
		toluene	108-88-3	E611E	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		trichlorobenzene, 1,2,3-	87-61-6	E611E	1.0	µg/L	<1.0	<1.0	0	Diff <2x LOR	
		trichlorobenzene, 1,2,4-	120-82-1	E611E	1.0	µg/L	<1.0	<1.0	0	Diff <2x LOR	
		trichloroethane, 1,1,1-	71-55-6	E611E	1.0	µg/L	<1.0	<1.0	0	Diff <2x LOR	
		trichloroethane, 1,1,2-	79-00-5	E611E	1.0	µg/L	<1.0	<1.0	0	Diff <2x LOR	
		trichloroethylene	79-01-6	E611E	1.0	µg/L	<1.0	<1.0	0	Diff <2x LOR	
		trichlorofluoromethane	75-69-4	E611E	1.0	µg/L	<1.0	<1.0	0	Diff <2x LOR	
		trichloropropane, 1,2,3-	96-18-4	E611E	1.0	µg/L	<1.0	<1.0	0	Diff <2x LOR	
		trimethylbenzene, 1,2,4-	95-63-6	E611E	1.0	µg/L	<1.0	<1.0	0	Diff <2x LOR	
		trimethylbenzene, 1,3,5-	108-67-8	E611E	1.0	µg/L	<1.0	<1.0	0	Diff <2x LOR	
		vinyl chloride	75-01-4	E611E	1.0	µg/L	2.1	2.1	0.01	Diff <2x LOR	
		xylene, m+p-	179601-23-1	E611E	0.40	µg/L	<0.40	<0.40	0	Diff <2x LOR	
		xylene, o-	95-47-6	E611E	0.30	µg/L	<0.30	<0.30	0	Diff <2x LOR	

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Water					
Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 350541)					
alkalinity, total (as CaCO3)	E290	1	mg/L	<1.0	
Physical Tests (QCLot: 350543)					
conductivity	E100	1	µS/cm	1.2	
Anions and Nutrients (QCLot: 350467)					
ulfate (as SO4)	14808-79-8 E235.SO4	0.3	mg/L	<0.30	
Anions and Nutrients (QCLot: 350468)					
itrate (as N)	14797-55-8 E235.NO3	0.02	mg/L	<0.020	
Anions and Nutrients (QCLot: 350469)					
nitrite (as N)	14797-65-0 E235.NO2	0.01	mg/L	<0.010	
Anions and Nutrients (QCLot: 350470)					
luoride	16984-48-8 E235.F	0.02	mg/L	<0.020	
Anions and Nutrients (QCLot: 350471)					
hloride	16887-00-6 E235.CI	0.5	mg/L	<0.50	
Anions and Nutrients (QCLot: 354131)					
ammonia, total (as N)	7664-41-7 E298	0.005	mg/L	<0.0050	
Dissolved Metals (QCLot: 350827)					
nercury, dissolved	7439-97-6 E509	0.000005	mg/L	<0.000050	
Dissolved Metals (QCLot: 354974)					
aluminum, dissolved	7429-90-5 E421	0.001	mg/L	<0.0010	
antimony, dissolved	7440-36-0 E421	0.0001	mg/L	<0.00010	
arsenic, dissolved	7440-38-2 E421	0.0001	mg/L	<0.00010	
parium, dissolved	7440-39-3 E421	0.0001	mg/L	<0.00010	
peryllium, dissolved	7440-41-7 E421	0.00002	mg/L	<0.000020	
sismuth, dissolved	7440-69-9 E421	0.00005	mg/L	<0.000050	
boron, dissolved	7440-42-8 E421	0.01	mg/L	<0.010	
admium, dissolved	7440-43-9 E421	0.000005	mg/L	<0.0000050	
alcium, dissolved	7440-70-2 E421	0.05	mg/L	<0.050	
hromium, dissolved	7440-47-3 E421	0.0005	mg/L	<0.00050	
cobalt, dissolved	7440-48-4 E421	0.0001	mg/L	<0.00010	
copper, dissolved	7440-50-8 E421	0.0002	mg/L	<0.00020	
ron, dissolved	7439-89-6 E421	0.01	mg/L	<0.010	
ead, dissolved	7439-92-1 E421	0.00005	mg/L	<0.000050	
ithium, dissolved	7439-93-2 E421	0.001	mg/L	<0.0010	

Page	: 8 of 18
Work Order	: CG2105892
Client	: Tetra Tech Canada Inc.
Project	: SWM.SWOP04071-02.003

Sub-Matrix: Water

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Dissolved Metals (QCLot: 354974					
magnesium, dissolved	7439-95-4 E421	0.005	mg/L	<0.0050	
manganese, dissolved	7439-96-5 E421	0.0001	mg/L	<0.00010	
molybdenum, dissolved	7439-98-7 E421	0.00005	mg/L	<0.000050	
nickel, dissolved	7440-02-0 E421	0.0005	mg/L	<0.00050	
phosphorus, dissolved	7723-14-0 E421	0.05	mg/L	<0.050	
potassium, dissolved	7440-09-7 E421	0.05	mg/L	<0.050	
selenium, dissolved	7782-49-2 E421	0.00005	mg/L	<0.000050	
silicon, dissolved	7440-21-3 E421	0.05	mg/L	<0.050	
silver, dissolved	7440-22-4 E421	0.00001	mg/L	<0.000010	
sodium, dissolved	17341-25-2 E421	0.05	mg/L	<0.050	
strontium, dissolved	7440-24-6 E421	0.0002	mg/L	<0.00020	
sulfur, dissolved	7704-34-9 E421	0.5	mg/L	<0.50	
thallium, dissolved	7440-28-0 E421	0.00001	mg/L	<0.000010	
tin, dissolved	7440-31-5 E421	0.0001	mg/L	<0.00010	
titanium, dissolved	7440-32-6 E421	0.0003	mg/L	<0.00030	
uranium, dissolved	7440-61-1 E421	0.00001	mg/L	<0.000010	
vanadium, dissolved	7440-62-2 E421	0.0005	mg/L	<0.00050	
zinc, dissolved	7440-66-6 E421	0.001	mg/L	<0.0010	
zirconium, dissolved	7440-67-7 E421	0.0002	mg/L	<0.00020	
Volatile Organic Compounds (QC	Lot: 350431)				
benzene	71-43-2 E611E	0.5	µg/L	<0.50	
bromobenzene	108-86-1 E611E	1	µg/L	<1.0	
bromochloromethane	74-97-5 E611E	1	µg/L	<1.0	
bromodichloromethane	75-27-4 E611E	1	µg/L	<1.0	
bromoform	75-25-2 E611E	1	µg/L	<1.0	
bromomethane	74-83-9 E611E	1	µg/L	<1.0	
butylbenzene, n-	104-51-8 E611E	1	µg/L	<1.0	
butylbenzene, sec-	135-98-8 E611E	1	µg/L	<1.0	
butylbenzene, tert-	98-06-6 E611E	1	µg/L	<1.0	
carbon tetrachloride	56-23-5 E611E	0.5	µg/L	<0.50	
chlorobenzene	108-90-7 E611E	1	µg/L	<1.0	
chloroethane	75-00-3 E611E	1	µg/L	<1.0	
chloroform	67-66-3 E611E	1	µg/L	<1.0	
chloromethane	74-87-3 E611E	5	µg/L	<5.0	
chlorotoluene, 2-	95-49-8 E611E	1	µg/L	<1.0	
chlorotoluene, 4-	106-43-4 E611E	1	μg/L	<1.0	

Page	: 9 of 18
Work Order	: CG2105892
Client	: Tetra Tech Canada Inc.
Project	: SWM.SWOP04071-02.003

Sub-Matrix: Water

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Volatile Organic Compounds (QCLo	t: 350431) - continued				
cymene, p-	99-87-6 E611E	1	μg/L	<1.0	
dibromo-3-chloropropane, 1,2-	96-12-8 E611E	1	μg/L	<1.0	
dibromochloromethane	124-48-1 E611E	1	μg/L	<1.0	
dibromoethane, 1,2-	106-93-4 E611E	1	μg/L	<1.0	
dibromomethane	74-95-3 E611E	1	μg/L	<1.0	
dichlorobenzene, 1,2-	95-50-1 E611E	0.5	μg/L	<0.50	
dichlorobenzene, 1,3-	541-73-1 E611E	1	μg/L	<1.0	
dichlorobenzene, 1,4-	106-46-7 E611E	1	μg/L	<1.0	
dichlorodifluoromethane	75-71-8 E611E	1	μg/L	<1.0	
dichloroethane, 1,1-	75-34-3 E611E	1	μg/L	<1.0	
dichloroethane, 1,2-	107-06-2 E611E	1	µg/L	<1.0	
dichloroethylene, 1,1-	75-35-4 E611E	1	µg/L	<1.0	
dichloroethylene, cis-1,2-	156-59-2 E611E	1	μg/L	<1.0	
dichloroethylene, trans-1,2-	156-60-5 E611E	1	μg/L	<1.0	
dichloromethane	75-09-2 E611E	1	μg/L	<1.0	
dichloropropane, 1,2-	78-87-5 E611E	1	μg/L	<1.0	
dichloropropane, 1,3-	142-28-9 E611E	1	μg/L	<1.0	
dichloropropane, 2,2-	594-20-7 E611E	1	μg/L	<1.0	
dichloropropylene, 1,1-	563-58-6 E611E	1	μg/L	<1.0	
dichloropropylene, cis-1,3-	10061-01-5 E611E	1	μg/L	<1.0	
dichloropropylene, trans-1,3-	10061-02-6 E611E	1	μg/L	<1.0	
ethylbenzene	100-41-4 E611E	0.5	μg/L	<0.50	
hexachlorobutadiene	87-68-3 E611E	1	μg/L	<1.0	
isopropylbenzene	98-82-8 E611E	1	μg/L	<1.0	
methyl-tert-butyl ether [MTBE]	1634-04-4 E611E	0.5	μg/L	<0.50	
naphthalene	91-20-3 E611E	1	μg/L	<1.0	
propylbenzene, n-	103-65-1 E611E	1	μg/L	<1.0	
styrene	100-42-5 E611E	0.5	μg/L	<0.50	
tetrachloroethane, 1,1,1,2-	630-20-6 E611E	1	µg/L	<1.0	
tetrachloroethane, 1,1,2,2-	79-34-5 E611E	1	µg/L	<1.0	
tetrachloroethylene	127-18-4 E611E	1	µg/L	<1.0	
toluene	108-88-3 E611E	0.5	µg/L	<0.50	
trichlorobenzene, 1,2,3-	87-61-6 E611E	1	µg/L	<1.0	
trichlorobenzene, 1,2,4-	120-82-1 E611E	1	µg/L	<1.0	
trichloroethane, 1,1,1-	71-55-6 E611E	1	µg/L	<1.0	
trichloroethane, 1,1,2-	79-00-5 E611E	1	µg/L	<1.0	

Page	: 10 of 18
Work Order	: CG2105892
Client	: Tetra Tech Canada Inc.
Project	; SWM.SWOP04071-02.003

Sub-Matrix: Water

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Volatile Organic Compounds (QC	CLot: 350431) - continued					
trichloroethylene	79-01-6	E611E	1	µg/L	<1.0	
trichlorofluoromethane	75-69-4	E611E	1	µg/L	<1.0	
trichloropropane, 1,2,3-	96-18-4	E611E	1	µg/L	<1.0	
trimethylbenzene, 1,2,4-	95-63-6	E611E	1	µg/L	<1.0	
trimethylbenzene, 1,3,5-	108-67-8	E611E	1	µg/L	<1.0	
vinyl chloride	75-01-4	E611E	1	μg/L	<1.0	
xylene, m+p-	179601-23-1	E611E	0.4	µg/L	<0.40	
kylene, o-	95-47-6	E611E	0.3	μg/L	<0.30	

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water						Laboratory Co	ntrol Sample (LCS)	Report	
					Spike				
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	Limits (%) High	Qualifier
					Soncentration	200	2011		
Physical Tests (QCLot: 350541) alkalinity, total (as CaCO3)		E290	1	mg/L	500 mg/L	107	85.0	115	
					ooo mg/E	101	00.0	110	
Physical Tests (QCLot: 350542)		E108		pH units	7 pH units	100	98.6	101	
		2100		pri unito	7 pri units	100	50.0	101	
Physical Tests (QCLot: 350543) conductivity		E100	1	µS/cm	146.0 uS/om	102	90.0	110	
Conductivity				μο/επ	146.9 μS/cm	102	90.0	110	
Anions and Nutrients (QCLot: 350467)									
sulfate (as SO4)	14808-79-8	E235.SO4	0.3	mg/L	100 mg/L	101	90.0	110	
Anions and Nutrients (QCLot: 350468)									1
nitrate (as N)	14797-55-8	E235.NO3	0.02	mg/L	2.5 mg/L	99.5	90.0	110	
Anions and Nutrients (QCLot: 350469)					ů				
nitrite (as N)	14797-65-0	E235.NO2	0.01	mg/L	0.5 mg/L	101	90.0	110	
				-	3				
Anions and Nutrients (QCLot: 350470)	16984-48-8	E235.F	0.02	mg/L	1 mg/L	93.4	90.0	110	
				5		00.1	00.0		
Anions and Nutrients (QCLot: 350471)	16887-00-6	E235.Cl	0.5	mg/L	100 mg/L	99.3	90.0	110	
				0					
Anions and Nutrients (QCLot: 354131) ammonia, total (as N)	7664-41-7	E298	0.005	mg/L	0.2 mg/L	100	85.0	115	
				5	0.2		00.0		
mercury, dissolved	7439-97-6	E509	0.000005	mg/L	0.0001 mg/L	101	80.0	120	
Dissolved Metals (QCLot: 354974)					-	1			
aluminum, dissolved	7429-90-5	E421	0.001	mg/L	2 mg/L	91.4	80.0	120	
antimony, dissolved	7440-36-0	E421	0.0001	mg/L	1 mg/L	108	80.0	120	
arsenic, dissolved	7440-38-2	E421	0.0001	mg/L	1 mg/L	93.6	80.0	120	
barium, dissolved	7440-39-3	E421	0.0001	mg/L	0.25 mg/L	95.6	80.0	120	
beryllium, dissolved	7440-41-7	E421	0.00002	mg/L	0.1 mg/L	98.7	80.0	120	
bismuth, dissolved	7440-69-9	E421	0.00005	mg/L	1 mg/L	99.4	80.0	120	
boron, dissolved	7440-42-8	E421	0.01	mg/L	1 mg/L	95.9	80.0	120	
cadmium, dissolved	7440-43-9	E421	0.000005	mg/L	0.1 mg/L	93.3	80.0	120	
calcium, dissolved	7440-70-2	E421	0.05	mg/L	50 mg/L	98.1	80.0	120	
chromium, dissolved	7440-47-3	E421	0.0005	mg/L	0.25 mg/L	94.4	80.0	120	
cobalt, dissolved	7440-48-4	E421	0.0001	mg/L	0.25 mg/L	95.6	80.0	120	
copper, dissolved	7440-50-8	E421	0.0002	mg/L	0.25 mg/L	92.3	80.0	120	
iron, dissolved	7439-89-6	E421	0.01	mg/L	1 mg/L	92.6	80.0	120	

Page	: 12 of 18
Work Order	: CG2105892
Client	: Tetra Tech Canada Inc.
Project	: SWM.SWOP04071-02.003

Sub-Matrix: Water	Laboratory Control Sample (LCS) Report								
					Spike	Recovery (%)	Recover	y Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Dissolved Metals (QCLot: 354974)									
lead, dissolved	7439-92-1	E421	0.00005	mg/L	0.5 mg/L	98.9	80.0	120	
lithium, dissolved	7439-93-2	E421	0.001	mg/L	0.25 mg/L	101	80.0	120	
magnesium, dissolved	7439-95-4	E421	0.005	mg/L	50 mg/L	90.4	80.0	120	
manganese, dissolved	7439-96-5	E421	0.0001	mg/L	0.25 mg/L	97.4	80.0	120	
molybdenum, dissolved	7439-98-7	E421	0.00005	mg/L	0.25 mg/L	101	80.0	120	
nickel, dissolved	7440-02-0	E421	0.0005	mg/L	0.5 mg/L	93.1	80.0	120	
phosphorus, dissolved	7723-14-0	E421	0.05	mg/L	10 mg/L	95.2	70.0	130	
potassium, dissolved	7440-09-7	E421	0.05	mg/L	50 mg/L	95.9	80.0	120	
selenium, dissolved	7782-49-2	E421	0.00005	mg/L	1 mg/L	92.6	80.0	120	
silicon, dissolved	7440-21-3	E421	0.05	mg/L	10 mg/L	96.5	60.0	140	
silver, dissolved	7440-22-4	E421	0.00001	mg/L	0.1 mg/L	105	80.0	120	
sodium, dissolved	17341-25-2	E421	0.05	mg/L	50 mg/L	93.8	80.0	120	
strontium, dissolved	7440-24-6	E421	0.0002	mg/L	0.25 mg/L	98.0	80.0	120	
sulfur, dissolved	7704-34-9	E421	0.5	mg/L	50 mg/L	110	80.0	120	
thallium, dissolved	7440-28-0	E421	0.00001	mg/L	1 mg/L	98.6	80.0	120	
tin, dissolved	7440-31-5	E421	0.0001	mg/L	0.5 mg/L	96.5	80.0	120	
titanium, dissolved	7440-32-6	E421	0.0003	mg/L	0.25 mg/L	87.7	80.0	120	
uranium, dissolved	7440-61-1	E421	0.00001	mg/L	0.005 mg/L	105	80.0	120	
vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	0.5 mg/L	95.1	80.0	120	
zinc, dissolved	7440-66-6	E421	0.001	mg/L	0.5 mg/L	92.1	80.0	120	
zirconium, dissolved	7440-67-7	E421	0.0002	mg/L	0.1 mg/L	104	80.0	120	
Volatile Organic Compounds (QCI	ot: 350431)					1			1
benzene	71-43-2	E611E	0.5	µg/L	100 µg/L	110	70.0	130	
bromobenzene	108-86-1	E611E	1	µg/L	100 µg/L	105	70.0	130	
bromochloromethane	74-97-5	E611E	1	µg/L	100 µg/L	103	70.0	130	
bromodichloromethane	75-27-4	E611E	1	µg/L	100 µg/L	99.0	70.0	130	
bromoform	75-25-2	E611E	1	μg/L	100 µg/L	109	70.0	130	
bromomethane	74-83-9	E611E	1	µg/L	100 µg/L	120	60.0	140	
butylbenzene, n-	104-51-8	E611E	1	μg/L	100 µg/L	106	70.0	130	
butylbenzene, sec-	135-98-8	E611E	1	μg/L	100 µg/L	112	70.0	130	
butylbenzene, tert-	98-06-6		1	μg/L	100 µg/L	117	70.0	130	
carbon tetrachloride	56-23-5		0.5	μg/L	100 µg/L	89.4	70.0	130	
chlorobenzene	108-90-7		1	μg/L	100 µg/L	105	70.0	130	
chloroethane	75-00-3		1	μg/L	100 µg/L	118	60.0	140	
chloroform	67-66-3		1	µg/L	100 μg/L	97.0	70.0	130	
chloromethane	74-87-3		5	µg/L	100 μg/L	101	60.0	140	
chlorotoluene, 2-	95-49-8		1	µg/∟	100 μg/L	112	70.0	140	

Page	: 13 of 18
Work Order	: CG2105892
Client	: Tetra Tech Canada Inc.
Project	: SWM.SWOP04071-02.003

Sub-Matrix: Water	Laboratory Control Sample (LCS) Report							
	Spike Recovery (%) Recovery Limits (%)							
Analyte	CAS Number Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Volatile Organic Compounds (QCLot	: 350431) - continued							
chlorotoluene, 4-	106-43-4 E611E	1	µg/L	100 µg/L	112	70.0	130	
cymene, p-	99-87-6 E611E	1	µg/L	100 µg/L	125	70.0	130	
dibromo-3-chloropropane, 1,2-	96-12-8 E611E	1	µg/L	100 µg/L	109	70.0	130	
dibromochloromethane	124-48-1 E611E	1	µg/L	100 µg/L	97.2	70.0	130	
dibromoethane, 1,2-	106-93-4 E611E	1	µg/L	100 µg/L	113	70.0	130	
dibromomethane	74-95-3 E611E	1	µg/L	100 µg/L	120	70.0	130	
dichlorobenzene, 1,2-	95-50-1 E611E	0.5	µg/L	100 µg/L	108	70.0	130	
dichlorobenzene, 1,3-	541-73-1 E611E	1	µg/L	100 µg/L	105	70.0	130	
dichlorobenzene, 1,4-	106-46-7 E611E	1	µg/L	100 µg/L	109	70.0	130	
dichlorodifluoromethane	75-71-8 E611E	1	µg/L	100 µg/L	105	60.0	140	
dichloroethane, 1,1-	75-34-3 E611E	1	µg/L	100 µg/L	99.9	70.0	130	
dichloroethane, 1,2-	107-06-2 E611E	1	µg/L	100 µg/L	105	70.0	130	
dichloroethylene, 1,1-	75-35-4 E611E	1	µg/L	100 µg/L	125	70.0	130	
lichloroethylene, cis-1,2-	156-59-2 E611E	1	µg/L	100 µg/L	113	70.0	130	
lichloroethylene, trans-1,2-	156-60-5 E611E	1	µg/L	100 µg/L	103	70.0	130	
lichloromethane	75-09-2 E611E	1	µg/L	100 µg/L	94.2	70.0	130	
lichloropropane, 1,2-	78-87-5 E611E	1	µg/L	100 µg/L	111	70.0	130	
lichloropropane, 1,3-	142-28-9 E611E	1	µg/L	100 µg/L	119	70.0	130	
lichloropropane, 2,2-	594-20-7 E611E	1	µg/L	100 µg/L	126	70.0	130	
lichloropropylene, 1,1-	563-58-6 E611E	1	µg/L	100 µg/L	111	70.0	130	
ichloropropylene, cis-1,3-	10061-01-5 E611E	1	µg/L	100 µg/L	112	70.0	130	
lichloropropylene, trans-1,3-	10061-02-6 E611E	1	µg/L	100 µg/L	116	70.0	130	
thylbenzene	100-41-4 E611E	0.5	µg/L	100 µg/L	106	70.0	130	
nexachlorobutadiene	87-68-3 E611E	1	µg/L	100 µg/L	99.9	70.0	130	
sopropylbenzene	98-82-8 E611E	1	µg/L	100 µg/L	111	70.0	130	
nethyl-tert-butyl ether [MTBE]	1634-04-4 E611E	0.5	µg/L	100 µg/L	105	70.0	130	
naphthalene	91-20-3 E611E	1	µg/L	100 µg/L	114	70.0	130	
oropylbenzene, n-	103-65-1 E611E	1	µg/L	100 µg/L	126	70.0	130	
styrene	100-42-5 E611E	0.5	µg/L	100 µg/L	104	70.0	130	
etrachloroethane, 1,1,1,2-	630-20-6 E611E	1	µg/L	100 µg/L	91.4	70.0	130	
etrachloroethane, 1,1,2,2-	79-34-5 E611E	1	μg/L	100 µg/L	84.9	70.0	130	
etrachloroethylene	127-18-4 E611E	1	µg/L	100 µg/L	116	70.0	130	
bluene	108-88-3 E611E	0.5	μg/L	100 µg/L	124	70.0	130	
ichlorobenzene, 1,2,3-	87-61-6 E611E	1	μg/L	100 µg/L	108	70.0	130	
richlorobenzene, 1,2,4-	120-82-1 E611E	1	μg/L	100 µg/L	118	70.0	130	
richloroethane, 1,1,1-	71-55-6 E611E	1	μg/L	100 µg/L	99.7	70.0	130	
trichloroethane, 1,1,2-	79-00-5 E611E	1	μg/L	100 µg/L	105	70.0	130	
richloroethylene	79-01-6 E611E	1	μg/L	100 µg/L	112	70.0	130	

Page	: 14 of 18
Work Order	: CG2105892
Client	: Tetra Tech Canada Inc.
Project	: SWM.SWOP04071-02.003

Sub-Matrix: Water					Laboratory Control Sample (LCS) Report					
							Recovery	Limits (%)		
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier	
Volatile Organic Compounds (QCLc	ot: 350431) - continued									
trichlorofluoromethane	75-69-4	E611E	1	µg/L	100 µg/L	120	60.0	140		
trichloropropane, 1,2,3-	96-18-4	E611E	1	µg/L	100 µg/L	96.9	70.0	130		
trimethylbenzene, 1,2,4-	95-63-6	E611E	1	µg/L	100 µg/L	124	70.0	130		
trimethylbenzene, 1,3,5-	108-67-8	E611E	1	μg/L	100 µg/L	126	70.0	130		
vinyl chloride	75-01-4	E611E	1	μg/L	100 µg/L	106	60.0	140		
xylene, m+p-	179601-23-1	E611E	0.4	µg/L	200 µg/L	112	70.0	130		
xylene, o-	95-47-6	E611E	0.3	µg/L	100 µg/L	110	70.0	130		

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

	slated sample (or similar sam	Tiples) Thay be subject to blas. The -	- Recovery not deten	fillied, background level							
ub-Matrix: Water					Matrix Spike (MS) Report						
					Sp	ike	Recovery (%)	Recovery	/ Limits (%)		
.aboratory sample D	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie	
nions and Nutr	ients (QCLot: 350467)										
CG2105814-009	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	ND mg/L	100 mg/L	ND	75.0	125		
Anions and Nutr	ients (QCLot: 350468)										
CG2105814-009	Anonymous	nitrate (as N)	14797-55-8	E235.NO3	2.42 mg/L	2.5 mg/L	96.8	75.0	125		
nions and Nutr	ients (QCLot: 350469)										
CG2105814-009	Anonymous	nitrite (as N)	14797-65-0	E235.NO2	0.489 mg/L	0.5 mg/L	97.8	75.0	125		
nions and Nutr	ients (QCLot: 350470)						1				
CG2105814-009	Anonymous	fluoride	16984-48-8	E235.F	0.836 mg/L	1 mg/L	83.6	75.0	125		
nions and Nutr	ients (QCLot: 350471)				<u> </u>	<u> </u>					
CG2105814-009	Anonymous	chloride	16887-00-6	E235.Cl	ND mg/L	100 mg/L	ND	75.0	125		
nions and Nutr	ients (QCLot: 354131)									_	
CG2105892-002	MW-04	ammonia, total (as N)	7664-41-7	E298	ND mg/L	0.1 mg/L	ND	75.0	125		
	s (QCLot: 350827)		7004-41-7	L290	ND IIIg/E	0.1 mg/L	ND	75.0	125		
CG2105892-002	MW-04	mercury, dissolved	7439-97-6	E509	0.000104 mg/L	0.0001 mg/l	104	70.0	130		
	s (QCLot: 354974)	moreary, dissolved	7439-97-0	E309	0.000104 mg/L	0.0001 mg/L	104	70.0	130		
CG2105890-002	Anonymous	aluminum, dissolved	7429-90-5	E421	1.69 mg/L	2 mg/L	84.3	70.0	130		
		antimony, dissolved	7440-36-0	E421	0.214 mg/L	0.2 mg/L	107	70.0	130		
		arsenic, dissolved	7440-38-2	E421	0.174 mg/L	0.2 mg/L	87.0	70.0	130		
		barium, dissolved	7440-39-3	E421	0.177 mg/L	0.2 mg/L	88.6	70.0	130		
		beryllium, dissolved	7440-41-7	E421	0.379 mg/L	0.4 mg/L	94.7	70.0	130		
		bismuth, dissolved	7440-69-9	E421	0.0952 mg/L	0.1 mg/L	95.2	70.0	130		
		boron, dissolved	7440-42-8	E421	0.999 mg/L	1 mg/L	99.9	70.0	130		
		cadmium, dissolved	7440-43-9	E421	0.0350 mg/L	0.04 mg/L	87.6	70.0	130		
		calcium, dissolved	7440-70-2	E421	36.6 mg/L	40 mg/L	91.4	70.0	130		
		chromium, dissolved	7440-47-3	E421	0.350 mg/L	0.4 mg/L	87.5	70.0	130		
		cobalt, dissolved	7440-48-4	E421	0.176 mg/L	0.2 mg/L	88.1	70.0	130		
		copper, dissolved	7440-50-8	E421	0.175 mg/L	0.2 mg/L	87.5	70.0	130		
					0	Ū.					
		iron, dissolved	7439-89-6	F421	17.5 mg/l	20 mg/l	877	70.0	130		
		iron, dissolved lead, dissolved	7439-89-6 7439-92-1	E421 E421	17.5 mg/L 0.192 mg/L	20 mg/L 0.2 mg/L	87.7 95.8	70.0 70.0	130 130		

Page: 16 of 18Work Order: CG2105892Client: Tetra Tech Canada Inc.Project: SWM.SWOP04071-02.003

ub-Matrix: Water						Matrix Spike (MS) Report						
					Spi	ke	Recovery (%)	Recovery	Limits (%)			
aboratory sample D	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie		
	s (QCLot: 354974) -	continued								1		
CG2105890-002	Anonymous	magnesium, dissolved	7439-95-4	E421	ND mg/L	10 mg/L	ND	70.0	130			
		manganese, dissolved	7439-96-5	E421	0.184 mg/L	0.2 mg/L	91.8	70.0	130			
		molybdenum, dissolved	7439-98-7	E421	0.189 mg/L	0.2 mg/L	94.7	70.0	130			
		nickel, dissolved	7440-02-0	E421	0.350 mg/L	0.4 mg/L	87.5	70.0	130			
		phosphorus, dissolved	7723-14-0	E421	87.5 mg/L	100 mg/L	87.5	70.0	130			
		potassium, dissolved	7440-09-7	E421	34.9 mg/L	40 mg/L	87.2	70.0	130			
		selenium, dissolved	7782-49-2	E421	0.373 mg/L	0.4 mg/L	93.2	70.0	130			
		silicon, dissolved	7440-21-3	E421	86.7 mg/L	100 mg/L	86.7	70.0	130			
		silver, dissolved	7440-22-4	E421	0.0405 mg/L	0.04 mg/L	101	70.0	130			
		sodium, dissolved	17341-25-2	E421	17.1 mg/L	20 mg/L	85.5	70.0	130			
		strontium, dissolved	7440-24-6	E421	0.188 mg/L	0.2 mg/L	93.9	70.0	130			
		sulfur, dissolved	7704-34-9	E421	193 mg/L	200 mg/L	96.3	70.0	130			
		thallium, dissolved	7440-28-0	E421	0.0393 mg/L	0.04 mg/L	98.4	70.0	130			
		tin, dissolved	7440-31-5	E421	0.177 mg/L	0.2 mg/L	88.6	70.0	130			
		titanium, dissolved	7440-32-6	E421	0.318 mg/L	0.4 mg/L	79.4	70.0	130			
		uranium, dissolved	7440-61-1	E421	0.0392 mg/L	0.04 mg/L	97.9	70.0	130			
		vanadium, dissolved	7440-62-2	E421	0.867 mg/L	1 mg/L	86.7	70.0	130			
		zinc, dissolved	7440-66-6	E421	3.48 mg/L	4 mg/L	86.9	70.0	130			
		zirconium, dissolved	7440-67-7	E421	0.381 mg/L	0.4 mg/L	95.2	70.0	130			
olatile Organic	Compounds (QCLo	t: 350431)										
G2105892-001	MW-03	benzene	71-43-2	E611E	90.6 µg/L	100 µg/L	90.6	70.0	130			
		bromobenzene	108-86-1	E611E	101 µg/L	100 µg/L	101	70.0	130			
		bromochloromethane	74-97-5	E611E	84.8 µg/L	100 µg/L	84.8	70.0	130			
		bromodichloromethane	75-27-4	E611E	79.8 µg/L	100 µg/L	79.8	70.0	130			
		bromoform	75-25-2	E611E	105 µg/L	100 µg/L	105	70.0	130			
		bromomethane	74-83-9	E611E	95.0 μg/L	100 µg/L	95.0	60.0	140			
		butylbenzene, n-	104-51-8	E611E	124 µg/L	100 µg/L	124	70.0	130			
		butylbenzene, sec-	135-98-8	E611E	100 µg/L	100 µg/L	100	70.0	130			
		butylbenzene, tert-	98-06-6	E611E	105 µg/L	100 µg/L	105	70.0	130			
		carbon tetrachloride	56-23-5	E611E	70.4 µg/L	100 µg/L	70.4	70.0	130			
		chlorobenzene	108-90-7	E611E	100 µg/L	100 µg/L	100	70.0	130			
		chloroethane	75-00-3	E611E	97.1 μg/L	100 µg/L	97.1	60.0	140			
		chloroform	67-66-3	E611E	77.9 µg/L	100 µg/L	77.9	70.0	130			
		chloromethane	74-87-3	E611E	79.0 µg/L	100 µg/L	79.0	60.0	140			
		chlorotoluene, 2-	95-49-8	E611E	102 µg/L	100 µg/L	102	70.0	130			
	1	chlorotoluene, 4-	106-43-4	E611E	104 µg/L	100 µg/L	104	70.0	130			

Page : 17 of 18 Work Order : CG2105892 Client : Tetra Tech Canada Inc. Project : SWM.SWOP04071-02.003

ub-Matrix: Water						Matrix Spike (MS) Report						
					Spil	re	Recovery (%)	Recovery Limits (%)				
aboratory sample)	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier		
olatile Organic	Compounds (QCLo	t: 350431) - continued										
CG2105892-001	MW-03	cymene, p-	99-87-6	E611E	114 µg/L	100 µg/L	114	70.0	130			
		dibromo-3-chloropropane, 1,2-	96-12-8	E611E	102 µg/L	100 µg/L	102	70.0	130			
		dibromochloromethane	124-48-1	E611E	75.2 μg/L	100 µg/L	75.2	70.0	130			
		dibromoethane, 1,2-	106-93-4	E611E	93.9 µg/L	100 µg/L	93.9	70.0	130			
		dibromomethane	74-95-3	E611E	97.4 μg/L	100 µg/L	97.4	70.0	130			
		dichlorobenzene, 1,2-	95-50-1	E611E	106 µg/L	100 µg/L	106	70.0	130			
		dichlorobenzene, 1,3-	541-73-1	E611E	102 µg/L	100 µg/L	102	70.0	130			
		dichlorobenzene, 1,4-	106-46-7	E611E	101 µg/L	100 µg/L	101	70.0	130			
		dichlorodifluoromethane	75-71-8	E611E	78.0 μg/L	100 µg/L	78.0	60.0	140			
		dichloroethane, 1,1-	75-34-3	E611E	79.3 µg/L	100 µg/L	79.3	70.0	130			
		dichloroethane, 1,2-	107-06-2	E611E	84.8 µg/L	100 µg/L	84.8	70.0	130			
		dichloroethylene, 1,1-	75-35-4	E611E	98.5 μg/L	100 µg/L	98.5	70.0	130			
		dichloroethylene, cis-1,2-	156-59-2	E611E	94.7 μg/L	100 µg/L	94.7	70.0	130			
		dichloroethylene, trans-1,2-	156-60-5	E611E	79.2 µg/L	100 µg/L	79.2	70.0	130			
		dichloromethane	75-09-2	E611E	76.8 µg/L	100 µg/L	76.8	70.0	130			
		dichloropropane, 1,2-	78-87-5	E611E	91.9 μg/L	100 µg/L	91.9	70.0	130			
		dichloropropane, 1,3-	142-28-9	E611E	94.4 µg/L	100 µg/L	94.4	70.0	130			
		dichloropropane, 2,2-	594-20-7	E611E	92.2 μg/L	100 µg/L	92.2	70.0	130			
		dichloropropylene, 1,1-	563-58-6	E611E	91.9 μg/L	100 µg/L	91.9	70.0	130			
		dichloropropylene, cis-1,3-	10061-01-5	E611E	92.2 μg/L	100 µg/L	92.2	70.0	130			
		dichloropropylene, trans-1,3-	10061-02-6	E611E	92.7 μg/L	100 µg/L	92.7	70.0	130			
		ethylbenzene	100-41-4	E611E	104 µg/L	100 µg/L	104	70.0	130			
		hexachlorobutadiene	87-68-3	E611E	122 µg/L	100 µg/L	122	70.0	130			
		isopropylbenzene	98-82-8	E611E	99.6 µg/L	100 µg/L	99.6	70.0	130			
		methyl-tert-butyl ether [MTBE]	1634-04-4	E611E	96.0 μg/L	100 µg/L	96.0	70.0	130			
		naphthalene	91-20-3	E611E	122 µg/L	100 µg/L	122	70.0	130			
		propylbenzene, n-	103-65-1	E611E	118 µg/L	100 µg/L	118	70.0	130			
		styrene	100-42-5	E611E	97.8 μg/L	100 µg/L	97.8	70.0	130			
		tetrachloroethane, 1,1,1,2-	630-20-6	E611E	86.7 μg/L	100 µg/L	86.7	70.0	130			
		tetrachloroethane, 1,1,2,2-	79-34-5	E611E	81.8 μg/L	100 µg/L	81.8	70.0	130			
		tetrachloroethylene	127-18-4	E611E	89.7 µg/L	100 µg/L	89.7	70.0	130			
		toluene	108-88-3	E611E	99.5 µg/L	100 µg/L	99.5	70.0	130			
		trichlorobenzene, 1,2,3-	87-61-6	E611E	106 µg/L	100 µg/L	106	70.0	130			
		trichlorobenzene, 1,2,4-	120-82-1	E611E	117 μg/L	100 µg/L	117	70.0	130			
		trichloroethane, 1,1,1-	71-55-6	E611E	79.3 µg/L	100 µg/L	79.3	70.0	130			
		trichloroethane, 1,1,2-	79-00-5	E611E	86.5 µg/L	100 µg/L	86.5	70.0	130			
		trichloroethylene	79-01-6	E611E	93.3 µg/L	100 µg/L	93.3	70.0	130			

Page	: 18 of 18
Work Order	: CG2105892
Client	: Tetra Tech Canada Inc.
Project	: SWM.SWOP04071-02.003

Sub-Matrix: Water						Matrix Spike (MS) Report						
					Spi	Spike Recovery (%) Recovery Limits (%)						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie		
Volatile Organic	Compounds (QCLo	t: 350431) - continued										
CG2105892-001	MW-03	trichlorofluoromethane	75-69-4	E611E	94.7 μg/L	100 µg/L	94.7	60.0	140			
		trichloropropane, 1,2,3-	96-18-4	E611E	91.4 µg/L	100 µg/L	91.4	70.0	130			
		trimethylbenzene, 1,2,4-	95-63-6	E611E	114 µg/L	100 µg/L	114	70.0	130			
		trimethylbenzene, 1,3,5-	108-67-8	E611E	113 µg/L	100 µg/L	113	70.0	130			
		vinyl chloride	75-01-4	E611E	94.9 µg/L	100 µg/L	94.9	60.0	140			
		xylene, m+p-	179601-23-1	E611E	208 µg/L	200 µg/L	104	70.0	130			
		xylene, o-	95-47-6	E611E	105 µg/L	100 µg/L	105	70.0	130			

Chain of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878 www.alsglobal.com

COC # CORD McKenzie Trails

Environmental Division

..........

Page <u>____1 of ___1</u>

Report to:	Report	Format / Distribu	tion		Ser	vice	Reque	sted:						
Company: Tetra Tech Canada Inc.	. Γ Star	ndard C Other			ন	Reg	ular Se	rvice (De	fault)					
Contact: Darby Madalena	PDF	🔽 Excel	∏ Fax		Г	Rush Service (2-3 Days)								
Address: 110, 140 Quarry Park Blvd SE, Calgary	AB T2C 3G3 Email 1:	darby.madalena	@tetratech.com		Г	Friority Service (1 Day or ASAP)								
	Email 2:				1.	Eme	ergency	Service	(<1 Day /	Wkend) - Conta	act AL	S	
Phone: 403-723-6867 Fax: 403-	203-3301 ALS Dig	ital Crosstab resul	ts				_	Anal	ysis Req	uest				
Invoice To: 🔽 Same as Report			Indicate Bottl	es: Filtered / Preserved (F/P) \rightarrow	→									
Company: SAME AS REPORT	Client /	Project Informati	on:											
Contact:	Job #:		SWM.SWOP04	4071-02.003										
Address:	PO/AFE										·	- E	ŝ	
Sample	Legal Si	te Description:				11						ate	aine	
Phone: Fax:	Quote #	Q71650				D-ABT1						nin L	Containers	
Lab Work Order # (lab use only)	ALS Contact	Milica Papic	Sampler (initials):	Ryon Miller	VOC-8260						Hazardous?	Contaminated?	ď	
Sample Sample Identif	cation	Date	Time	⁷ Sample Type	3 ۲	2-7	분				zarc	Highly	Number	
# (This description will appe	ar on the report)	dd-mmm-yy	hh:mm	(Select from drop-down list)	9	RO	NH3-I				Ha	Ξi	ñ	
MW-03		21-11-21	14:20	Water	X	Х	X						0	
MW-04		11	14:30	Watèr	X	X	X					+ +	6	
MW203			14:40	Water	X	X	X						6	
Duplicate		<u>V</u>		Water	X	X	х						6	
										\rightarrow				
·	····		4	· · · · · · · · · · · · · · · · · · ·						$\downarrow \downarrow$				
· · · · · · · · · · · · · · · · · · ·					_									
					-			· · · · ·		\rightarrow				
Guidelines / Regulatio	ns	_		Special Instruction										
			& Metals		िर्ष			erser.	Ved					•
	ailure to complete all portic												~~	
	form the user acknowledge	s and agrees wit	· · · · · · · · · · · · · · · · · · ·	Conditions as specified	on th	ne ad	jacent			a constant d				
Relinquished Ryan Maller Date & Time: No	W22/2/ Received By:		Date & Time:	1410	-	Tempe	erature		ondition (lab s Received i					
Data de Times	Deserved		Date & Time:	55-	7 -	רֹ		Conditi	ion?Y/N	(ntal D
By:	645 Received By:			<u> </u>		2_		pro	ovided detai	ls)	Calç	gary		- Dofoi
			1.	-						1	w		oraer	r Refer 105
		•								I		70	12	IUC

ł

÷

.

APPENDIX E

HISTORICAL ANALYTICAL DATA

12-435 Phase II ESA - McKenzie Trails Recreation Area Historic Waste Disposal Sites, The City of Red Deer

Monitoring	pН	Electrical Conductivity	Temperature	Dissolved Oxygen	Total Dissolved Solid	Redox
Well		(µg/cm)	(°C)	(mg/L)	(mg/L)	(±mV)
MW-01	7.50	449.5	12.9	0.58	379.60	-121.2
MW-02	7.59	423.3	13.7	3.87	347.75	-21.9
MW-03	7.97	1,078	7.9	3.24	1,040.00	-133.4
MW-04						
MW-05	7.22	1,585	9.7	3.53	1,438.50	-139.3

 Table 4A

 Groundwater Indices Measured at Time of Sampling

Notes:

1) Measurement of groundwater indices by YSI Pro Plus.

2) Groundwater sampled on Monday, August 19, 2013.

12-435

Phase II ESA - McKenzie Trails Recreation Area

Historic Waste Disposal Sites, The City of Red Deer

Analytical	Results -	Groundwater -	General	Water Qu	uality		
Parameter	Unit	Detection	MW-01	MW-02	MW-03	MW-05	Tier 1
		Limit			Guideline		
General Water Quality	-	_					
Biochemical Oxygen Demand (BOD)	mg/L	2	14	3.8	ND	38	
Chemical Oxygen Demand (COD)	mg/L	5.0 - 25	150	32	47	200	
Conductivity	µS/cm	1	590	560	1,700	2,200	
рН	Unitless	N/A	7.88	7.82	8.07	7.89	6.5-8.5
Total Organic Carbon (C)	mg/L	0.50 - 2.5	15	13	21	38	
Dissolved Cadmium (Cd)	μg/L	0.005	0.012	NT	0.037	0.097	
Total Cadmium (Cd)	μg/L	0.005	0.73	0.33	0.98	0.79	0.060*
Alkalinity (Total as CaCO ₃)	mg/L	0.5	280	260	800	740	
Bicarbonate (HCO ₃)	mg/L	0.5	340	320	980	910	
Carbonate (CO ₃)	mg/L	0.5	ND	ND	ND	ND	
Hydroxide (OH)	mg/L	0.5	ND	ND	ND	ND	
	-	0.3 1.0 - 5.0	ND 17	ND 27	32	450	
Sulphate (SO ₄)	mg/L	1.0 - 3.0					
Chloride (Cl)	mg/L	1	9.3	7.2	70	62	
Total Ammonia (N)	mg/L	0.050 - 0.50	0.47	ND	6.3	30	1.37*
Total Phosphorus (P)	mg/L	0.0030 - 0.030	1.5	0.068	0.38	2.1	
Total Nitrogen (N)	mg/L	0.05	2.1	0.58	6.9	35	
Total Kjeldahl Nitrogen	mg/L	0.050 - 1.3	2.1	0.57	6.9	35	
Nitrite (as N)	mg/L	0.003	ND	ND	0.010	0.018	
Nitrate (as N)	mg/L	0.003	0.015	0.0079	0.017	0.054	
Nitrate plus Nitrite (N)	mg/L	0.0003	0.015	0.0080	0.027	0.072	
Trace Organics							
Acetic Acid	mg/L	50	ND	NT	ND	ND	
Formic Acid	mg/L	50	ND	NT	ND	ND	
Propionic Acid	mg/L	50	ND	NT	ND	ND	
Adsorbable Organic halogens	mg/L	0.02	0.03	NT	0.07	0.04	
			1				

Table 4B
Analytical Results - Groundwater - General Water Quality

Notes:

1) Tier 1 Guideline - Alberta Tier 1 Soil and Groundwater Remediation Guidelines, December 2010 and amendments. Coarse-grained criteria for residential/parkland land use.

2) * Surface Water Quality Guidelines for Use in Alberta (AENV, 1999) on aquatic life pathway. Canadian Council of Ministers of the Environment (CCME) guidelines are referenced.

3) ND - Not Detected, less than the limit of method detection.

4) NT - Not Tested

5) -- No value established in the reference criteria.

6) Bold & Shaded - Exceeds the referenced Alberta Tier 1 Guidelines and CCME guidelines.

7) For further laboratory information, refer to the specific laboratory report in Appendix A.

Analytical 1	Results - O	Froundwa	nter - Met	als	
Detection	MW-01	MW-02	MW-03	MW-05	Tier 1
Limit		08/19	/2013	1	Guideline
0.0030	10	0.73	7.9	0.37	0.1*
0.00060	0.00063	ND	ND	0.0017	0.006
	0.015	0.0011		0.0089	0.005
					1
0.0010	ND	ND	ND	ND	
0.020	0.041	0.022	0.43	1.8	1.5
0.30	120	78	150	240	
0.0010	0.018	0.0035	0.014	0.003	0.001*
0.00030					
0.00020	0.042	0.0043	0.023	0.026	0.003*
0.060	25	1.6	19	22	0.3
0.00020	0.019	0.0017	0.012	0.11	0.004*
0.020	0.025	ND	0.075	0.031	
0.20	46	22	40	91	
0.0040	1.4	0.1	0.9	0.6	0.05
0.00020	0.004	0.0025	0.0017	0.0021	
0.00050	0.0340	0.0035	0.025	0.012	0.11*
0.10	1.10	ND	1.2	0.94	
0.30	6.8	3.5	6.2	45	
0.00020	0.00074	ND	0.00076	0.0004	0.001
0.10	22	5.6	20	8.4	
					0.0001*
					0.0001
	0.45		1.1		
	5.1		15	130	
					0.02
0.0010	0.05	0.0024	0.021	0.0015	
0.0030	0.11	0.078	0.25	0.12	0.03
0.0030	0.0067	NT	0.040	0.0052	
0.00020	0.0062	NT	0.0021	0.0079	
0.010	0.28	NT	0.42	0.33	
0.0010	ND	NT	ND	ND	
0.020	0.044	NUT	0.64	1.0	
0.060	3	NT	0.52	17	
0.00020	ND	NT	ND		
0.0040	0.84	191	0.03	0.07	
0.00020	0.0042	NT	0.0025	0.00088	
0.00050	0.0014	NT	0.0032	0.0042	
0.10	ND	NT	0.16	ND	
0.30	4.5	NT	7.0	40	
0.00020	0.00047	NT	ND	0.0002	
0.10	5	NT	6	8	
0.00010	ND	NT	ND	ND	
0.50 - 2.5	43	NT	280	120	
0.020	0.34	NT	1.3	1.40	
0.20 -1.0	4.5	NT	17	150	
0.00020	ND	NT	ND	ND	
0.00020	ND ND	NI NT	ND ND	ND 0.0018	
	ND	NT	ND	0.0018 ND	
0 0010		141			
0.0010		NT	0.0024	0.00085	
0.0010 0.00010 0.0010	0.00048 ND	NT NT	0.0024 0.0011	0.00085 ND	
0.00010	0.00048				
	Detection Limit 0.0030 0.00060 0.00020 0.010 0.0010 0.0010 0.0010 0.0010 0.0010 0.00020 0.0010 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020 0.10 0.00020 0.10 0.00020 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.00020	Detection Limit MW-01 0.0030 0.00060 10 0.0030 0.00020 0.0015 0.010 0.72 0.0010 ND 0.0020 0.041 0.30 0.018 0.0010 0.018 0.0010 0.018 0.0010 0.011 0.00020 0.0412 0.00020 0.042 0.00020 0.042 0.00020 0.0042 0.00020 0.0042 0.00020 0.0044 0.00020 0.0040 0.10 1.10 0.30 6.8 0.00020 0.0442 0.0010 0.0340 0.10 22 0.0010 0.0340 0.10 22 0.0010 0.045 0.20 45 0.20 5.1 0.0010 0.015 0.0010 0.018 0.0010 0.0318 0.0010 0.0318	Detection Limit MW-01 MW-02 0.0030 0 08/19 0.00060 0.00063 ND 0.00020 0.0015 0.0011 0.0010 ND ND 0.0010 ND ND 0.0020 0.041 0.022 0.30 120 78 0.0010 0.018 0.0035 0.00030 0.011 0.00087 0.00020 0.042 0.0043 0.00020 0.019 0.017 0.020 0.025 ND 0.00020 0.044 0.10 0.0020 0.044 0.0025 0.00020 0.004 0.0025 0.00020 0.004 0.0025 0.00020 0.0044 0.0025 0.00020 0.0044 0.0025 0.0020 0.0044 0.0025 0.0020 0.0045 0.38 0.20 0.45 20 0.0010 0.015 0.003 <td>Detection Limit MW-01 MW-02 MW-03 0.0030 0.00060 0.016 0.8/19/2013 0.00060 0.0053 ND ND 0.00060 0.015 0.011 0.0071 0.010 0.72 0.015 0.5 0.0010 ND ND ND 0.020 0.041 0.022 0.43 0.30 120 78 150 0.0010 0.018 0.0035 0.014 0.00020 0.042 0.0043 0.023 0.060 25 1.6 19 0.00020 0.025 ND 0.017 0.0020 0.024 0.0017 0.012 0.00020 0.0044 0.1 0.9 0.00020 0.0044 0.0074 ND 0.0077 0.00020 0.0044 0.0017 0.00022 0.0010 0.340 0.0035 0.025 0.10 1.10 ND 1.2 0.30 <t< td=""><td>Limit 08/19/2013 0.00060 0.00063 ND ND 0.0017 0.00020 0.015 0.0011 0.0071 0.0087 0.010 0.72 0.015 0.5 0.37 0.0010 ND ND ND 0.0017 0.020 0.041 0.022 0.43 1.8 0.30 120 78 150 2.40 0.0010 0.018 0.0035 0.014 0.003 0.00020 0.018 0.0035 0.014 0.002 0.00020 0.019 0.0017 0.012 0.11 0.0020 0.025 ND 0.075 0.031 0.0020 0.0044 1.4 0.1 0.9 0.6 0.00020 0.0044 0.0035 0.0017 0.0021 0.00020 0.0044 ND 0.00076 0.0004 0.10 1.2 5.6 20 8.4 0.00010 0.0002 ND ND</td></t<></td>	Detection Limit MW-01 MW-02 MW-03 0.0030 0.00060 0.016 0.8/19/2013 0.00060 0.0053 ND ND 0.00060 0.015 0.011 0.0071 0.010 0.72 0.015 0.5 0.0010 ND ND ND 0.020 0.041 0.022 0.43 0.30 120 78 150 0.0010 0.018 0.0035 0.014 0.00020 0.042 0.0043 0.023 0.060 25 1.6 19 0.00020 0.025 ND 0.017 0.0020 0.024 0.0017 0.012 0.00020 0.0044 0.1 0.9 0.00020 0.0044 0.0074 ND 0.0077 0.00020 0.0044 0.0017 0.00022 0.0010 0.340 0.0035 0.025 0.10 1.10 ND 1.2 0.30 <t< td=""><td>Limit 08/19/2013 0.00060 0.00063 ND ND 0.0017 0.00020 0.015 0.0011 0.0071 0.0087 0.010 0.72 0.015 0.5 0.37 0.0010 ND ND ND 0.0017 0.020 0.041 0.022 0.43 1.8 0.30 120 78 150 2.40 0.0010 0.018 0.0035 0.014 0.003 0.00020 0.018 0.0035 0.014 0.002 0.00020 0.019 0.0017 0.012 0.11 0.0020 0.025 ND 0.075 0.031 0.0020 0.0044 1.4 0.1 0.9 0.6 0.00020 0.0044 0.0035 0.0017 0.0021 0.00020 0.0044 ND 0.00076 0.0004 0.10 1.2 5.6 20 8.4 0.00010 0.0002 ND ND</td></t<>	Limit 08/19/2013 0.00060 0.00063 ND ND 0.0017 0.00020 0.015 0.0011 0.0071 0.0087 0.010 0.72 0.015 0.5 0.37 0.0010 ND ND ND 0.0017 0.020 0.041 0.022 0.43 1.8 0.30 120 78 150 2.40 0.0010 0.018 0.0035 0.014 0.003 0.00020 0.018 0.0035 0.014 0.002 0.00020 0.019 0.0017 0.012 0.11 0.0020 0.025 ND 0.075 0.031 0.0020 0.0044 1.4 0.1 0.9 0.6 0.00020 0.0044 0.0035 0.0017 0.0021 0.00020 0.0044 ND 0.00076 0.0004 0.10 1.2 5.6 20 8.4 0.00010 0.0002 ND ND

Table 4C

1) Tier 1 Guideline - Alberta Tier 1 Soil and Groundwater Remediation Guidelines, December 2010 and amendments. Coarse-grained criteria for residential/parkland land use.
2) * Surface Water Quality Guidelines for Use in Alberta (AENV, 1999) on aquatic life pathway. Canadian Council of Ministers of the Environment (CCME) guidelines are referenced.
3) ND - Not Detected, less than the limit of method detection.

4) NT - Not Tested.

5) Unless specified all units are mg/L.
6) - - No value established in the reference criteria.

7) Bold & Shaded - Exceeds the referenced Alberta Tier 1 and CCME guidelines.

8) For further laboratory information, refer to the specific laboratory report in Appendix A.

Analytical Results - Groundwater -VOCs								
Parameter	Detection	MW-01	MW-02	MW-03	MW-05	Tier 1		
	Limit		08/19	/2013		Guideline		
Volatile Organic Compounds								
Benzene	0.00040	ND	ND	ND	0.0014	0.005		
Toluene	0.00040	ND	ND	0.0011	0.00063	0.024		
Ethylbenzene	0.00040	ND	ND	ND	ND	0.0024		
Xylenes (Total)	0.00080	ND	ND	ND	ND	0.3		
	0.10					0.01		
F1 (C ₆ -C ₁₀)	0.10	ND	ND	ND	ND	0.81		
F2 (C_{10} - C_{16})	0.10	ND	ND	ND	ND	1.1		
Total Trihalomethanes	0.0020	ND	ND	ND	ND	0.1		
Bromodichloromethane	0.00050	ND	ND	ND	ND			
Bromoform	0.00050	ND	ND	ND	ND			
Bromomethane	0.0020	ND	ND	ND	ND			
Carbon tetrachloride	0.00050	ND	ND	ND	ND	0.00056		
Carbon tetracmonde	0.00050	ND	ND	ND	ND	0.00050		
Chlorobenzene	0.00050	ND	ND	ND	ND	0.0013		
Chlorodibromomethane	0.0010	ND	ND	ND	ND			
Chloroethane	0.0010	ND	ND	ND	ND			
Chloroform	0.00050	ND	ND	ND	ND	0.0018		
Chloromethane	0.0020	ND	ND	ND	ND			
1,2-dibromoethane	0.00050	ND	ND	ND	ND			
1,2-dichlorobenzene	0.00050	ND	ND	ND	ND	0.0007		
1,3-dichlorobenzene	0.00050	ND	ND	ND	ND			
1,4-dichlorobenzene	0.00050	ND	ND	ND	ND	0.001		
1,1-dichloroethane	0.00050	ND	ND	ND	ND			
-,								
1,2-dichloroethane	0.00050	ND	ND	ND	ND	0.005		
1,1-dichloroethene	0.00050	ND	ND	ND	ND	0.014		
cis-1,2-dichloroethene	0.00050	ND	ND	0.0012	0.0037			
trans-1,2-dichloroethene	0.00050	ND	ND	ND	ND			
Dichloromethane	0.0020	ND	ND	ND	ND	0.05		
1,2-dichloropropane	0.00050	ND	ND	ND	ND			
cis-1,3-dichloropropene	0.00050	ND	ND	ND	ND			
trans-1,3-dichloropropene	0.00050	ND	ND	ND	ND			
Methyl methacrylate	0.00050	ND	ND	ND	ND	0.47		
Methyl-tert-butylether (MTBE)	0.00050	ND	ND	ND	ND	0.015		
Styrene	0.00050	ND	ND	ND	ND	0.072		
1,1,1,2-tetrachloroethane	0.0020	ND	ND	ND	ND			
1.1.2.2-tetrachloroethane	0.0020	ND	ND	ND	ND			
Tetrachloroethene	0.00050	ND	ND	ND	0.0033	0.03		
1,2,3-trichlorobenzene	0.0010	ND	ND	ND	0.0033 ND	0.008		
1,2,5-u temorobenzene	0.0010	ND	ND	ND	ND	0.008		
1,2,4-trichlorobenzene	0.0010	ND	ND	ND	ND	0.015		
1,3,5-trichlorobenzene	0.00050	ND	ND	ND	ND	0.014		
1,1,1-trichloroethane	0.00050	ND	ND	ND	ND			
1,1,2-trichloroethane	0.00050	ND	ND	ND	ND			
Trichloroethene	0.00050	ND	ND	ND	ND	0.005		
Trichlorofluoromethane	0.00050	ND	ND	ND	ND			
1,2,4-trimethylbenzene	0.00050	ND	ND	ND	ND			
1,3,5-trimethylbenzene	0.00050	ND	ND	ND	ND			
Vinyl chloride	0.00050	ND	ND	ND	0.0007	0.0011		

 Table 4D

 Analytical Results - Groundwater -VOCs

Notes:

1) Tier 1 Guideline - Alberta Tier 1 Soil and Groundwater Remediation Guidelines, December 2010

and amendments. Coarse-grained criteria for residential/parkland land use.

2) ND - Not Detected, less than the limit of method detection.

3) Unless specified all units are mg/L

- 4) -- No value established in the reference criteria.
- 5) Bold & Shaded Exceeds the referenced Alberta Tier 1 Guidelines.

6) For further laboratory information, refer to the specific laboratory report in Appendix A.

12-435 Phase II ESA - McKenzie Trails Recreation Area Historic Waste Disposal Sites, The City of Red Deer

 Table 5A

 Summary of Monitoring Parameters During Sampling of Soil Vapour

Parameter	Well Diameter	Well Depth	Headspace Volume	Purge Rate	Purge Time	P	ressure
Unit	(mm)	(m)	(cm ³)	(cm ³ /min)	(min)	Ambient (psi)	Vapour Well (psi)
VW-01	25	5.5	2,700.0	943.3	5	15.00	15.00

Notes:

1) Measurement of pressure by digital Cole-Parmer absolute pressure gauge.

2) Purge time is elapsed time prior to the collection of a soil vapour sample.

3) Soil Vapour sampling was completed on August 19, 2013.

12-435 Phase II ESA - McKenzie Trails Recreation Area Historic Waste Disposal Sites, The City of Red Deer

Analytical Resul	ts - Soll Vapo	ur - General Ind	lices
Parameter	Unit	Detection Limit	VW-01
Gauge Pressure			
Following sampling	psi		
Reported by laboratory	psi		(-4.0)
<mark>Fixed Gases</mark> Oxygen	% v/v	0.2	5.8
Nitrogen	% v/v	0.2	84.7
Carbon monoxide	% v/v	0.2	ND
Methane	% v/v	0.2	ND
Carbon dioxide	% v/v	0.2	9.5

Table 5B
Analytical Results - Soil Vapour - General Indices

Notes:

1) Soil vapour sample collected on Saturday, August 17, 2013.

2) ND - Not Detected, less than the limit of method detection.

3) - - No value established in the detection limit and reference criteria.

4) For further information, the reader should refer to the laboratory report in Appendix A.

Inder serviceInder serviceHardrace Dec serviceImpairSoleAliphatic S-Q-Cq.µg/m ² SoleAliphatic S-Q-Cq.µg/m ² SoleAliphatic S-Q-Cq.µg/m ² SoleAliphatic S-Q-Cq.µg/m ² SoleAromatic S-Q-Cq. (TEX Excluded)µg/m ² SoleAromatic S-Q-Cq.µg/m ² SoleHanceppm0.2Biblaneppm0.2Popaneppm0.2Propaneppm0.2Propaneppm0.2Propaneppm0.2Propaneppm0.3Chloronethaneppbv0.30Trichloronethane (FEDN 12)ppbv0.30Trichloronethane (FEDN 11)ppbv0.30Trichloronethane (FEDN 12)ppbv0.30Trichloronethane (FEDN 12)ppbv0.30Trichloronethaneppbv0.20Trichloronethaneppbv0.30Hethyl butyl ketone (MEK) (2-Bexanone)ppbv0.30Hethyl butyl ketone (MEK) (2-Bexanone)ppbv0.30Indictorothaneppbv0.30Indictorothaneppbv0.30 <tr<< th=""><th></th><th colspan="3">VW-01</th></tr<<>		VW-01		
Aliphatic >C _x C ₆ µg/m³5.0Aliphatic >C _x C ₁₀ µg/m³5.0Aliphatic >C _x C ₁₀ µg/m³5.0Aliphatic >C _{1x} C ₁₂ µg/m³5.0Aliphatic >C _{1x} C ₁₂ µg/m³5.0Aromatic >C _x C ₁₀ µg/m³5.0Aromatic >C _x C ₁₀ µg/m³5.0Aromatic >C _x C ₁₀ µg/m³5.0Aromatic >C _{1x} C ₁₂ µg/m³5.0Aromatic >C _{1x} C ₁₂ µg/m³5.0Aromatic >C _{1x} C ₁₀ µg/m³5.0Aromatic >C _{1x} C ₁₂ µg/m³5.0Aromatic >C _{1x} C ₁₀ µg/m³5.0Aromatic >C _{1x} C ₁₂ µg/m³5.0Aromatic >C _{1x} C ₁₂ µg/m³5.0Pipe0.2µg/m³Pipe0.2µg/m³Pipe0.2µg/m³Pipe0.2µg/m³Pipe0.2µg/m³Pipe0.2µg/m³Pipe0.2µg/m³Pipe0.2Pipe0.2µg/m³Pipe0.2Pipe0.2Pipe0.2Pipe0.2Pipe0.2Pipe0.2Pipe0.2Pipe0.2Pipe0.30Pipe0.30Pipe0.30Pipe0.20Pipe0.20Pipe0.	08/17/2	013		
Aliphatic >Cq. Cq.µg/m³5.0Aliphatic >Cq. Cq.µg/m³5.0Aliphatic >Cq. Cq.µg/m³5.0Aliphatic >Cq. Cq. (TEX Excluded)µg/m³5.0Aromatic >Cq. Cq. (TEX Excluded)µg/m³5.0Aromatic >Cq. Cq. (TEX Excluded)µg/m³5.0Aromatic >Cq. Cq. Cq. (TEX Excluded)µg/m³5.0Aromatic >Cq. Cq. Cq. (TEX Excluded)µg/m³5.0Aromatic >Cq. Cq. Cq. (TEX Excluded)µg/m³5.0Select Volatile GasesTTAcetyleneppm0.2Ehaneppm0.2Ehaneppm0.41-Pataneppm0.2Propaneppm0.2Propaneppm0.2Propanepphv0.10Teldorofthuoromethane (FREON 12)pphv0.10Chlorodthuoromethane (FREON 11)pphv0.30Unyl chloridepphv0.30Chlorodthuorethanepphv0.30Chlorodthuorethanepphv0.20Popanepphv0.30Chlorodthuorethanepphv0.20Popticepphv0.20Ethane (MEK) (2-Butanone)pphv0.30Polytic kloridepphv0.20Popticepphv0.30Chlorodtharepphv0.20Popticepphv0.30Popticepphv0.30Chlorodtharepphv0.30Chlorodtharepphv0.30Popticepphv <td< td=""><td></td><td></td></td<>				
Aliphatic >C _n C ₁₀ µg/m³5.0Aliphatic >C _n C ₁₂ . C ₁₅ µg/m³5.0Aromatic >C _n C ₀ (TEX Excluded)µg/m³5.0Aromatic >C _n C ₁₀ µg/m³5.0Aromatic >C _n C ₁₀ µg/m³5.0Aromatic >C _n C ₁₂ µg/m³5.0Aromatic >C ₁₇ . C ₁₆ µg/m³1.1Dichorodithoreµg/m³0.2Propanoµg/m³0.2Dichorodithoreµg/m³0.301.2.Dichorodithaneµg/m³0.301.3.Dichorodithaneµg/m³0.30Arohor + Confineµg/m³0.30Arohor + Confine <td></td> <td></td>				
Aliphatic >C112 Cig.µg/m²5.0Aliphatic >C12 Cig.µg/m²5.0Aromatic >C12 Cig.µg/m²5.0Aromatic >C12 Cig.µg/m²5.0Aromatic >C12 Cig.µg/m²5.0Aromatic >C12 Cig.µg/m²5.0Aromatic >C12 Cig.µg/m²5.0Aromatic >C12 Cig.µg/m²5.0Sater Vlatile Gavesppm0.2Entyleneppm0.2Entyleneppm0.2Entyleneppm0.2Propaneppm0.2Propaneppm0.2Propaneppm0.2Propaneppm0.2Propanepphv0.17Chloroethanepphv0.30Chloroethanepphv0.30Chloroethanepphv0.30Chloroethanepphv0.30Chloroethanepphv0.30Chloroethanepphv0.30Chloroethanepphv0.30Chloroethanepphv0.30Chloroethanepphv0.30Chloroethanepphv0.30Chloroethylenepphv0.30Chloroethylenepphv0.30Chloroethylenepphv0.30Chloroethylenepphv0.30Chloroethylenepphv0.30Chloroethylenepphv0.30Chloroethanepphv0.30Li Dichloroethylenepphv0.30Li Dichloroethanepphv0.30 <td></td> <td></td>				
Aliphatic >Cr_12-Cr_16µg/m³5.0Aromatic >Cr_12-Cr_16µg/m³5.0Aromatic >Cr_12-Cr_0µg/m³5.0Aromatic >Cr_12-Cr_0µg/m³5.0Aromatic >Cr_12-Cr_0µg/m³5.0Select Valuille CasesTAcetyleneppm0.2Ehlynenppm0.2Ehlyneneppm0.2Ehlyneneppm0.2Propaneppm0.2Propaneppm0.2Propaneppm0.2Propaneppm0.2Propaneppm0.2Propaneppm0.2Propaneppm0.2Propaneppm0.2Propaneppbv0.301,2-Dichlorodertallourcentaneppbv0.301,3-Battadieneppbv0.301,3-Battadieneppbv0.302-ropananeppbv0.302-ropananeppbv0.302-ropananeppbv0.20Ehlylacenta (FREON 11)ppbv3.02-ropananeppbv0.20Ehlylacenta (FREON 12)ppbv0.20Ehlylacenta (FREON 13)ppbv0.301,1-Dichloroethaneppbv0.301,2-Dichloroethaneppbv0.20Ehlylacenta (FREON 13)ppbv0.20Ehlylacenta (FREON 14)ppbv0.20Ehlylacenta (FREON 13)ppbv0.20Ehlylacenta (FREON 14)ppbv0.20Ehlylacenta (FREON 14) <td></td> <td></td>				
Anomatic >C ₄ C ₁₀ µµ µµ µµ5.0Aromatic >C ₄ C ₁₁ Cµµ µµ5.0Aromatic >C ₄ C ₁₂ Cµµ µµ5.0Aromatic >C ₁₂ Cµµ µµ5.0Select Volitile Gases Actyleneµµ µµ0.2Ehane Detyleneµµ µµ0.2Ehane Detyleneµµ µµ0.2Hothane Detylene Popaneµµ µµ0.2Propane Depone Popone Popyneµµ µµ0.2Propane Depone Popyneµµ µµ0.2Propane Depone Popyneµµ µµ0.20Propane Depone Popyneµµ µµ0.30Volitle Organic Compounds Detylevi Unit olitorid Detylevi Unit olitorid Pophv0.301.3-Butaliene Thethorofithuroethane (Hy) will cloinod Phv0.50Trichlorotithuroethane (Hy) will cloinod Phv0.50Trichlorotithuroethane (Hy) will cloinod Phv0.50Trichlorotithuroethane (Hy)µµ Phv0.302-Propano Methyl schuyl tetone (MtK) (2-Butanon) Phv0.20Phy0.30µµ Phv0.202-Propanone Methyl ether (MTBE) Phvµµ Phv0.20Ehlyla ceatie Phvµµ Phv0.201.1-Dickloroethane Phvµµ Phv0.201.1-Dickloroethane Phvµµ Phv0.301.1-Dickloroethane Phvµµ Phv0.301.1-Dickloroethane Phvµµ Phv0.301.1-Dickloroethane Phv				
Aromatic >Cq.*C10µg/m³5.0Aromatic >Cq.*C12µg/m³5.0Aromatic >Cq.*C12µg/m³5.0Selex Volatic Gasesppm0.2Ethaneppm0.2Ethaneppm0.2Ethaneppm0.2Methaneppm0.2Propaneppm0.2Propaneppm0.2Propaneppm0.2Propaneppm0.2Propaneppm0.2Propaneppm0.2Propaneppm0.2Propaneppm0.2Propaneppm0.2Propaneppw0.30Vinyl chloridippbv0.30Vinyl chlorideppbv0.30Vinyl chlorideppbv0.30Propaneppbv0.30Propanalppbv0.302-Propanalppbv0.30Probiv3.0ppbv2-Propanalppbv0.20Probiv0.20ppbv2-Propanalppbv0.30Probiv0.20ppbv2-Propanalppbv0.30Probiv0.20ppbv2-Propanalppbv0.30Probiv0.20ppbv2-Propanalppbv0.30Probiv0.30ppbv1.1-Dichlorocthyleneppbv0.30Probiv0.30ppbv1.1-Dichlorocthyleneppbv0.301.1.2-Trichlorocthane <td>$>C_{12}-C_{16}$ µg/m³ 5.0 18.4</td> <td></td>	$>C_{12}-C_{16}$ µg/m ³ 5.0 18.4			
Aromatic >C10^212µg/m³5.0Aromatic >C12^2C16µg/m³5.0Select Volatile Gasesppm0.2Ethaneppm0.2Ethaneppm0.2Ethyleneppm0.2Ethyleneppm0.2Propaneppm0.2Propaneppm0.2Propaneppm0.2Propaneppm0.2Propaneppm0.2Propaneppm0.2Propaneppm0.2Propaneppw0.17Chlorodifluoromethane (FREON 12)ppbv0.301,3-Butadieneppbv0.301,3-Butadieneppbv0.301,3-Butadieneppbv0.302-propanolppbv0.50Trichlorofluoromethane (FREON 11)ppbv0.20Probaneppbv0.302-propanolppbv0.302-propanolppbv0.20Ethyl acetateppbv0.20Ethyl acetateppbv0.20Ethyl acetateppbv0.20Ethyl acetateppbv0.20Ethyl acetateppbv0.301,1-Dichlorocethaneppbv0.301,1-Dichlorocethaneppbv0.301,1-Dichlorocethaneppbv0.20Ethyl acetateppbv0.20Ethyl acetateppbv0.20Ethyl acetateppbv0.301,1-Dichlorocethaneppbv0.301,1-Dichlo	$>C_7$ -C ₈ (TEX Excluded) $\mu g/m^3$ 5.0 ND			
Aromatic >C1_2^{-1}6µg/ml5.0Select Volatile Gases Actylene Ehaneppm0.2Ehaneppm0.2Ehyleneppm0.2Ehyleneppm0.2Ehyleneppm0.2Propaneppm0.2Propaneppm0.2Propaneppm0.2Propaneppm0.2Propaneppm0.2Propaneppm0.2Propaneppm0.2Propaneppm0.2Propaneppw0.30Viali (action of the construction of the con				
Select Valuitle Gasesppm0.2Acetyleneppm0.2Ethaneppm0.2Ethyleneppm0.2Ethyleneppm0.2Propaneppm0.2Propaneppm0.2Propeneppm0.2Propeneppm0.2Propeneppm0.2Propeneppm0.2Propeneppm0.2Propeneppm0.2Propeneppm0.2Propeneppm0.41Valuit Corrant CompoundsppbvDichloroditoronethane (FREON 12)ppbv0.30Vinyl chlorideppbv0.30Chloroethaneppbv0.30Chloroethaneppbv0.301,3-Butadieneppbv0.30Tichloroftuoroethaneppbv3.02-propanolppbv3.02-propanolppbv0.20Ethyl acetateppbv0.20Ethyl ac				
Accelvenceppm0.2Ethaneppm0.2Ethyleneppm0.2Ethyleneppm0.2Methaneppm0.1n-Butaneppm0.2Propaneppm0.2Propaneppm0.2Propeneppm0.2Propeneppm0.2Propeneppm0.2Propeneppm0.2Propeneppm0.41Valille Orcanic Compoundsppbv0.101.3-Butancieneppbv0.301.3-Butancieneppbv0.301.3-Butancieneppbv0.50Trichlorofthuoromethane (FREON 11)ppbv0.20Propanoppbv0.302-propanolppbv0.302-propanolppbv0.302-propanolppbv0.302-propanolppbv0.20Methyl ethyl ketone (MEK) (2-Butanone)ppbvMethyl ethyl ketone (MEK) (2-Butanone)ppbvMethyl othyl ketoneppbv1.1-Dichloroethyleneppbv1.1-Dichloroethyleneppbv1.1-Dichloroethyleneppbv1.1-Dichloroethyleneppbv1.1-Dichloroethaneppbv1.1.2-Trichloroethaneppbv1.1.2-Trichloroethaneppbv1.1.2-Trichloroethaneppbv1.1.2-Trichloroethaneppbv1.1.2-Trichloroethaneppbv1.1.2-Trichloroethaneppbv1.1.2-Trichloroethaneppbv <t< td=""><td>$>C_{12}-C_{16}$ µg/m³ 5.0 ND</td><td></td></t<>	$>C_{12}-C_{16}$ µg/m ³ 5.0 ND			
Enhaneppm0.2Ethyleneppm0.2Methaneppm0.2Methaneppm0.2Propaneppm0.2Propaneppm0.2Propeneppm0.2Propeneppm0.2Propeneppm0.2Propeneppm0.2Dichlorodifluoromethane (FREON 12)ppbv0.301.3-Dichloroterafluoroethaneppbv0.301.3-Butadieneppbv0.50Trichlorofluoromethane (FREON 11)ppbv0.20Ehhane (ethyl alcohol)ppbv0.301.3-Butadieneppbv0.50Trichlorofluoromethane (FREON 11)ppbv0.302-propanolppbv0.302-propanoneppbv0.30Methyl tkotne (MEK) (2-Butanone)ppbv3.0Methyl tkotne (MEK) (2-Butanone)ppbv0.20Methyl tkotne (MEK) (2-Butanone)ppbv0.20Methyl thyl kotne (MEK) (2-Butanone)ppbv0.20Methyl thyl kotne (MEK) (2-Butanone)ppbv0.20Methyl thyl theore (MTEB)ppbv0.20I-Dichloroethyleneppbv0.301.1-Dichloroethyleneppbv0.301.1-Dichloroethyleneppbv0.301.1-Dichloroethaneppbv0.301.1-Dichloroethaneppbv0.301.1-Dichloroethaneppbv0.301.1-Dichloroethaneppbv0.301.1-Dichloroethaneppbv0.20 <td>latile Gases</td> <td></td>	latile Gases			
Ethyleneppm0.2Methaneppm4.1-Butaneppm0.21Propaneppm0.2Propaneppm0.2Propeneppm0.2Propeneppm0.2Propeneppm0.2Propeneppm0.2Propeneppm0.2Propeneppm0.41Valid Cortanic Compoundsppbv0.17Chiorochtrafi durorethaneppbv0.301,3-Butadieneppbv0.30Trichloroftomenthane (FREON 11)ppbv0.20Ethanal (ethyl alcohol)ppbv0.302-Propanoeppbv0.152-propanolppbv0.302-Propanoeppbv0.20Ethyl acetateppbv3.02-Propanoeppbv0.20Methyl butyl ketone (MEK) (2-Butanone)ppbv0.20Methyl butyl ketone (MBK) (2-Hexanone)ppbv0.20Methyl butyl ketone (MBK) (2-Hexanone)ppbv0.20Ithylae dibronethaneppbv0.20Ithylae dibronethaneppbv0.20Ithylae dibronethaneppbv0.20Ithylae dibronethaneppb				
Methane n-Butaneppm4.1 ppmn-Butaneppm0.2 pppmPropaneppm0.2 ppmPropaneppm0.2Propeneppm0.2Propymeppm0.2Dichforottrafluoroethane (FREON 12) 1.2-Dichlorottrafluoroethaneppbv0.17Chloromethane (FREON 11) Ethanal (ethyl alcohol)ppbv0.301,3-Butafieneppbv0.50Trichlorofluoromethane (FREON 11) Ethanal (ethyl alcohol)ppbv0.302-Propanoppbv0.152-propanolppbv0.152-propanolppbv0.20Methyl tektone (MEK) (2-Butanone) ppbvppbv0.20Ethana (ethyl alcohol) mpbvppbv0.20Ethana (ethyl alcohol) mpbvppbv0.20Ethyl acetate methyl ether (MTBE)ppbv0.20Ethyl acetate methylene (holfk) (2-Hexanone) ppbvppbv0.20Ethyl acetate methylene chloride(Dichloromethane) ppbvppbv0.20Ethyl acetate methylene chloride(Dichloromethane) ppbvppbv0.20Ethylacetate methylene chloride(Dichloromethane ppbv0.20151,1-Dichloroethane methylene mpbv0.20151,1-Dichloroethane methyleneppbv0.301,1-Dichloroethane methyleneppbv0.20Ethylene methyleneppbv0.20Ethylene methyleneppbv0.20Ethylene methyleneppbv0.20E	11			
n-Pentane ppm 0.2 Propane ppm 0.2 Propane ppm 0.2 Propyne 0.2 Prop	**			
Propaneppm0.2Propyneppm0.2Propyneppm0.2Propyneppm0.2Dichlorodifluoromethane (FREON 12) 1.2-Dichlorotertafluoroethaneppbv0.301.3-Dichlorotertafluoroethaneppbv0.301.3-Butadieneppbv0.50Trichloroffluoromethane (FREON 11) Ethanol (cthyl alcohol)ppbv0.50Trichloroffluoroethaneppbv0.152-propanolppbv0.0Methyl telyt ketone (MEK) (2-Butanone) Methyl thyl ketone (MEK) (2-Hexanoe) Methyl hutyl ketone Methyl hutyl	ppm 0.41 ND			
Propeneppm0.2Propyneppm0.41Volatile Organic Compoundsppbv0.11Dichlorodithoromethane (FREON 12)ppbv0.131.2-Dichloroditoromethane (FREON 11)ppbv0.301.3-Butadieneppbv0.30Trichloromethane (FREON 11)ppbv0.20Ethanol (ethyl alcohol)ppbv0.302-Propanolppbv0.302-Propanolppbv0.302-Propanoneppbv0.30Methyl isobutyl ketone (MEK) (2-Butanone)ppbv3.0Methyl isobutyl ketone (MEK) (2-Hexanore)ppbv0.20Ethyl acetateppbv0.20Ethyl acetateppbv0.201.1-Dichloroethyleneppbv0.20Ethyl acetateppbv0.20Dichloroethaneppbv0.20I.1-Dichloroethyleneppbv0.20Ethyl acetateppbv0.201.2-Dichloroethaneppbv0.201.1-Dichloroethaneppbv0.201.1-Dichloroethaneppbv0.201.2-Dichloroethaneppbv0.201.1.2-Tichloroethaneppbv0.201.1.2-Tichloroethaneppbv0.201.1.2-Tichloroethaneppbv0.20Ethylane dibromideppbv0.20Ethylane dibromideppbv0.20Ethylane dibromideppbv0.20Ethylane dibromideppbv0.20Ethylane dibromideppbv0.20Ethylane dibr				
Propynei ppm0.41Valatile Organic Compounds Dichlorodifluoromethane (FREON 12) 1,2-Dichlorottrafluoroethaneppbv0.001,2-Dichlorottrafluoroethaneppbv0.301,3-Butadieneppbv0.50Trichlorofluoromethane (FREON 11) Ethanol (ethyl alcohol)ppbv0.501,3-Butadieneppbv0.50Trichlorottrifluoroethaneppbv0.152-propanolppbv0.152-propanoneppbv3.02-Propanoneppbv3.0Methyl tethyl ketone (MEK) (2-Hexanone) methyl isobutyl ketoneppbv2.0Ehyl acetateppbv0.20Ehyl acetateppbv0.20Ehyl acetateppbv0.201,1-Dichloroethyleneppbv0.301,1-Dichloroethyleneppbv0.301,1-Dichloroethaneppbv0.20Ehylane dibronideppbv0.20Ehylane dibronideppbv0.301,1-1-Trichloroethaneppbv0.301,1,2,2-Tetrichloroethaneppbv0.301,1,2,2-Tetrichloroethaneppbv0.301,1,2,2-Tetrichloroethaneppbv0.301,1,2,2-Tetrichloroethaneppbv0.301,1,2,2-Tetrichloroethaneppbv0.301,1,2,2-Tetrichloroethaneppbv0.301,1,2,2-Tetrichloroethaneppbv0.20Ehylene dibronideppbv0.301,1,2,2-Tetrichloroethaneppbv0.20Enveneppbv0.20<				
NumberNumberDichlorodifluoromethane (FREON 12) 1,2-DichlorodetrafluoroethaneppbvDichlorodifluoromethaneppbvChloromethaneppbvChloromethaneppbvChloromethaneppbv1,3-ButadieneppbvTrichlorofluoromethaneppbv2-propanolppbv2-propanoneppbvMethyl letyl ketone (MEK) (2-Butanone)ppbvMethyl letyl ketone (MEK) (2-Butanone)ppbvMethyl letyl ketone (MEK) (2-Butanone)ppbvMethyl letyl ketone (MEK) (2-Butanone)ppbvMethyl letyl ketone (MEK) (2-Hexanone)ppbvMethyl letyl ketone (MEK) (2-Butanone)ppbvMethyl letyl ketoneppbv1,1-Dichloroethyleneppbv0,20ppbv2.1-Dichloroethyleneppbv0,20ppbv1,1-Dichloroethyleneppbv0,20ppbv1,1-Dichloroethaneppbv1,1,2-Trichloroethaneppbv0,20ppbv1,1,2-Trichloroethaneppbv1,1,2-Trichloroethaneppbv1,1,2-Trichloroethaneppbv1,1,2-Trichloroethaneppbv1,1,2-Trichloroethaneppbv1,1,2-Trichloroethaneppbv1,1,2-Trichloroethaneppbv1,2-Trichloroethaneppbv1,2-Trichloroethaneppbv1,2-Trichloroethaneppbv1,2-Trichloroethaneppbv1,2-Trichloroethaneppbv1,2-Trichloroethaneppbv1,2-				
Dichlorodifluoromethane (FREON 12) 1.2-Dichlorotetrafluoroethaneppbv0.17 0.107 0.18 0.10Chloromethaneppbv0.18 0.101.3-Bundieneppbv0.50 0.15Trichlorofluoromethane (FREON 11) ppbvppbv0.20 0.15Ethanol (ethyl alcohol)ppbv0.302-Propanoneppbv0.05 0.05Methyl idtyl ketone (MEK) (2-Butanone) Methyl butyl ketone (MEK) (2-Hexanone) Methyl butyl ketone (MBK) (2-Hexanone) ppbvppbvMethyl chotyl ketone (MEK) (2-Butanone) methyl butyl ketone (MBK) (2-Hexanone) ppbvppbv2.2 Propanoneppbv0.20 2.2 0.20Ethyl acetateppbv0.20 0.201.1-Dichloroethyleneppbv0.20 0.20Ethyl acetateppbv0.20 0.201.2-Dichloroethyleneppbv0.30 0.201.1-Dichloroethyleneppbv0.30 0.201.1-Dichloroethyleneppbv0.30 0.201.1-Dichloroethyleneppbv0.30 0.201.1-Dichloroethaneppbv0.30 0.301.1-Dichloroethaneppbv0.30 0.301.1.2-Trichloroethaneppbv0.30 0.20Ethylene dibromideppbv0.20 0.20Ethyleneppbv0.30 0.301.1.2-Trichloroethaneppbv0.20 0.20Dibromochloromethaneppbv0.20 0.20Dibromochloromethaneppbv0.20 0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.	**			
1.2-Dichlorotertafluoroethaneppbv0.17 ppbvChloromethaneppbv0.301,3-Butadieneppbv0.301,3-Butadieneppbv0.20Ethanol (ethyl alcohol)ppbv2.3Trichlorotorifluoroethaneppbv0.152-propanolppbv0.152-propanolppbv3.0Methyl lisobutyl ketone (MEK) (2-Butanone)ppbv3.0Methyl lisobutyl ketone (MEK) (2-Hexanore)ppbv3.2Methyl lisobutyl ketone (MEK) (2-Hexanore)ppbv0.20Ethyl acetateppbv0.20Ethyl acetateppbv0.20Ethyl acetateppbv0.20Hethyl ethor(dDichloromethane)ppbv0.20Dirams-1,2-Dichloroethyleneppbv0.20Chloroformppbv0.15Carbon tetrachlorideppbv0.301,1-Dichloroethaneppbv0.20Ethylane dibromideppbv0.20Ethylane dibromideppbv0.201,2-Dichloroethaneppbv0.201,1-Dichloroethaneppbv0.201,2-Dichloropropaneppbv0.151,1,2-Trichloroethaneppbv0.20Ethylene.thoroethaneppbv0.20Bromodichloromethaneppbv0.20Bromodichloromethaneppbv0.20Ethylene.thoroethaneppbv0.20Ethylene.thoroethaneppbv0.20Ethylene.thoroethaneppbv0.20Bromodichloromethane <td></td> <td></td>				
Vinyl chloridePpbv0.18Chlorochtaneppbv0.301,3-Butalčineppbv0.50Trichlorofluoromethane (FREON 11)ppbv0.20Ehanol (ethyl alcohol)ppbv0.32-propanolppbv0.152-propanolppbv3.02-Propanoneppbv3.0Methyl tethyl ketone (MEK) (2-Butanone)ppbv3.0Methyl tethyl ketone (MEK) (2-Hexanoe)ppbv3.0Methyl tyl ketone (MEK) (2-Hexanoe)ppbv2.0Methyl tyl ketone (MEK) (2-Hexanoe)ppbv0.20Ethyl acetateppbv0.201.1-Dichloroethyleneppbv0.20Methyl tethore(MEK) (2-Hexanoe)ppbv0.20Methyl tethore(MeReppbv0.20Chloroethyleneppbv0.20Li-Dichloroethyleneppbv0.301.1-Dichloroethaneppbv0.20Ehylaec dibromideppbv0.301.1-Dichloroethaneppbv0.20Ehylaene dibromideppbv0.20Ehylaene dibromideppbv0.301.1.2-Trichloroethaneppbv0.151.1.2-Zrichloroethaneppbv0.20Ehylaeneppbv0.20Bromoformppbv0.20Bromoformppbv0.20Bromoformppbv0.20Bromoformppbv0.20Dibromochhoromethaneppbv0.20Dibromochhoromethaneppbv0.20Bromoformppbv <td>orotetrafluoroethane ppbv 0.17 ND</td> <td></td>	orotetrafluoroethane ppbv 0.17 ND			
Chloroethaneppbv0.301.3-Bundieneppbv0.50Trichlorofthuoromethane (FREON 11)ppbv0.50Ehanol (ethyl alcohol)ppbv2.3Trichlorotrifhuoroethaneppbv0.152-propanolppbv3.0Perponnoreppbv3.0Methyl lethyl ketone (MEK) (2-Butanone)ppbv3.0Methyl lisobutyl ketone (MEK) (2-Hexanore)ppbv3.0Methyl lisobutyl ketone (MEK) (2-Hexanore)ppbv0.20Kethyl acciateppbv0.20Ehyl acciateppbv0.20Ehyl acciateppbv0.20Chloroformppbv0.30(Chlorofermaneppbv0.301,1-Dichloroethyleneppbv0.30(Labcolino)ppbv0.301,1-Dichloroethaneppbv0.301,1-Dichloroethaneppbv0.301,1,2-Tichloroethaneppbv0.301,1,2-Tichloroethaneppbv0.301,1,2-Tichloroethaneppbv0.151,1,2-Tichloroethaneppbv0.301,1,2-Tichloroethaneppbv0.301,1,2-Tichloroethaneppbv0.20Bromodichloromethaneppbv0.20Bromodichloromethaneppbv0.20Bromodichloromethaneppbv0.20Bromodichloromethaneppbv0.20Dibromochloromethaneppbv0.20Bromodichloromethaneppbv0.20Bromodichloromethaneppbv0.20 <td></td> <td></td>				
1.3-Butadieneppbv0.50Trichlorofluoromethane (FREON 11)ppbv0.50Ethanol (ethyl alcohol)ppbv2.3Trichloroffluoromethaneppbv3.02-propanolppbv3.02-Propanoneppbv0.80Methyl ethyl ketone (MEK) (2-Butanone)ppbv3.0Methyl butyl ketone (MEK) (2-Hexanone)ppbv2.2Methyl butyl ketone (MBK) (2-Hexanone)ppbv2.0Methyl butyl ketone (MBK) (2-Hexanone)ppbv0.25Eihyl acetateppbv0.221.1-Dichloroethyleneppbv0.20Methyl bethorethyleneppbv0.15Tarsal-2-Dichloroethyleneppbv0.301.1-Dichloroethyleneppbv0.301.2-Dichloroethaneppbv0.301.1-Dichloroethaneppbv0.301.2-Dichloropthaneppbv0.171.1.2-Trichloroethaneppbv0.161.1.2-Trichloroethaneppbv0.20Ethylene (TCE)ppbv0.20Bromoformppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromoc				
Trichlorofluoromethane (FREON 11)ppbv0.20Ethanol (ethyl alcohol)ppbv2.3Trichloroffluoromethaneppbv3.02-propanolppbv3.02-propanoneppbv3.0Methyl tehyl ketone (MEK) (2-Butanone)ppbv3.0Methyl butyl ketone (MBK) (2-Hexanone)ppbv3.0Methyl butyl ketone (MBK) (2-Hexanone)ppbv0.20Methyl t-butyl ether (MTBE)ppbv0.22Eihyl acetateppbv0.25isi-1.2-Dichloroethyleneppbv0.15Trichloroffluoroethyleneppbv0.301.1-Dichloroethyleneppbv0.301.1-Dichloroethyleneppbv0.301.1-Dichloroethaneppbv0.301.1-Dichloroethaneppbv0.301.1-Dichloroethaneppbv0.301.1-Dichloroethaneppbv0.301.1.2-Trichloroethaneppbv0.171.1.2-Trichloroethaneppbv0.18Bromoformppbv0.30Trichlororothaneppbv0.30Trichloroethylene (TCE)ppbv0.30Bromodichloromethaneppbv0.30Trichloroethylene (TCE)ppbv0.30Trichloroethylene (TCE)ppbv0.20Pihylenzeneppbv0.20Pihylenzeneppbv0.20Pihylenzeneppbv0.20Pihylenzeneppbv0.20Pihylenzeneppbv0.20Pihylenzeneppbv0.20				
Ethanol (ethyl alcohol)ppbv2.3Trichlorotrifluoroethaneppbv0.152-propanolppbv3.02-Propanoneppbv3.0Methyl ethyl ketone (MEK) (2-Butanone)ppbv3.0Methyl utyl ketone (MBK) (2-Hexanore)ppbv3.0Methyl utyl ketone (MBK) (2-Hexanore)ppbv2.0Methyl utyl ketone (MBK) (2-Hexanore)ppbv0.20Ethyl accataeppbv0.20I-Dichloroethyleneppbv0.20Kethyl utyl chor (MTBE)ppbv0.20Chloroethyleneppbv0.20Methyl i-Dichloroethyleneppbv0.20L-Dichloroethaneppbv0.20L-Dichloroethaneppbv0.20L-Dichloroethaneppbv0.20L-Dichloroethaneppbv0.20L-Dichloroethaneppbv0.20L-Dichloroethaneppbv0.20Ehylane dibromideppbv0.15I,1,2-Trichloroethaneppbv0.16I,1,2-Trichloroethaneppbv0.17I,2-Dichloropropaneppbv0.18Bromodichloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethane <td< td=""><td></td><td></td></td<>				
2-propanolppbv3.02-Propanoneppbv0.80Methyl lethyl ketone (MEK) (2-Butanone)ppbv3.0Methyl lethyl ketone (MBK) (2-Hexanone)ppbv3.0Methyl butyl ketone (MBK) (2-Hexanone)ppbv2.0Methyl butyl ketone (MBK) (2-Hexanone)ppbv2.0Methyl loturyl ether (MTBE)ppbv0.20Ethyl acetateppbv0.22(1-1)-Dichloroethyleneppbv0.15cis-12-Dichloroethyleneppbv0.30Tams-1,2-Dichloroethyleneppbv0.30(1-1)-Dichloroethyleneppbv0.30(1-1)-Dichloroethaneppbv0.30(1-1)-Dichloroethaneppbv0.20Ethylae dibromideppbv0.30(1,1)-Trichloroethaneppbv0.30(1,2)-Trichloroethaneppbv0.17(1,2)-Trichloroethaneppbv0.17(1,2)-Trichloroethaneppbv0.17(1,2)-Trichloroethaneppbv0.20Bromodichloromethaneppbv0.20Bromodichloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20	ethyl alcohol) ppbv 2.3 104			
A-rDescription2-Propanoneppbv0.80Methyl lethyl ketone (MEK) (2-Butanone)ppbv3.0Methyl lisobutyl ketone (MEK) (2-Haxanoe)ppbv3.2Methyl lisobutyl ketone (MEK) (2-Haxanoe)ppbv0.20Ethyl acetateppbv0.20Ethyl acetateppbv0.20Ethyl acetateppbv0.19trans.1.2-Dichloroethyleneppbv0.09Carbon tetrachlorideppbv0.301,1-Dichloroethyleneppbv0.301,1-Dichloroethaneppbv0.301,1-Dichloroethaneppbv0.20Ehylane dibromideppbv0.301,1-Dichloroethaneppbv0.20Ehylane dibromideppbv0.171,1,2-Trichloroethaneppbv0.131,1,2-Trichloroethaneppbv0.101,2-Dichloroptopaneppbv0.10Bromodichloromethaneppbv0.18Bromodichloromethaneppbv0.20Envenceppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20 <t< td=""><td>**</td><td></td></t<>	**			
Methyl ethyl ethyl ethyl (2-Butanone)i ppbv3.0 ppbvMethyl isobutyl ketone (MBK) (2-Haxanone)ppbv3.0 ppbvMethyl isobutyl ketone (MBK) (2-Haxanone)ppbv0.20Ethyl acetateppbv0.20Ethyl acetateppbv0.20Ethyl acetateppbv0.19(i 1-Dichloroethyleneppbv0.19(i 1-Dichloroethyleneppbv0.00Methyl the chloride(Dichloromethane)ppbv0.30Charbon tetrachlorideppbv0.301, 1-Dichloroethaneppbv0.301, 1-Dichloroethaneppbv0.20Ehylane dibromideppbv0.301, 1, 2-Trichloroethaneppbv0.151, 1, 2, 2-Tetrachloroethaneppbv0.171, 1, 2, 2-Tetrachloroptopeneppbv0.18Bromodichloromethaneppbv0.20Ensmodichloromethaneppbv0.20Bromodichloromethaneppbv0.20Bromodichloromethaneppbv0.20Bromodichloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Ethyleneppbv0.20Ethyleneppbv0.20Ethyleneppbv0.20Dibromochloromethaneppbv0.20<				
Methyl isobutyl ketoneppbv3.2Methyl butyl ketone (MBK) (2-Hexanore)ppbv2.0Methyl butyl ketone (MBK) (2-Hexanore)ppbv0.20Ethyl acetateppbv0.211,1-Dichloroethyleneppbv0.25cis-1,2-Dichloroethyleneppbv0.20Methyl butyl ketone (Dickloromethane)ppbv0.20Methylene chloride(Dichloromethane)ppbv0.301,1-Dichloroethyleneppbv0.301,1-Dichloroethaneppbv0.20Liyl-Inchloroethaneppbv0.20Liyl-Inchloroethaneppbv0.20Liyl-Inchloroethaneppbv0.201,1,2-Trichloroethaneppbv0.301,1,2-Trichloroethaneppbv0.151,1,2-Trichloroethaneppbv0.171,2-Dichloroethaneppbv0.171,2-Dichloropropaneppbv0.20Bromofornppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Styreneppbv0.37catachppbv0.20phylbenzeneppbv0.20phylbenzeneppbv0.20phylbenzeneppbv0.20phylbenzeneppbv0.20phylbenzeneppbv0.20phylbenzeneppbv0.20phylbenzene <td>11</td> <td></td>	11			
Methyl butyl ketone (MBK) (2-Hexanone) phbvppbv2.0 ppbvEhyl acetateppbv0.20Ehyl acetateppbv0.21(1-Dichloroethyleneppbv0.19trans-1,2-Dichloroethyleneppbv0.00Methyl-ne chloride(Dichloromethane)ppbv0.00Chloroformppbv0.15Carbon tetrachlorideppbv0.30(1-Dichloroethaneppbv0.301,1-Dichloroethaneppbv0.301,1-Dichloroethaneppbv0.301,1-Dichloroethaneppbv0.151,1,2-Trichloroethaneppbv0.171,1,2-Trichloroethaneppbv0.161,1,2-Trichloroethaneppbv0.171,2-Dichloropropeneppbv0.171,2-Trichloroethaneppbv0.18Bromoformppbv0.20Bromodichloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20prim-xyleneppbv0.20pim-xyleneppbv0.20pim-xyleneppbv0.20pim-xyleneppbv0.20pim-xyleneppbv0.20pim-xyleneppbv0.20pim-xyleneppbv0.20pim-xyleneppbv0.20pim-xyleneppbv0.20<				
Ethyl acetateppbv2.21,1-Dichloroethyleneppbv0.25irasn.1,2-Dichloroethyleneppbv0.19Methylene chloride(Dichloromethane)ppbv0.80Chloroformppbv0.301,1-Dichloroethyleneppbv0.301,1-Dichloroethaneppbv0.20Li,1-Dichloroethaneppbv0.201,2-Dichloroethaneppbv0.201,2-Trichloroethaneppbv0.201,1,1-Trichloroethaneppbv0.301,1,2-Trichloroethaneppbv0.151,1,2-Trichloroethaneppbv0.171,2-Dichloropopaneppbv0.18Bromoformppbv0.20Bromoformppbv0.20Dibromothloromethaneppbv0.20Dibromothloromethaneppbv0.20Dibromothloromethaneppbv0.20Dibromothloromethaneppbv0.20Dibromothloromethaneppbv0.20Pirtachlorothyleneppbv0.20Ethylbenzeneppbv0.20pitholueneppbv0.20pitholueneppbv0.20pitholoroethyleneppbv0.20pitholoroethyleneppbv0.20pitholoroethyleneppbv0.20pitholoroethyleneppbv0.20pitholoroethyleneppbv0.20pitholoroethyleneppbv0.20pitholoroethyleneppbv0.20pitholoroethyleneppbv0.20 <trr< td=""><td></td><td></td></trr<>				
1,1-Dichloroethyleneppbv0.25cis-1,2-Dichloroethyleneppbv0.20Methylene chloridc(Dichloromethane)ppbv0.80Chloroformppbv0.301,1-Dichloroethyleneppbv0.301,1-Dichloroethaneppbv0.20Larbon tetrachlorideppbv0.20Li,1-Trichloroethaneppbv0.20Li,1-Trichloroethaneppbv0.20Li,1-Trichloroethaneppbv0.301,1,2-Trichloroethaneppbv0.301,1,2-Trichloroethaneppbv0.151,1,2-Trichloroethaneppbv0.171,2-Dichloroethaneppbv0.18Bromofornppbv0.20Bromofornppbv0.20Bromofornppbv0.20Bromofornppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Styreneppbv0.20Ethylbenzeneppbv0.20phw0.201,2,4-Trimethylbenzeneppbv0.501,1,2-Trichlorobenzeneppbv0.501,1,2,1-Trichlorobenzeneppbv0.501,1,2,1-Trichlorobenzeneppbv0.501,1,2,1-Trichlorobenzeneppbv0.501,2,4-Trimethylbenzeneppbv0.30	butyl ether (MTBE) ppbv 0.20 ND			
cis-1_2-Dichloroethyleneppbv0.19trans-1_2-Dichloroethyleneppbv0.20Methylene chloride/Dichloromethane)ppbv0.80Chloroformppbv0.15Carbon tetrachlorideppbv0.301,1-Dichloroethaneppbv0.201,1-Dichloroethaneppbv0.20Ehylene dibromideppbv0.20Ehylene dibromideppbv0.171,1,2-Trichloroethaneppbv0.151,1,2-Trichloroethaneppbv0.181,1,2-Trichloroethaneppbv0.171,2-Dichloropropeneppbv0.171,2-Dichloropropeneppbv0.18Bromoformppbv0.171,2-Dichloropropeneppbv0.101,2-Dichloropropeneppbv0.20Bromodichloromethaneppbv0.20Bromodichloromethaneppbv0.20Bromodichloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Ehylenzeneppbv0.20Ehylenzeneppbv0.20pim-xyleneppbv0.20pim-xyleneppbv0.20pim-xyleneppbv0.20pim-xyleneppbv0.20pim-xyleneppbv0.20pim-xyleneppbv0.20pim-xyleneppbv0.20pim-xyleneppbv0.20ithylibenzeneppbv0.20ithylibenzeneppbv<				
trans-1,2-Dichloroethyleneppbv0.20Methylene chloride/Dichloromethane)ppbv0.80Chloroformppbv0.15Carbon tetrachlorideppbv0.201,1-Dichloroethaneppbv0.20Ehylene dihoromideppbv0.201,1,2-Trichloroethaneppbv0.171,1,2,2-Tetrachloroethaneppbv0.171,1,2,2-Tetrachloroethaneppbv0.18trans-1,3-Dichloropropeneppbv0.171,2,2-Tetrachloroethaneppbv0.18Bromomethaneppbv0.20Bromomethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Trichloroethylene (PCE)ppbv0.20Bromodichloromethaneppbv0.20Trichloroethylene (PCE)ppbv0.20Bryneneppbv0.20Pirm-xyleneppbv0.20Pirm-xyleneppbv0.20Pirm-tyllenzeneppbv0.20Pirm-tyllenzeneppbv0.50Chlorobenzeneppbv0.50Chlorobenzeneppbv0.401,2-Dichlorobenzeneppbv0.401,2-Trinichtylbenzeneppbv0.401,2-Trinichtylbenzeneppbv0.401,2-Trinichtylbenzeneppbv0.401,2-Trinichtylbenzeneppbv0.401,2-Trinichtylbenzeneppbv0.401,2-Trinichtylben				
Methylene chloride(Dichloromethane)ppbv0.80Chloroformppbv0.15Carbon tetrachlorideppbv0.301,1-Dichloroethaneppbv0.20Ethylene dibromideppbv0.20Ethylene dibromideppbv0.301,1,1-Trichloroethaneppbv0.301,1,2-Trichloroethaneppbv0.311,1,2-Trichloroethaneppbv0.151,1,2-Trichloroethaneppbv0.161,1,2-Trichloroethaneppbv0.171,2-Dichloropropeneppbv0.18Bromoformppbv0.20Bromothaneppbv0.20Bromothaneppbv0.20Dibronochloromethaneppbv0.20Dibronochloromethaneppbv0.20Dibronochloromethaneppbv0.20Dibronochloromethaneppbv0.20Prim-xyleneppbv0.20Enzeneppbv0.20Ehylbenzeneppbv0.20Pylm-xyleneppbv0.20Pylm-xyleneppbv0.20Pylm-xyleneppbv0.20Pylm-xyleneppbv0.501,3-5-Trinethylbenzeneppbv0.401,2-4-Trimethylbenzeneppbv0.401,2-1-Trichlorobenzeneppbv0.401,2-1-Trichlorobenzeneppbv0.401,2-1-Trichlorobenzeneppbv0.401,2-1-Trichlorobenzeneppbv0.401,2-1-Trichlorobenzeneppbv0.40				
Carbon tetrachlorideppbv0.301,1-Dichloroethaneppbv0.201,1-Dichloroethaneppbv0.20Ehylene dibromideppbv0.171,1,1-Trichloroethaneppbv0.131,1,2-Trichloroethaneppbv0.151,1,2-Trichloroethaneppbv0.161,1,2-Trichloroethaneppbv0.18trans.1,3-Dichloropropeneppbv0.18trans.1,3-Dichloropropeneppbv0.18Bromofernppbv0.20Bromodichloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Bromofernppbv0.20Bromofernppbv0.20Bromofernppbv0.20Bromothaneppbv0.20Bromothoromethaneppbv0.20Bromothoromethaneppbv0.20Bromothoromethaneppbv0.20Bromothoromethaneppbv0.20Bromzeneppbv0.20Brybeneppbv0.20Ehylhenzeneppbv0.20pi-m-xyleneppbv0.20pi-m-xyleneppbv0.20I,3-Trimethylbenzeneppbv0.401,4-Dichlorobenzeneppbv0.401,2-Trichlorobenzeneppbv0.401,2-Trichlorobenzeneppbv0.401,2-Trichlorobenzeneppbv0.30Hexanklorobutadienepp				
Carbon tetrachlorideppbv0.301,1-Dichloroethaneppbv0.201,1-Dichloroethaneppbv0.20Ehylene dibromideppbv0.171,1,1-Trichloroethaneppbv0.131,1,2-Trichloroethaneppbv0.151,1,2-Trichloroethaneppbv0.161,1,2-Trichloroethaneppbv0.18trans.1,3-Dichloropropeneppbv0.18trans.1,3-Dichloropropeneppbv0.18Bromofernppbv0.20Bromodichloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Bromofernppbv0.20Bromofernppbv0.20Bromofernppbv0.20Bromothaneppbv0.20Bromothoromethaneppbv0.20Bromothoromethaneppbv0.20Bromothoromethaneppbv0.20Bromothoromethaneppbv0.20Bromzeneppbv0.20Brybeneppbv0.20Ehylhenzeneppbv0.20pi-m-xyleneppbv0.20pi-m-xyleneppbv0.20I,3-Trimethylbenzeneppbv0.401,4-Dichlorobenzeneppbv0.401,2-Trichlorobenzeneppbv0.401,2-Trichlorobenzeneppbv0.401,2-Trichlorobenzeneppbv0.30Hexanklorobutadienepp	rm ppbv 0.15 0.24			
1.2-Dichloroethaneppbv0.20Ethylene dibromideppbv0.171,1,1-Trichloroethaneppbv0.301,1,2-Trichloroethaneppbv0.151,1,2-Trichloroethaneppbv0.171,2-Dichloropropeneppbv0.171,2-Dichloropropeneppbv0.18Bromodramppbv0.18Bromodichloromethaneppbv0.20Bromodichloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Benzeneppbv0.20Styreneppbv0.20Pim-xyleneppbv0.20Styreneppbv0.20Pim-xyleneppbv0.20Pim-xyleneppbv0.20Pim-xyleneppbv0.20Pim-xyleneppbv0.20Pim-xyleneppbv0.20Pim-xyleneppbv0.20Pim-xyleneppbv0.20Pim-xyleneppbv0.20Pim-xyleneppbv0.20Pim-xyleneppbv0.20Pim-xyleneppbv0.401,2-4-Trimethylbenzeneppbv0.401,2-5-Dichlorobenzeneppbv0.401,2-Dichlorobenzene	trachloride ppbv 0.30 ND			
Ethylene dibromideppbv0.171,1,1-Trichloroethaneppbv0.301,1,2-Trichloroethaneppbv0.151,1,2,2-Tetraholoroethaneppbv0.18trans-1,3-Dichloropropeneppbv0.18Bromorthaneppbv0.18Bromorthaneppbv0.18Bromorthaneppbv0.18Bromorthaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Straneppbv0.20Enzeneppbv0.20Styreneppbv0.20Styreneppbv0.20Styreneppbv0.20Styreneppbv0.20Styreneppbv0.50Chlorobenzeneppbv0.401,2-4-Trinethylbenzeneppbv0.401,2-4-Trichlorobenzeneppbv0.30Heytaneppbv0.30Cyclohorxaneppbv0.30Heytaneppbv0.30Chlorobenzeneppbv0.30Heytaneppbv0.30I,2-4-Trichlorobenzeneppbv0.30Heytaneppbv <td< td=""><td></td><td></td></td<>				
1,1,1-Trichloroethaneppbv 0.30 1,1,2-Trichloroethaneppbv 0.15 1,1,2,2-Tetrachloroethaneppbv 0.15 1,1,2,2-Tetrachloroethaneppbv 0.15 trans-1,3-Dichloropropeneppbv 0.17 1,2-Dichloropropeneppbv 0.17 1,2-Dichloropropeneppbv 0.18 Bromofornppbv 0.20 Bromodichloromethaneppbv 0.20 Dibromochloromethaneppbv 0.20 Dibromochloromethaneppbv 0.20 Tichloroethylene (PCE)ppbv 0.30 Benzeneppbv 0.20 Ethylbenzeneppbv 0.20 Ethylbenzeneppbv 0.20 Styreneppbv 0.20 Ethylbenzeneppbv 0.20 J.2-Tirimethylbenzeneppbv 0.20 Pitraethyloneppbv 0.20 Ethylbenzeneppbv 0.20 Styreneppbv 0.20 Hylbenzeneppbv 0.50 Chlorobenzeneppbv 0.50 I.3-Dichlorobenzeneppbv 0.40 1,2-Dichlorobenzeneppbv 0.40 1,2-Dichlorobenzeneppbv 0.30 Hexanklorobutadieneppbv 0.30 Hexanklorofutaneppbv 0.30 Cyclohexaneppbv 0.30 Hexanklorobutadieneppbv 0.40 1,2-Dichlorobenzeneppbv 0.40 1,2-Dichlorobenzeneppbv 0.40 1,2-Dichlorobenzene<				
1,1,2-Trichloroethaneppbv0,151,1,2,2-Tetrachloroethaneppbv0,20cis-1,3-Dichloropropeneppbv0,171,2-Dichloropropeneppbv0,171,2-Dichloropropeneppbv0,10Bromofornppbv0,20Bromofornppbv0,20Bromodichloromethaneppbv0,20Dibromochloromethaneppbv0,20Dibromochloromethaneppbv0,20Dibromochloromethaneppbv0,20Branceppbv0,30Tetrachloroethylene (PCE)ppbv0,20Benzeneppbv0,20Ethylbenzeneppbv0,20phr-xyleneppbv0,20Styreneppbv0,20Ethylbenzeneppbv0,20Styreneppbv0,201,3-5-Tinirethylbenzeneppbv0,20Styreneppbv0,50Chlorobenzeneppbv0,50Chlorobenzeneppbv0,401,2-4-Trimethylbenzeneppbv0,401,2-Dichlorobenzeneppbv0,401,2-Dichlorobenzeneppbv0,30Hexanleppbv0,30Hexanleppbv0,30Cyclohexaneppbv0,30Cyclohexaneppbv0,401,2-Dichlorobenzeneppbv0,401,2-Dichlorobenzeneppbv0,401,2-Dichlorobenzeneppbv0,401,2-Dichlorobenzeneppbv0,401,2-Dichloroben				
cis-1,3-Dichloropropeneppbv0.18trans-1,3-Dichloropropeneppbv0.171,2-Dichloropropeneppbv0.171,2-Dichloropropeneppbv0.18Bromodichneppbv0.20Bromodichloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Bremadichloromethaneppbv0.20Bremadichloromethaneppbv0.20Bremadichloromethaneppbv0.20Benzeneppbv0.20Ethylbenzeneppbv0.20bildenzeneppbv0.20Styreneppbv0.20Styreneppbv0.20J.3-5-Trimethylbenzeneppbv0.20Chlorobenzeneppbv0.20Hardhorobenzeneppbv0.20Styreneppbv0.50Chlorobenzeneppbv0.50Chlorobenzeneppbv0.401,2-4-Trinchtylbenzeneppbv0.401,2-Dichlorobenzeneppbv0.401,2-Dichlorobenzeneppbv0.30Hexankorobutadieneppbv0.30Hexankorobutadieneppbv0.20Cyclohexaneppbv0.401,4-Dickloraneppbv0.401,2-Dichlorobenzeneppbv0.20Cyclohexaneppbv0.401,4-Dickloraneppbv0.401,4-Dickloraneppbv0.401,4-Dickloraneppbv0.40 <t< td=""><td>PP</td><td></td></t<>	PP			
trans-1,3-Dichloropropeneppbv0.171,2-Dichloropropaneppbv0.40Bronmoftaneppbv0.18Bronmoftaneppbv0.20Bronmoftaneppbv0.20Bronmoftaneppbv0.20Dibronochloromethaneppbv0.20Dibronochloromethaneppbv0.20Dibronochloromethaneppbv0.20Trichloroethylene (TCE)ppbv0.20Benzeneppbv0.20Ehylbenzeneppbv0.20Pjm-xyleneppbv0.20Styreneppbv0.20L1,3,5-Trimethylbenzeneppbv0.20Pytrateklorobenzeneppbv0.20J,2,4-Trimethylbenzeneppbv0.50Chlorobenzeneppbv0.50L1,2-Lichlorobenzeneppbv0.40L2,2-Lichlorobenzeneppbv0.40L2,2-Lichlorobenzeneppbv0.30Hexanklorofuranppbv0.30Cyclohexaneppbv0.30Cyclohexaneppbv0.40L4-Dickordoranappbv0.40L4-Dickordoranappbv0.40L4-Dickordoranappbv0.40L2,4-Trimethylenzeneppbv0.30Cyclohexaneppbv0.30Cyclohexaneppbv0.40L2,2-Dichlorobenzeneppbv0.40L2,2-Dichlorobenzeneppbv0.40L2,2-Dichlorobenzeneppbv0.40L2,2-Dichlorobenzeneppbv0.40	II			
1.2-Dichloropropaneppbv0.40Bromodichloromethaneppbv0.18Bromodichloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Enzeneppbv0.20Benzeneppbv0.20Benzeneppbv0.20Benzeneppbv0.20Benzeneppbv0.20Benzeneppbv0.20Byleneppbv0.20Bylenzeneppbv0.20Styreneppbv0.20Styreneppbv0.20Styreneppbv0.20Styreneppbv0.20Styreneppbv0.20Styreneppbv0.501,2,4-Trimethylbenzeneppbv0.501,2,4-Trimethylbenzeneppbv0.401,4-Dichlorobenzeneppbv0.401,2-Dichlorobenzeneppbv0.401,2-Dichlorobenzeneppbv0.30Hexanklorobutadieneppbv0.30Hexanklorobutadieneppbv0.401,4-Dichlorobenzeneppbv0.401,2-Dichlorobenzeneppbv0.401,2-Dichlorobenzeneppbv0.30Cyclohexaneppbv0.401,4-Dichlorobenzeneppbv0.401,4-Dichlorobenzeneppbv0.401,4-Dichlorobenzeneppbv0.401,4-Dichlorobenzeneppbv0.40 <td></td> <td></td>				
Bromodichloromethaneppbv0.18Bromodichloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Dibromochloromethaneppbv0.20Enzeneppbv0.20Benzeneppbv0.20Ehylbenzeneppbv0.20Ehylbenzeneppbv0.20Pirm-xyleneppbv0.20eryleneppbv0.20Styreneppbv0.204chylkolueneppbv0.201,2,4-Trimethylbenzeneppbv0.20Benzyl chlorideppbv0.20Benzyl chlorideppbv0.20Benzyl chlorideppbv0.501,2-1-Trimethylbenzeneppbv0.20Benzyl chlorideppbv0.401,2-1-Trihethylbenzeneppbv0.401,2-1-Trihothorobenzeneppbv0.401,2-1-Trihothorobenzeneppbv0.30Hexankorobutadieneppbv0.30Heytaneppbv0.401,4-Dichorobenzeneppbv0.401,4-Dichorobenzeneppbv0.401,2-Dichlorobenzeneppbv0.20Kylene (Total)ppbv0.401,4-Dichorobenzeneppbv0.401,4-Dichorobenzeneppbv0.401,4-Dichorobenzeneppbv0.401,4-Dichorobenzeneppbv0.401,4-Dichorobenzeneppbv0.40 <td></td> <td></td>				
Bromoform ipbv 0.20 Bromodichloromethane ppbv 0.20 Dirbomochloromethane ppbv 0.20 Dirbomochloromethane ppbv 0.20 Trichloroethylene (TCE) ppbv 0.30 Tetrachloroethylene (PCE) ppbv 0.20 Benzene ppbv 0.20 Ethylbenzene ppbv 0.20 pim-xylene ppbv 0.20 pim-xylene ppbv 0.20 syrene ppbv 0.20 syrene ppbv 0.20 syrene ppbv 0.20 4-ethylholuene ppbv 0.20 1,3.5-Trimethylbenzene ppbv 0.50 Chlorobenzene ppbv 0.40 1,3-Dichlorobenzene ppbv 0.40 1,2.4-Trinchtylbenzene ppbv 0.40 1,2.4-Trinchorobenzene ppbv 0.40 1,2.4-Trinchorobenzene ppbv 0.40 1,2.4-Trinchorobenzene ppbv 0.30				
Dibromochloromethane ppbv 0.20 Trichloroethylene (TCE) ppbv 0.30 Tetrachloroethylene (PCE) ppbv 0.20 Benzene ppbv 0.20 Toluene ppbv 0.20 Ehylbenzene ppbv 0.20 p+m-xylene ppbv 0.20 psylene ppbv 0.20 styrene ppbv 0.50 styrene ppbv 0.50 styrene ppbv 0.50 styrene ppbv 0.40 styrene ppbv 0.40 styrene ppbv 0.40 styrene ppbv 0.30 styrene ppbv 0.30 styrene ppbv <td>rm ppbv 0.20 ND</td> <td></td>	rm ppbv 0.20 ND			
Trichloroethylene (TCE) ppbv 0.30 Tetrachloroethylene (PCE) ppbv 0.20 Benzene ppbv 0.18 Toluene ppbv 0.20 Ethylbenzene ppbv 0.20 pim-xylene ppbv 0.20 pim-xylene ppbv 0.20 pim-xylene ppbv 0.20 styrene ppbv 0.20 4-ethylkoluene ppbv 0.20 1,3,5-Trimethylbenzene ppbv 0.50 Chlorobenzene ppbv 0.50 Ghlorobenzene ppbv 0.40 1,2-4-Trimethylbenzene ppbv 0.40 1,3-5-Tichlorobenzene ppbv 0.40 1,2-4-Trichlorobenzene ppbv 0.40 1,2-4-Trichlorobenzene ppbv 0.40 1,2-4-Trichlorobenzene ppbv 0.40 1,2-4-Trichlorobenzene ppbv 0.30 Hexanle ppbv 0.30 Hexanle ppbv 0.40 1,4-	chloromethane ppbv 0.20 ND			
Tetrachiorothylene (PCE) ppbv 0.20 Benzene ppbv 0.18 Toluene ppbv 0.20 Ethylbenzene ppbv 0.20 pim-sylene ppbv 0.20 sylene ppbv 0.20 Styrene ppbv 0.20 sylene ppbv 0.20 Styrene ppbv 0.20 4-ethylholuene ppbv 0.20 4-ethylholuene ppbv 0.50 Chlorobenzene ppbv 0.50 Chlorobenzene ppbv 0.40 1,2-4-Trinkhylbenzene ppbv 0.40 1,3-5ichlorobenzene ppbv 0.40 1,2-Dichlorobenzene ppbv 0.40 1,2-Jrichlorobenzene ppbv 0.30 Hexanklorobutadiene ppbv 0.30 Heytane ppbv 0.30 Cyclohexane ppbv 0.40 1,4-Dicknofuran ppbv 0.40 1,4-Dicknofuran ppbv				
Benzene ppbv 0.18 Toluene ppbv 0.20 Ehylbenzene ppbv 0.20 p+m-xylene ppbv 0.20 p+m-xylene ppbv 0.20 p+m-xylene ppbv 0.20 p+m-xylene ppbv 0.20 ptmexplene ppbv 0.20 Styrene ppbv 0.20 4-ethyltoluene ppbv 0.20 1,2,4-Trimethylbenzene ppbv 0.50 1,2,4-Trimethylbenzene ppbv 0.40 1,4-Dichlorobenzene ppbv 0.40 1,4-Dichlorobenzene ppbv 0.40 1,2-Jrichlorobenzene ppbv 0.40 1,2-Jrichlorobenzene ppbv 0.30 Hexanklorobutadiene ppbv 0.30 Hexanklorobutadiene ppbv 0.40 1,4-Dichlorobenzene ppbv 0.40 1,2,4-Trihoforan ppbv 0.30 Heyane ppbv 0.40 1,2,4-Trichlorobenzene <td></td> <td></td>				
Toluene Tpbv Ethylkenzene 0.20 ppbv 0.20 0.20 p+m-xylene ppbv 0.20 o-xylene ppbv 0.20 Styrene ppbv 0.20 Styrene ppbv 0.20 Styrene ppbv 0.20 Styrene ppbv 0.20 L_3.5-Trimethylbenzene ppbv 0.50 Chlorobenzene ppbv 0.60 L_4.Trimethylbenzene ppbv 0.40 L_3.5-Trinethylbenzene ppbv 0.40 L_4.Trichlorobenzene ppbv 0.40 L_2.Dichlorobenzene ppbv 0.40 L_2.4-Trichlorobenzene ppbv 0.40 L_2.4-Trichlorobenzene ppbv 0.30 Hexankorobutadiene ppbv 0.30 Heptane ppbv 0.40 Cyclohexane ppbv 0.40 L_4-Dichlorobutadiene ppbv 0.30 Heptane ppbv 0.40 L_4-Dichlorobutadiene ppbv 0.60				
p+m-xylene ppbv 0.37 o-xylene ppbv 0.20 Siyrene ppbv 0.20 4-chyltoluene ppbv 0.20 1,3,5-Trimethylbenzene ppbv 0.50 1,2,4-Trimethylbenzene ppbv 0.50 1,2,4-Trimethylbenzene ppbv 0.20 Benzyl chloride ppbv 0.00 Benzyl chloride ppbv 0.40 1,4-Dichlorobenzene ppbv 0.40 1,2-Dichlorobenzene ppbv 0.40 1,2-Trichlorobenzene ppbv 0.30 Hexanklorobutadiene ppbv 0.30 Heytane ppbv 0.30 Cyclohexane ppbv 0.40 1,4-Dichorobutatiene ppbv 0.40 1,4-Dichoroberzene ppbv 0.30 Heytane ppbv 0.40 1,2,4-Trichlorobenzene ppbv 0.40 1,4-Dichoroberzene ppbv 0.60 Vipbut ppbv 0.60 Vi	ppbv 0.20 7.53			
o-xylene ppbv 0.20 Styrene ppbv 0.20 styrene ppbv 0.20 4-thylkoluene ppbv 0.50 1,3,5-Trimethylbenzene ppbv 0.50 1,2,4-Trimethylbenzene ppbv 0.50 Chlorobenzene ppbv 0.40 1,3-Dichlorobenzene ppbv 0.40 1,4-Dichlorobenzene ppbv 0.40 1,2-Dichlorobenzene ppbv 0.40 1,2-Dichlorobenzene ppbv 0.40 1,2-Dichlorobenzene ppbv 0.30 Hexanchorobutadiene ppbv 0.30 Hexanene ppbv 0.40 1,4-Dichorobenzene ppbv 0.30 Hotsane ppbv 0.40 1,2,4-Trichlorobenzene ppbv 0.30 Hotsane ppbv 0.40 1,4-Dickorober ppbv 0.40 1,4-Dickorober ppbv 0.60 Vingl hormide ppbv 0.60 Vingl hormide	zene ppbv 0.20 0.94			
Styrene ppbv 0.20 4-ethyltoluene ppbv 2.2 1,3,5-Trimethylbenzene ppbv 0.50 1,2,4-Trimethylbenzene ppbv 0.50 Phylochorzene ppbv 0.20 Benzyl chloride ppbv 0.00 1,3-Dichlorobenzene ppbv 0.40 1,3-Dichlorobenzene ppbv 0.40 1,2-Dichlorobenzene ppbv 0.40 1,2-Dichlorobenzene ppbv 0.40 1,2-Dichlorobenzene ppbv 0.40 1,2-Dichlorobenzene ppbv 0.30 Hexanlorobutadiene ppbv 0.30 Heptane ppbv 0.30 Cyclohexane ppbv 0.40 1,4-Dicinane ppbv 0.60 Vinyl bromide ppbv 0.60 Vinyl bromide ppbv 0.20 Propene ppbv 0.30				
4-ethyloluene ppbv 2.2 1,3,5-Trimethylbenzene ppbv 0.50 1,2,4-Trimethylbenzene ppbv 0.50 Chlorobenzene ppbv 0.20 Benzyi chloride ppbv 0.40 1,3-Dichlorobenzene ppbv 0.40 1,2-Dichlorobenzene ppbv 0.40 1,2-Dichlorobenzene ppbv 0.40 1,2-Dichlorobenzene ppbv 0.40 1,2-Dichlorobenzene ppbv 0.30 Hexanklorobutadiene ppbv 0.30 Hexane ppbv 0.30 Cyclohexane ppbv 0.40 1,4-Dichorofuran ppbv 0.40 1,4-Dichoroberzene ppbv 0.30 Heyane ppbv 0.40 1,2,4-Trikhoroberzene ppbv 0.40 1,2,4-Trikhoroberzene ppbv 0.30 Cyclohexane ppbv 0.40 1,4-Dichorofuran ppbv 0.60 Vingi hormide ppbv 0.20 <t< td=""><td>PPO</td><td></td></t<>	PPO			
1,3,5-Trimethylbenzene ppbv 0.50 1,2,4-Trimethylbenzene ppbv 0.50 Chlorobenzene ppbv 0.20 Bernyl chlorobenzene ppbv 0.40 1,3-Dichlorobenzene ppbv 0.40 1,3-Dichlorobenzene ppbv 0.40 1,2-Dichlorobenzene ppbv 0.40 1,2-Dichlorobenzene ppbv 0.40 1,2-Dichlorobenzene ppbv 0.30 Hexachlorobutadiene ppbv 0.30 Hexane ppbv 0.30 Cyclohexane ppbv 0.40 1,4-Dichlorobenzene ppbv 0.20 Petrahydrofuran ppbv 0.20 Yelene (Total) ppbv 0.60 Vinyl bromide ppbv 0.20 Propene ppbv 0.30				
Chlorobenzene ppbv 0.20 Benzyl chloride ppbv 1.0 1,3-Dichlorobenzene ppbv 0.40 1,4-Dichlorobenzene ppbv 0.40 1,2-Dichlorobenzene ppbv 0.40 1,2-Dichlorobenzene ppbv 0.40 1,2-Dichlorobenzene ppbv 0.40 1,2-Dichlorobenzene ppbv 0.30 Hexachlorobutadiene ppbv 0.30 Heptane ppbv 0.30 Cyclohexane ppbv 0.40 1,4-Dichlorobutadiene ppbv 0.20 Cyclohexane ppbv 0.40 1,4-Dickane ppbv 0.40 1,4-Dickane ppbv 0.60 Vingl tromide ppbv 0.20 Propene ppbv 0.30				
Chlorobenzene ppbv 0.20 Benzy (chloride ppbv 1.0 1,3-Dichlorobenzene ppbv 0.40 1,4-Dichlorobenzene ppbv 0.40 1,2-Dichlorobenzene ppbv 0.40 1,2-Dichlorobenzene ppbv 0.40 1,2-Dichlorobenzene ppbv 0.40 1,2-Dichlorobenzene ppbv 0.30 Hexanlorobutadiene ppbv 0.30 Heptane ppbv 0.30 Cyclohexane ppbv 0.40 1,4-Dichlorobutadiene ppbv 0.20 Cyclohexane ppbv 0.40 1,4-Dickane ppbv 0.40 1,4-Dickane ppbv 0.60 Vingi hormide ppbv 0.20 Propene ppbv 0.30	nethylbenzene ppbv 0.50 0.58			
1,3-Dichlorobenzene ppbv 0.40 1,4-Dichlorobenzene ppbv 0.40 1,2-Dichlorobenzene ppbv 0.40 1,2-Trichlorobenzene ppbv 2.0 Hexachlorobutadiene ppbv 0.30 Heytane ppbv 0.30 Cyclohexane ppbv 0.20 Tetrahydrofuran ppbv 0.40 1,4-Dichlorobenzene ppbv 0.20 Veylene (Total) ppbv 0.40 ylene (Total) ppbv 0.20 Propene ppbv 0.30	nzene ppbv 0.20 ND			
1,4-Dichlorobenzene ppbv 0.40 1,2-Dichlorobenzene ppbv 0.40 1,2,4-Trichlorobenzene ppbv 2.0 Hexachlorobutadiene ppbv 3.0 Hexachlorobutadiene ppbv 0.30 Heptane ppbv 0.30 Cyclohexane ppbv 0.40 Tettahydrofuran ppbv 0.40 1,4-Dichlorobenzene ppbv 0.40 Vylene (Total) ppbv 0.60 Vinyil bromide ppbv 0.20 Propene ppbv 0.30	nloride ppbv 1.0 ND orobenzene ppbv 0.40 ND			
1,2-Dichlorobenzene ppbv 0.40 1,2,4-Trichlorobenzene ppbv 2.0 Hexanklorobutadiene ppbv 3.0 Hexane ppbv 0.30 Heptane ppbv 0.30 Cyclohexane ppbv 0.20 Tetrahydrofuran ppbv 0.40 1,4-Dioxame ppbv 0.60 Vinyl bromide ppbv 0.20 Propene ppbv 0.20				
1,2,4-Trichlorobenzene ppbv 2.0 Hexankorobutadiene ppbv 3.0 Hexane ppbv 0.30 Heptane ppbv 0.30 Cyclohexane ppbv 0.20 Tetrahydrofuran ppbv 0.40 1,4-Dioxane ppbv 2.0 Vylene (Total) ppbv 0.60 Vinyl bromide ppbv 0.20 Propene ppbv 0.30				
Hexane ppbv 0.30 Heptane ppbv 0.30 Cyclohexane ppbv 0.20 Tetrahydrofuran ppbv 0.40 1,4-Dioxane ppbv 2.0 Xylene (Total) ppbv 0.60 Vinyl bromide ppbv 0.20 Propene ppbv 0.30	chlorobenzene ppbv 2.0 ND			
Heptane ppbv 0.30 Cyclohexane ppbv 0.20 Tetrahydrofuran ppbv 0.40 1,4-Dioxane ppbv 2.0 Xylene (Total) ppbv 0.60 Vinyl bromide ppbv 0.20 Propene ppbv 0.30				
Cyclohexane ppbv 0.20 Tetrahydrofuran ppbv 0.40 1,4-Dioxane ppbv 2.0 Xylene (Total) ppbv 0.60 Vinyl bromide ppbv 0.20 Propene ppbv 0.30	**			
Tetrahydrofuran ppbv 0.40 1,4-Dioxane ppbv 2.0 Xylene (Total) ppbv 0.60 Vinyl bromide ppbv 0.20 Propene ppbv 0.30				
1,4-Dioxane ppbv 2.0 Xylene (Total) ppbv 0.60 Vinyl bromide ppbv 0.20 Propene ppbv 0.30				
Xylene (Total) ppbv 0.60 Vinyl bromide ppbv 0.20 Propene ppbv 0.30				
Propene ppbv 0.30	Fotal) ppbv 0.60 5.88			
	mide ppbv 0.20 ND			
2,2,4-1 rimetnylpentane ppbv 0.20				
Carbon disulfide ppbv 0.50				
Vinyl acetate ppbv 0.20				

Table 5C

Results are from sampling performed on Saturday, August 17, 2013.
 ND - Not Detected, less than the limit of method detection.
 - No value established in the detection limit and reference criteria.
 For further information, the reader should refer to the laboratory report in Appendix A.

12-435 Phase II ESA - McKenzie Trails Recreation Area Historic Waste Disposal Sites, The City of Red Deer

Detection Limit VW-01									
Parameter			08/17	//2013					
	mg/m ³	ppm	mg/m ³	ppm					
Trimethylsilyl Fluoride			0.0007	0.0002					
Tetramethylsilane	0.0001	0.0001	ND	ND					
Methoxytrimethylsilane	0.0018	0.0004	ND	ND					
Ethoxytrimethylsilane	0.0017	0.0004	ND	ND					
Trimethylsilanol			0.0394	0.0107					
Isopropoxytrimethylsilane	0.0007	0.0001	ND	ND					
Trimethoxymethyl Silane #			ND	ND					
Hexamethyl Disiloxane - L2			0.0005	0.0001					
Propoxytrimethylsilane	0.002	0.0004	ND	ND					
1-Methylbutoxytrimethylsilane *			ND	ND					
Butoxytrimethylsilane *			ND	ND					
Trimethoxyvinyl Silane #			ND	ND					
Hexamethyl Cyclotrisiloxane - D3			0.0074	0.0008					
Octamethyl Trisiloxane - L3	0.0001	0.0001	ND	ND					
Triethoxyvinyl Silane #			ND	ND					
Triethoxyethyl Silane #			ND	ND					
Octamethyl Cyclotetrasiloxane - D4			0.0071	0.0006					
Decamethyl Tetrasiloxane - L4	0.0002	0.0001	ND	ND					
Tetraethylsilicate #			ND	ND					
Decamethyl Cyclopentasiloxane - D5			0.0160	0.0011					
Dodecamethyl Pentasiloxane - L5	0.0017	0.0006	ND	ND					
Dodecamethyl Cyclohexasiloxane - D6			0.1747	0.0096					
Sum			0.2541	0.0245					

Table 5DAnalytics Results - Soil Vapour - Siloxanes

Notes:

1) Soil vapour samples collected on Saturday, August 17, 2013.

2) ND - Not Detected, less than the limit of method detection.

3) - - No value established in the detection limit and reference criteria.

4) V=200 mL, where V is volume of air/gas sampled.

5) * - Semiquanititative (response factor set at 5).

6) # - Unstable, poor detectability, commercial standards tested.

7) For further information, the reader should refer to the laboratory report in Appendix A.

APPENDIX F

BOREHOLE LOGS

PROJECT: Phase II ESA Historic Waste Disposal Sites			BOREHOLE No.: VW-0					
PROJECT No.: 12-435				TYP	'E:	SS Auger		
LOC	ATION: McKenzie Trails Recreation Area	GR	OUN	ID E	LEVA	853.853 m		
CLII	ENT: The City of Red Deer	CO	MPI	ET	ION D	ATE:		06/20/2013
Sam	ole Type: 📕 Shelby Tube 💹 Split Spoon 🚺 Core 🔛 Disturbed			o Rec	overy			
	fill Type: 📕 Bentonite 🔟 Silica Sand 🧱 Grout 🔃 Pea Gravel				uttings		nite : Sand	
Note	Soil Vapour Well on east side of the park road (near the northe	east q	uadr	ant c	f the p	ond)	,	
(ji		ype	4o.	(Combustible Soil Vapours (ppm)		ails	
Depth (m)	Soil Description	le T	Sample No.	SPT (N)	ıstibl ırs (J		Well Details	
Del		Sample Type	Sam	SF	ombı 'apoı		We	
0.0	Sod and loam (fill) - loose, silty, sandy, trace rootlets, moist, dark olive. (~ 15 m thick).				U P			
	Sand and gravel (fill) - compact, silty, trace rootlets, trace organics, moist, dark olive.							
1.0								
	becomes wet at 2 m.							
2.0	End of hole at 2.0 m.	1						
	25 mm diameter 0.3 m length 020 PVC screen.							
	Aboveground lockable steel casing set in concrete.							
3.0								
4.0								
5.0							¢	
5.0								
6.0								
0.0								
7.0								
8.0							0	
9.0								
10.0								
11.0								
12.0								
12.0								
	T. (D.) C. C. S.	Sloug	1:	•		None	Completion Depth	(m): 2
	Tiamat Environmental Consultants Ltd.		to Grou	indwate	er :		1	LTM
		Logge	a By:			LTM	Page:	1 of 1

PROJECT: Phase II ESA Historic Waste Disposal Sites			BOREHOLE No.: MW-01						
PRO	JECT No.: 12-435	DRILL TYPE:			SS Auger/ODEX				
LOCATION: McKenzie Trails Recreation Area				ND E	LEVA	848.292 m			
CLII	ENT: The City of Red Deer	COMPLETION DATE:						06/20/2013	
Sam	ole Type: 📕 Shelby Tube 💹 Split Spoon 📗 Core 🔛 Disturbed	[o Rec	overy				
Back	fill Type: 📕 Bentonite 🛄 Silica Sand 🧱 Grout 🔃 Pea Gravel		D 🛛	rill C	uttings	Bento	nite : Sand		
Note	Groundwater Monitoring Well near VW-01								
Depth (m)	Soil Description	Sample Type	Sample No.	SPT (N)	Combustible Soil Vapours (ppm)		Well Details		
0.0	Sod and loam (fill) - loose, silty, sandy, moist, dark olive. (~15 cm thick). Sand and gravel (fill) - loose, silty, trace organics, moist, dark olive.	-							
	Sand and graver (mi) - roose, smy, nace organics, moist, dark onve.						1000000 1000000		
							_		
1.0									
2.0	becomes wet at 2 m.								
3.0									
3.0									
	Sand and gravel (native) - compact, trace silt, wet, olive.	1							
4.0									
5.0									
	End of hole at 5.5 m. 51 mm diameter 4.6 m length 010 PVC screen.								
6.0	Aboveground lockable steel casing set in concrete.								
7.0									
8.0									
9.0									
10.0									
11.0									
12.0									
		Slough	.			None	Completion Depth	(m): 55	
	Tiamat Environmental Consultants Ltd.	-	to Grou	undwat	er :	1 tone		LTM	
		Logge	d By:			JAL/LTM	Page:	1 of 1	

PROJECT: Phase II ESA Historic Waste Disposal Sites			BOREHOLE No.: TH-03						
PRO	JECT No.: 12-435	DR	ILL	TYP		SS Auger			
LOC	ATION: McKenzie Trails Recreation Area	GR	OUN		850.002 m				
	CNT: The City of Red Deer	CO	MPI	ET		06/20/2013			
Samp	ole Type: 📕 Shelby Tube 💹 Split Spoon 📗 Core 🔛 Disturbed	[N	o Rec	overy				
	fill Type: 📕 Bentonite 📗 Silica Sand 🧱 Grout 🔃 Pea Gravel	[D	rill C	uttings	Bentor	nite : Sand		
Notes	: Testhole in north central area of waste; south of north parking	lot a	nd ea	st of		naintenance	storage		
		pe			Soil m)		ils		
Depth (m)	Soil Description	Sample Type	Sample No.	SPT (N)	Combustible Soil Vapours (ppm)		Well Details		
0.0	Sod and loam (fill) - loose, sand, silty, trace rootlets, damp, olive. (~ 10 cm thick) Silt (fill) mixed with MSW - some organics, masonry brick fragments, ash, some plastic, grass clippings, news print, magazines, wood fragments, wire, glass, tin can, soft, loamy, trace rootlets, trace clay, damp, olive brown.								
1.0									
2.0									
3.0	becomes wet at 3 m.								
4.0									
5.0	Silt (native) - firm, trace sand, moist, olive brown.	-							
6.0	No obvious waste material.								
7.0	Shale (bedrock) - weak, highly weathered, damp, grey.								
	End of hole at 7.6 m. Backfilled with bentonite chips to 5.5 m; ~ 50:50 bentonite and silica sand to surface.								
9.0									
10.0									
12.0									
12.0									
	Tiamat Environmental Consultants Ltd.	Sloug				None	Completion Depth		
	I famat Environmental Consultants Ltu.	<u> </u>	to Grou	indwate	er :	I TM		LTM	
		Logge	u by:			LTM	Page:	1 of 1	

PROJECT: Phase II ESA Historic Waste Disposal Sites			BOREHOLE No.: TH-04						
PRO	JECT No.: 12-435	DRILL TYPE:					SS Auger		
LOCATION: McKenzie Trails Recreation Area				ID E		850.580 m			
	ENT: The City of Red Deer	CO	MPI	ET		07/11/2013			
	ole Type: 📕 Shelby Tube 💹 Split Spoon 📗 Core 💹 Disturbed				overy				
	fill Type: 📕 Bentonite 🏢 Silica Sand 🧱 Grout 🔛 Pea Gravel		D	rill C	uttings	Bentor	nite : Sand		
Note									
		e			Soil m)		ls		
Depth (m)		Sample Type	Sample No.	(\mathbf{Z})	Combustible Soil Vapours (ppm)		Well Details		
Jeptł	Soil Description	mple	ampl	SPT (N)	bust		Vell		
-		Sa	ώ.		Com Vaj		-		
0.0	Sod and loam (fill) - sandy, trace silt, damp, olive. (~ 8 cm thick) Sand (fill) mixed with MSW - organics, minor plastic pieces, metal, trace glass fragments,								
	strong pungent odour, compact, silty, moist, olive brown.								
1.0									
2.0									
	Silt (fill) - firm, sandy, moist, olive. charred wood fragments with sand and gravel matrix at 2.4 m.								
3.0									
	No obvious waste material.								
	Sand and gravel (native) - compact, wet, olive.								
4.0	becomes wet at 3.8 m.								
5.0									
5.0									
6.0									
0.0	Siltstone (bedroock) - weak, highly weathered, moist, grey.								
7.0									
7.0									
	End of hole at 7.6 m.								
	Backfilled with $\sim 50:50$ bentonite and silica sand.								
8.0									
9.0									
10.0									
11.0									
12.0									
l		Slough	I			None	Completion Depth	(m): 7.6	
				indwate	er :			LTM	
		Logge			-	LTM	Page:	1 of 1	