

# 2019 Groundwater and Soil Vapour Monitoring Report McKenzie Trails Recreation Area NE and SE Portions of Section 28-037-27 W4M



PRESENTED TO City of Red Deer

OCTOBER 2, 2020 ISSUED FOR USE FILE: SWM.SWOP04071-01.003

> Tetra Tech Canada Inc. Suite 110, 140 Quarry Park Blvd SE Calgary, AB T2C 3G3 CANADA Tel 403.203.3355 Fax 403.203.3301

This page intentionally left blank.



## **EXECUTIVE SUMMARY**

The City of Red Deer (The City) retained Tetra Tech Canada Inc. (Tetra Tech) to conduct the 2019 groundwater and vapour monitoring program at the former landfill located beneath the McKenzie Trails Recreation Area (McKenzie Trails), located within the NE and SE Section of 28-038-27 W4M in Red Deer, Alberta, hereafter referred to as "the site". The objective of the monitoring program is to identify potential environmental concerns related to former operations at the site.

Tetra Tech's scope of work for the 2019 monitoring and sampling program at the McKenzie Trails site included conducting quarterly events of groundwater and vapour monitoring, annual groundwater and vapour sampling, updating the hazard quotients, reviewing and updating previous recommendations for the site, and preparing an annual report.

The groundwater monitoring network at the site consists of six monitoring wells (MW-01 to MW-05 and MW-203). MW-03 (deep) and MW-04 (shallow) are a nested pair located in the northeast section of the site. Most of the wells are screened to the bottom of the well within the native sand and gravel. MW-05 is screened within the municipal solid waste (MSW) to bedrock. The vapour monitoring network consists of one vapour monitoring well (VW-01) near the southeast corner of the site.

Based upon the results of the groundwater and soil vapour monitoring and sampling conducted in 2019 and previous years, Tetra Tech has developed the following conclusions:

- The groundwater elevations in 2019 indicated that the inferred groundwater flow direction was overall northerly, which is consistent with the groundwater flow direction from 2013 and the flow direction in the Red Deer River. The average horizontal hydraulic gradient at the site in 2019 has been estimated as approximately 0.003 m/m. Groundwater elevations in 2019 were overall slightly lower than groundwater elevations measured in 2013.
- Routine groundwater chemistry parameters and dissolved metals that exceeded the Alberta Tier 1 Soil and Groundwater Remediation Guidelines (Tier 1 Guidelines) at one or more monitoring wells in 2019 included total dissolved solids (TDS), ammonia, arsenic, copper, iron, and manganese. The measured concentrations of one or more of these parameters suggest leachate has impacted the groundwater quality at MW-03, MW-04, and MW-203.
- Concentrations of benzene, toluene, ethylbenzene and xylenes (BTEX) and petroleum hydrocarbon (PHC) fractions F1 to F2, were less than the analytical detection limits at most locations in 2019. MW-203 had a detectable concentration of benzene (0.00053 mg/L), marginally greater than the detection limit (0.00050 mg/L). Concentrations of BTEX and PHC fractions F1 and F2 were less than the Tier 1 Guidelines at all locations.
- Concentrations of vinyl chloride were greater than the Tier 1 Guidelines in the groundwater samples collected from MW-04 and MW-203. Concentrations of vinyl chloride were historically less than the analytical detection limit at MW-04; no historical data was available for MW-203.
- Concentrations of BTEX, hydrocarbons, and volatile organic compounds (VOCs) in the soil vapour sample were less than the calculated soil vapour screening criteria.
- Concentrations of siloxanes were less than the analytical detections limits in the vapour sample collected.
- The estimated individual and cumulative risks and hazards associated with the soil vapour samples collected in December 2019 did not exceed the corresponding target risk and hazard levels.

Based upon the results of the groundwater monitoring program in 2019 and previous years, Tetra Tech has developed the following recommendations:

- Ongoing Monitoring:
  - Continue with a semi-annual groundwater monitoring program, with annual sampling at the hydraulically down-gradient monitoring wells (MW-03, MW-04, and MW-203) for another year to confirm trends. These wells should be sampled for routine chemistry, dissolved metals, and VOC parameters. As part of the monitoring program, well headspace monitoring should be included as described further below.
  - Survey the elevation of MW-203 to better establish the groundwater flow pattern within the north portion of the site.
  - If the measured concentrations are stable or decreasing, discontinue monitoring and sampling at the site.
     If the concentrations are confirmed and remain greater than the referenced guidelines, a qualitative evaluation of risks should be made to evaluate the potential concern, if any, these concentrations pose to the adjacent Red Deer River.
  - Based on the results of the soil vapour sample, there is little indication that this pathway will pose a hazard to receptors. The soil vapour concentrations were less than the levels of concern and groundwater concentrations of volatile chemicals were also less than established Tier 1 Guidelines, except for vinyl chloride in monitoring wells MW-04 and MW-203. Historical results have not identified vinyl chloride. If the concentrations of vinyl chloride exceed the referenced guidelines in the next monitoring events, a qualitative evaluation of risks, as stated above, should be conducted.
  - The north portion of the site is interpreted to have a low risk for vapour intrusion and installing additional soil vapour wells near monitoring wells MW-04 and MW-203 is not proposed. To support ongoing assessment of vapours, headspace monitoring of all wells (groundwater and vapour) for methane should be conducted in conjunction with the groundwater monitoring program, however further sampling of vapours in VW-01 is not considered warranted. Further to the well monitoring, it is Tetra Tech's understanding that there are washroom buildings located near the centre of the site within the waste footprint. A walkthrough of the buildings should be conducted to evaluate the potential for accumulation of vapours; if the potential for accumulation is identified, indoor air monitoring could be undertaken in conjunction with the well headspace monitoring. Continue to monitor the riverbank during the semi-annual monitoring events for potential waste exposure and seepage due to bank erosion.
- Administrative Actions:
  - Utilize the revised generic mitigative measures when evaluating applications for development within the setback.
  - Ensure that the site is clearly identified within The City's Land Use Bylaw and appropriate administrative requirements are met for the site in accordance with City policies.

Further to the above recommendations, as noted the site remains an historical landfill. It presently appears to be well maintained and capped. The City should review this status on an ongoing basis to ensure that the cover remains intact and drainage remains positive; repairs or maintenance should be undertaken as required to maintain the site. This evaluation should include regular inspection of the adjacent riverbank for evidence of erosion and potential exposed waste or leachate seepage.

## **TABLE OF CONTENTS**

| EXE | CUTI                   | VE SUMMARY                                                   | I  |  |  |  |
|-----|------------------------|--------------------------------------------------------------|----|--|--|--|
| 1.0 | INTE                   | RODUCTION                                                    | 1  |  |  |  |
|     | 1.1                    | Scope of Work                                                | 1  |  |  |  |
|     | 1.2                    | Pre-1972 Landfill Program                                    | 1  |  |  |  |
| 2.0 | BACKGROUND INFORMATION |                                                              |    |  |  |  |
|     | 2.1                    | General Information                                          | 2  |  |  |  |
|     | 2.2                    | Site History                                                 | 3  |  |  |  |
|     | 2.3                    | Historical Groundwater Monitoring and Investigation Summary  | 3  |  |  |  |
|     | 2.4                    | Monitoring Well Network                                      |    |  |  |  |
| 3.0 | SITE SETTING           |                                                              |    |  |  |  |
|     | 3.1                    | Geology                                                      | 5  |  |  |  |
|     |                        | 3.1.1 Geological Setting and Stratigraphy                    | 5  |  |  |  |
|     |                        | 3.1.2 Local Geology                                          | 5  |  |  |  |
|     | 3.2                    | Hydrogeology                                                 | 6  |  |  |  |
|     |                        | 3.2.1 Regional Hydrogeology                                  | 6  |  |  |  |
|     |                        | 3.2.2 Local Hydrogeology                                     | 6  |  |  |  |
|     | 3.3                    | Groundwater Resource Usage                                   | 7  |  |  |  |
| 4.0 | CON                    | CONCEPTUAL SITE MODEL                                        |    |  |  |  |
|     | 4.1                    | Chemicals of Potential Concern                               |    |  |  |  |
|     | 4.2                    | Land Use                                                     |    |  |  |  |
|     | 4.3                    | Grain Size Designation                                       | 8  |  |  |  |
|     | 4.4                    | 4.4 Exposure Pathways and Receptors for Soil and Groundwater |    |  |  |  |
|     |                        | 4.4.1 Human Receptors and Pathways                           | 8  |  |  |  |
|     |                        | 4.4.2 Ecological Receptors and Pathways                      | 9  |  |  |  |
|     |                        | 4.4.3 Exposure Pathway Summary                               | 10 |  |  |  |
|     | 4.5                    | Soil Vapour                                                  | 10 |  |  |  |
|     |                        | 4.5.1 Indoor Air Risk Calculations                           | 10 |  |  |  |
|     |                        | 4.5.2 Methane and Explosive Risks                            |    |  |  |  |
|     | 4.6                    | Overall Guidelines                                           | 11 |  |  |  |
| 5.0 | GRO                    | DUNDWATER MONITORING AND SAMPLING PROGRAM                    | 11 |  |  |  |
|     | 5.1                    | Field Program                                                | 11 |  |  |  |
|     | 5.2                    | Analytical Program                                           | 12 |  |  |  |
| 6.0 | VAP                    | OUR MONITORING AND SAMPLING PROGRAM                          | 12 |  |  |  |
|     | 6.1                    | Field Program                                                | 12 |  |  |  |
|     | 6.2                    | Analytical Program                                           | 13 |  |  |  |
| 7.0 | RES                    | SULTS AND DISCUSSION                                         | 14 |  |  |  |
|     | 7.1                    | Groundwater Well Headspace Monitoring                        | 14 |  |  |  |
|     | 7.2                    | Groundwater Elevations                                       | 14 |  |  |  |

|      | 7.3  | Groundwater Field Parameters                            | 15 |
|------|------|---------------------------------------------------------|----|
|      | 7.4  | Groundwater Analytical Results                          | 15 |
|      | 7.5  | Soil Vapour Monitoring Results                          | 17 |
|      | 7.6  | Vapour Analytical Results                               | 17 |
|      | 7.7  | Quality Assurance/Quality Control                       |    |
|      |      | 7.7.1 Methods                                           |    |
|      |      | 7.7.2 Results                                           |    |
| 8.0  | HAZ  | ARD QUOTIENT CALCULATIONS                               | 19 |
| 9.0  | EVA  | LUATION OF SITE CONDITIONS                              | 20 |
|      | 9.1  | Summary of Site Conditions                              | 20 |
|      | 9.2  | Review of Mitigative Measures from Risk Management Plan | 21 |
| 10.0 | CON  | ICLUSIONS AND RECOMMENDATIONS                           | 22 |
| 11.0 | CLO  | SURE                                                    | 25 |
| REFI | EREN | ICES                                                    | 26 |

### **APPENDIX SECTIONS**

#### TABLES

- Table 1 Groundwater Elevations
- Table 2 Groundwater Analytical Results
- Table 3 Soil Vapour Monitoring Results
- Table 4 Soil Vapour Analytical Results
- Table 5 Soil Vapour Quality Assurance/Quality Control Analytical Results
- Table 6
   Chemical, Physical, and Toxicological Properties
- Table 7 Soil Properties for Evaluation of Vapour Transport
- Table 8
   Building Properties for Evaluation of Vapour Transport
- Table 9Generic Soil Vapour Criteria
- Table 10 Soil Vapour Risk Evaluation

#### FIGURES

- Figure 1 Site Location Plan
- Figure 2 Site Plan and Surrounding Land Use
- Figure 3 Historical Groundwater Elevations (Groundwater Monitoring Wells)
- Figure 4 Groundwater Elevation Contours May 2019
- Figure 5 Groundwater Elevation Contours June 2019
- Figure 6 Groundwater Elevation Contours September 2019
- Figure 7 Groundwater Elevation Contours December 2019



#### **APPENDICES**

- Appendix A Tetra Tech's Limitations on the Use of this Document
- Appendix B Cross-sections (Tiamat 2014)
- Appendix C Water Well Data
- Appendix D Laboratory Analytical Reports
- Appendix E Historical Analytical Data

#### LIMITATIONS OF REPORT

This report and its contents are intended for the sole use of The City of Red Deer and their agents. Tetra Tech Canada Inc. (Tetra Tech) does not accept any responsibility for the accuracy of any of the data, the analysis, or the recommendations contained or referenced in the report when the report is used or relied upon by any Party other than The City of Red Deer, or for any Project other than the proposed development at the subject site. Any such unauthorized use of this report is at the sole risk of the user. Use of this document is subject to the Limitations on the Use of this Document attached in Appendix A or Contractual Terms and Conditions executed by both parties.



### 1.0 INTRODUCTION

The City of Red Deer (The City) retained Tetra Tech Canada Inc. (Tetra Tech) to conduct the 2019 groundwater and vapour monitoring program at the former landfill located beneath the McKenzie Trails Recreation Area (McKenzie Trails), located within the NE and SE Sections of 28-038-27 W4M, hereafter referred to as "the site". The objective of the monitoring program is to identify potential environmental concerns related to former operations at the site.

The project was completed under Tetra Tech's Limitations on the Use of this Document for conducting environment work. A copy of these conditions is provided in Appendix A. Cross-sections that were prepared using the wells included in the monitoring program are included in Appendix B (from Tiamat Environmental Consultants Ltd. [Tiamat] 2014a).

### 1.1 Scope of Work

Tetra Tech's scope of work for the 2019 monitoring and sampling program included the following activities:

- Conducting quarterly events of groundwater and vapour monitoring, including measuring headspace vapours and groundwater levels within each monitoring well and observing monitoring well integrity.
- Conducting groundwater sampling by:
  - Purging shallow groundwater monitoring wells and deep groundwater monitoring wells until practically dry
    or until a minimum of three well volumes had been removed and allowing the water levels in the wells to
    recover;
  - Measuring field parameters (pH, electrical conductivity [EC], and water temperature) at the time of sampling; and
  - Collecting groundwater samples from each well and submitting the samples for laboratory chemical analyses.
- Conducting vapour sampling by:
  - Collecting vapour samples into Summa canisters for analysis;
  - Collecting vapour samples for siloxanes analysis into thermal desorption (TD) tubes; and
  - Collecting one duplicate vapour sample for quality assurance/quality control (QA/QC) purposes.
- Conducting monitoring well repairs, as required.
- Updating the hazard quotients prepared during previous reporting using the 2019 monitoring and sampling results.
- Preparing an annual report summarizing the field activities undertaken for the year and interpreting the groundwater and soil vapour analytical results.

### 1.2 Pre-1972 Landfill Program

The scope of work for the monitoring program was based on the proposal submitted by Tetra Tech on January 11, 2019, to The City to conduct environmental monitoring services for the pre-1972 landfill sites.

The proposal was submitted in accordance with the Request for Proposal (RFP) No. 1090-2018-261 issued by The City on November 30, 2018, and Addendum 01 issued by The City on January 7, 2019. This report documents the scope and findings for the McKenzie Trails site.

The objective of the overall project for the pre-1972 Landfills was to:

- Confirm and implement the prior recommendations, as per the RFP;
- Consult with the regulator on amendments to the program, as required;
- Conduct environmental monitoring and sampling for each of the eight sites, as outlined in the RFP recommendations, while incorporating any approved recommendations;
- Update the hazard quotients for each site; and
- Prepare an environmental monitoring report for each of the eight sites.

The eight pre-1972 landfill sites include:

- Great West Adventure Park;
- Lindsay Thurber Comprehensive High School;
- McKenzie Trails;
- Montfort;
- Red Deer College;
- Red Deer Motors;
- Riverside Heavy Dry Waste Site; and
- Riverside Light Industrial Park.

Each site is summarized in a separate report. This report is focused on the McKenzie Trails site. It includes a description of the site geology and hydrogeology, the results of the 2019 monitoring activities at the site, and an interpretation and evaluation of the collected data.

### 2.0 BACKGROUND INFORMATION

### 2.1 General Information

The site is located within the NE and SE portions of 28-038-27 W4M, within Plan 4086EO and 3081MC. The site is zoned P1 – Parks and Recreation and is located within the McKenzie Trails Park. The site is located on the east bank of the Red Deer River, north of 67 Street and east of Riverside Drive. The Red Deer River is adjacent to the west boundary of the site and flows in a northeasterly direction. A general site plan is shown on Figure 1. The site has been redeveloped, and includes a picnic shelter, man-made pond, playground, paved walking trails, surface parking, and one year-round washroom facility. The Phase I ESA by Tiamat (2013) identified a non-potable water well as providing water for the public washroom facilities. Based on further discussions with the City, the water is reportedly a tank filled periodically with a water truck. The surrounding land use consists of Environmental Preservation District, Future Urban Development District, and Parks and Recreation District. A residential



subdivision is located on the east side of the park. Natural areas of the site consist of grasses, trees, and wetlands. Figure 2 shows the site location with surrounding land use.

### 2.2 Site History

Municipal records indicate that the waste disposal at the site occurred in two phases. Disposal in the southern portion occurred from 1930 to 1959 (approximately 29 years) and in the northern portion from 1960 to 1964 (approximately 4 years). The estimated age of the waste material post closure of the landfill is interpreted to be 55 to 60 years. Historical information indicates the waste as being municipal solid waste (MSW) including a mixture of plastics, cans, paper, scrap metals, wires, and glass. Bricks, wood, and ash were also encountered during the Phase II investigation (Tiamat 2014a).

Historical waste disposal was identified during the 2014 Phase II environmental site assessment (ESA) to be north of the man-made pond area. The waste area extends to the north end of the recreation area and to the west towards the Red Deer River. Estimated waste areas are identified on Figure 2. The Phase II ESA estimated the total area of buried waste at approximately 64,250 m<sup>2</sup>. The status of the former landfill is inactive and closed.

Results of the 2014 Phase II ESA conducted by Tiamat indicate that surface material of sod and loam was overlying the buried MSW material. There were no indications of a formal barrier layer (e.g., clay) overlying the waste. The thickness of the layer or sod and loam varied between 8 cm and 15 cm. The MSW was mixed with fill consisting of sand, gravel, silt, and clay, located below the sod to a depth of approximately 5 m in the north-central area of the site. A portion of the waste material consists of burned garbage. The waste material was overlying silt (fill), sand and gravel (native), and siltstone (bedrock) in the northwest to southeast and the MSW was overlying silty sand (fill), sand and gravel (native), and siltstone and shale (bedrock) in the northeast to southwest with some clay (till) in the southwest. The base of the MSW material is similar to the level of the adjacent Red Deer River.

## 2.3 Historical Groundwater Monitoring and Investigation Summary

Alberta Environment<sup>1</sup> (AENV) installed monitoring wells in 1982, including seven groundwater monitoring wells within and beside the waste material boundary. In June 2013, the Red Deer River experienced flooding and the west side of the site was impacted. Groundwater monitoring wells located on the east riverbank were damaged or destroyed, with the exception of MW-203.

Previous reports prepared by Tiamat for the site include the following:

- Phase I ESA, Historic Waste Disposal Site, McKenzie Trail, The City of Red Deer. September 24, 2013 (Tiamat 2013).
- Phase II ESA, Historic Waste Disposal Site, McKenzie Trails Recreation Area, The City of Red Deer. February 12, 2014 (Tiamat 2014a).
- Environmental Risk Management Plan (RMP), Historic Waste Disposal Sites, McKenzie Trails Recreation Area, The City of Red Deer. November 26, 2014 (Tiamat 2014b).

Two testholes (TH-03 and TH-04) were advanced in June 2013 as part of the Phase II ESA; one vapour well (VW-01) and one monitoring well (MW-01) were installed.

The results of the Phase II ESA conducted by Tiamat in 2014 indicated the following:

<sup>&</sup>lt;sup>1</sup> Currently Alberta Environment and Parks (AEP).

- There were no obvious activities that pose a high potential to adversely impact the site from activities on adjacent developments. The historical waste area is within the boundaries of the park.
- The waste area underlies the park space north of the man-made pond and extends to a set-back from the Red Deer River. The plan area of the waste was calculated to be approximately 64,520 m<sup>2</sup>, calculated from aerial photography and site observations based on topography.
- Groundwater samples demonstrated a varying level of contamination for petroleum hydrocarbons (PHCs), volatile organic compounds (VOCs), and chlorinated hydrocarbons.

A soil vapour sample indicated VOCs, aliphatic and aromatic hydrocarbons, and siloxanes. The concentrations were considered trace to low and not identified as an environmental concern to the residential developments southeast of the area.

The recommendations of the program were as follows:

- Monitor groundwater elevations and soil vapour data quarterly for one hydrogeological cycle.
- Determine if surface water sampling should be included along with additional groundwater monitoring locations to determine exposure from leachate contaminants.
- Collect an additional set of soil vapour and groundwater analytical data, groundwater elevations, and volatile headspace measurement during the winter months to determine seasonal changes in soil vapour concentrations.
- Develop a RMP to consider future land uses and address environmental concerns.
- Review all data to update the RMP with new information.

The results of the subsequent RMP conducted by Tiamat in 2014 indicated the following:

- Information in the preliminary quantitative risk assessment (PQRA) should be updated as new site information is obtained.
- A review of the RMP should be completed when the PQRA information is updated, if there are changes to the chemicals of potential concern (COPCs).
- The RMP should be reviewed and updated at five-year intervals.

### 2.4 Monitoring Well Network

The groundwater monitoring network at the site consists of six monitoring wells (MW-01 to MW-05 and MW-203). MW-03 (deep) and MW-04 (shallow) are a nested pair located in the northeast section of the site. Most of the wells are screened to the bottom of the well within the native sand and gravel. MW-05 is screened within the MSW to bedrock. Monitoring well completion details are summarized in Table 1. Most monitoring wells were reported to be in good condition in 2019. MW-03 and MW-04 were loose above the ground surface and repairs were made to the wells in September 2019. MW-203 was missing a cap in May 2019, and a cap and lock were added to the well in June 2019. The vapour monitoring network consists of one vapour monitoring well (VW-01) near the southeast corner of the site. The vapour well was reported to be in good condition during all events in 2019.

No survey data was available for MW-203, and the monitoring well should be surveyed to be properly incorporated into the monitoring well network.

Groundwater and vapour monitoring well locations are shown on Figure 2.

## 3.0 SITE SETTING

The following section presents an overview of the regional and local setting for the site.

### 3.1 Geology

The following sections summarize the regional and local geology.

### 3.1.1 Geological Setting and Stratigraphy

The following description of regional geological setting was obtained from Tiamat's 2013 Phase I report (Tiamat 2013):

"The City of Red Deer and area are located within the Red Deer River drainage basin in the western Alberta Plains. The Red Deer River valley is the principal drainage way. The fertile black soil in the region (Penhold Loam) is of alluvial lacustrine origin. The Penhold Loam is a well-drained fine sandy loam classified as Chernozemic. It is generally stone free and in natural areas, is typically 1.5 m thick, more or less.

The local topography is characterized with gentle slopes bordered on the east and west by uplands and incised at its lowest part by the valley of the Red Deer River. The Tertiary bedrock consists of sequences of alternating shales and sandstones of the Paskapoo Formation whereas the Quaternary deposits consist of drift deposits of clay, silt, gravel and sand. Published information indicates the banks of the Red Deer River comprise of dirty gravel with thickness ranging from 6 to 12 m, more or less. The Paskapoo Formation underlies the gravel sediments. This non-marine bedrock is composed of mudstone, siltstone and sandstone. The formation of the Rocky Mountains subjected the Paskapoo Formation to a regional stress-induced fracture pattern.

Generally, the fracture pattern resembles a series of vertical fractures that trend southwest to northeast, perpendicular to the Rocky Mountains. A report from the Alberta Energy and Utilities Board EUB/AGS Earth Sciences Report 2002-04, suggest the pattern of fractures may be complemented with sub-horizontal fractures resulting from conjugate fracture patterns, differential stress release or pressure release events. In the valley, lies preglacial Saskatchewan gravels and sand. Terrace gravels hydraulically connected to the Red Deer River are a known groundwater resource.

Surficial soils comprise largely of poorly to moderately sorted sand, silt and gravel with a varying amount of clay. The fluvial sediments generally have obscure bedding planes. Medium to coarse sized gravel with cross-bedded sand have been documented."

### 3.1.2 Local Geology

Based on the findings from the 2014 Phase II ESA, McKenzie Trails Park consisted of 8 cm to 15 cm of sod and loam overlying municipal solid waste. The MSW is overlying a mix of silt (fill), sand and gravel (native) and siltstone and shale (bedrock). The maximum depth of waste encountered was approximately 6 m. There are no indications of a prepared landfill foundation (e.g. compacted clay liner) based on the drilling logs."

Mapping by the Alberta Geological Survey (Andriashek 2018) indicates that a buried valley could be present approximately 300 m east of the site trending in a north-northeast direction, however the width of the valley is not defined.

## 3.2 Hydrogeology

The following sections summarize the regional and local hydrogeology.

### 3.2.1 Regional Hydrogeology

The following description is taken from regional hydrogeology information from Tiamat's 2013 Phase I report (Tiamat 2013):

"A significant buried valley and aquifer resource trending northeastward through the city has been partially mapped and lies in the SE 28-38-27 W4M (MacKenzie Trail and Riverside). This buried valley extends to a depth of 21 m, more or less and may extend to the south into north portions of 21-28-27 W4M."

"The dominant type of near-surface groundwater in the Paskapoo Formation in the area of assessment is sodium bicarbonate. Notable concentrations of sodium sulfate type groundwater have also been reported. The quality of groundwater for potable use is generally suitable to depths of 300 m on the west side of Red Deer and decreases to 90 m, more or less in the east.

Areas of recharge (downward flow) in unsaturated heterogeneous sediments include most areas above the river and creek valleys, whereas; the river valleys will generally exhibit discharge. The distribution of groundwater in the area can also be influenced by the local geology, topographic relief, areas of artesian flow, springs and reasonable yielding water source wells.

Numerous permanent surface water features within The City of Red Deer and vicinity include Red Deer River, Waskasoo Creek, Gaetz Lakes, Hazlett Lake, Bower Ponds (result of formerly mining gravel resources), various sloughs in the fringe areas of the city and an assortment of other smaller creeks and springs. These water bodies can be relevant to the environmental sensitivity of the site assessment."

There is a hydrologic relation between the gravel deposit and the Red Deer River. Depending on local sediments and flow dynamics, some sections of the Red Deer River may experience an influent flow pattern and river water may enter the gravel beds and remain as river bank storage. The bank storage is typically gradually released when the river becomes effluent, usually between July and August. These seasonal fluctuations of the river level have notable influences with the magnitude and direction of groundwater. Discharges generally occur at some point downstream from the point of entry.

The regional groundwater generally follows the bedrock topography. It should be noted that local topography, geology, land development and soil disturbances may influence the local movement and pattern of groundwater and in conjunction; groundwater levels may fluctuate seasonally and in response to climatic conditions. The shallow pattern of flow can also be influenced by the physical attributes of the fluvial sediments and the glacially formed Red Deer River Valley."

### 3.2.2 Local Hydrogeology

The Red Deer River is located on the west and north sides of McKenzie Trails Park and flows in a northerly direction. Shallow groundwater is assumed to flow towards or parallel to the river. A man-made pond is located in the central portion of McKenzie Trails Park, south of the closed landfill, and collects some of the site drainage.

#### 3.3 **Groundwater Resource Usage**

A search of the Alberta Water Well Database conducted in January 2020 for groundwater users within a 1 km radius of the McKenzie Trails area identified 65 groundwater wells; 24 of the wells are listed as domestic use, 2 are listed as domestic and stock use, 21 are listed as investigation, 2 are listed as injection use, 8 are listed as industrial use, 3 are listed as "other", 1 as observation use, and 4 are listed as unknown use (AEP 2019a).

The nearest water well identified through the Water Well Database to site is located approximately 100 m west of site and the Red Deer River. The proposed well use was for investigation purposes. The water wells within a 1 km radius of site range from 2.4 m to 190 m deep. The status and use of the surrounding groundwater wells were not confirmed and they were not field verified.

Information for groundwater wells within 1 km of the site is provided in Appendix C.

#### 4.0 **CONCEPTUAL SITE MODEL**

The selection of remediation guidelines is based on the conceptual site model (CSM) which outlines the rationale of the selection of applicable exposure pathways and indicates which soil and groundwater exposure-specific remediation guidelines should apply. This evaluation is based on guidance presented in the Alberta Tier 1 Soil and Groundwater Remediation Guidelines (Tier 1 Guidelines; AEP 2019a).

A CSM was developed for the site and includes the following items:

- Description of any identified environmental issues including a description of processes or activities undertaken at or near the site and a listing of COPCs identified in earlier investigations.
- Description of known and reported historical releases, including locations and status of any subsequent ESAs and remediation.
- Identification of applicable exposure pathways and receptors.

#### **Chemicals of Potential Concern** 4.1

Based on the information provided in historical reporting, and on typical COPCs in an MSW setting such as this, the COPCs for the groundwater component of the site include:

- Inorganic parameters and nutrients (e.g., ammonia, chloride, and total dissolved solids [TDS]);
- Metals;
- PHCs;
- VOCs; and
- Other indicator parameters, such as biological oxygen demand (BOD) and chemical oxygen demand (COD).

The COPCs for the soil vapour component of the site include:

- VOCs;
- Methane:
- BTEX and PHCs; and
- Siloxanes.



Amongst these COPCs, the soluble ones are expected to leach towards the groundwater table (e.g., BTEX, PHC fractions F1 and F2, chloride) while others will bind to the soil particles and are expected to migrate less (i.e., most metals).

### 4.2 Land Use

The Tier 1 Guidelines are subdivided by land use: natural area, agricultural, residential/parkland, and commercial/industrial. The site is currently zoned as P1- Parks and Recreation District. The site is surrounded by the Red Deer River to the west and north, residential and future urban development district to the east, and environmental preservation district to the south. The site is considered parkland land use.

### 4.3 Grain Size Designation

The Tier 1 Soil Guidelines have been developed for both coarse-grained and fine-grained soils. Fine-grained soils are defined as having a median grain size of less than or equal to 75  $\mu$ m; coarse-grained soils have a median-grain size of greater than 75  $\mu$ m. Where both fine- and coarse-grained strata are present, the dominant soil particle size is determined by the stratum governing horizontal and vertical migration to a receptor.

Particle size analyses was determined from the Phase II ESA completed by Tiamat. Samples were compared to coarse-grained criteria.

## 4.4 Exposure Pathways and Receptors for Soil and Groundwater

### 4.4.1 Human Receptors and Pathways

Human receptors assumed to be present on commercial and residential/parkland areas include adult workers, adult and child visitors, adult and child residents, and park users. The following human exposure pathways were considered when developing and implementing remediation guidelines:

- Direct soil contact.
- Groundwater ingestion (drinking water).
- Vapour inhalation.
- Off-site surface migration (wind or water erosion).

These pathways are briefly discussed individually below.

#### 4.4.1.1 Direct Soil Contact – Human Pathway

The direct soil contact pathway is considered to be applicable to all land uses except in natural areas. Direct contact implies that humans can come in direct contact with contaminated soil via incidental ingestion, dermal contact, or inhalation of airborne soil particles. Since the land use for this site is considered parkland, this pathway is considered to be applicable.

#### 4.4.1.2 Drinking Water (Groundwater Ingestion)

Water bearing units with a saturated hydraulic conductivity of greater than  $1.0 \times 10^{-6}$  m per second (m/sec) are considered to comprise a potential domestic use aquifer (DUA) (AEP 2019a). To eliminate this pathway, the presence of greater than 5 m of unimpacted, unfractured, saturated, fine-grained material with an assumed bulk (vertical) hydraulic conductivity of less than  $1.0 \times 10^{-7}$  m/sec must exist below the proven depth of contaminated material. This is required to ensure that the impacted material is isolated from potential underlying DUAs.

A search was conducted of the Alberta Water Well Database. One potable groundwater well was identified within 500 m of the site. Groundwater at the site is not presently used as drinking water; however, the presence of gravel layers beneath the site suggest that the DUA drinking water pathway cannot be excluded for the site.

#### 4.4.1.3 Inhalation

The inhalation pathway considers the migration of volatile contaminants (e.g., BTEX, PHC fractions F1 to F2, and VOCs) released from the soil and/or groundwater into living or working spaces of buildings where humans may be exposed through inhalation. The inhalation pathway is applicable to all land uses except natural areas. Since the current land use is considered residential and/or parkland, there is a potential for the infiltration of vapours into buildings and subsequent inhalation by the inhabitants. Therefore, the inhalation pathway is applicable in this assessment.

#### 4.4.1.4 Off-site Surface Migration by Wind or Water Erosion

The off-site surface migration pathway considers migration of contaminated soil from the site to an adjacent site of more sensitive land use via wind or water erosion. This pathway applies to commercial and industrial sites only and is not applicable to the site.

### 4.4.2 Ecological Receptors and Pathways

Ecological receptors at a typical contaminated site span a range of trophic levels, including soil-dependent organisms (e.g., plants and soil invertebrates) and higher-order consumers (e.g., terrestrial and avian wildlife and livestock). These pathways are applicable to the land use for this assessment.

#### 4.4.2.1 Direct Soil Contact – Ecological Pathway

Plants and soil invertebrates may come into direct contact with contaminants in soil or shallow groundwater. This pathway is applicable to all land uses; therefore, it is considered for evaluation in this assessment.

#### 4.4.2.2 Freshwater Aquatic Life

The freshwater aquatic life (FAL) pathway is applicable if a surface waterbody is present less than 300 m from the site. The nearest surface waterbody is the Red Deer River, located adjacent to the west and north of the site. The FAL pathway is applicable to the site.

#### 4.4.2.3 Nutrient and Energy Cycling

The nutrient and energy cycling pathway consider the microbial functioning of the soil including carbon nitrogen cycling and is, therefore, applicable to all land uses.

### 4.4.3 Exposure Pathway Summary

To establish the appropriate guidelines for the site, the most sensitive land use was used. The receptors are a combination of the degree of potential exposure, the exposure pathway, and the contaminant of concern. Human receptor exposures applicable to the site include the direct soil contact, groundwater ingestion, and inhalation pathways. The ecological receptor exposures applicable to the site include to the site include direct soil contact, FAL, and nutrient and energy cycling.

### 4.5 Soil Vapour

As recommended by Alberta Environment and Parks the soil vapour results obtained during this investigation were compared to the Canadian Council of Minister of the Environment's document *A Protocol for the Derivation of Soil Vapour Quality Guidelines for Protection of Human Exposures Via Inhalation of Vapours* (CCME 2014). Generic soil vapour guidelines, that could indicate whether there are potential risks to indoor air from vapours in the soil, have been prepared using the default parameters outlined in the 2014 CCME protocol. The parameters used in the calculation of the generic soil vapour guidelines can be found in Table 6 to Table 9. The equations and model assumptions were taken directly from the CCME 2014 document. While the CCME does not publish soil vapour screening criteria, the approach used to calculate soil guidelines for the vapour inhalation pathway is used to derive the soil vapour screening criteria.

### 4.5.1 Indoor Air Risk Calculations

The Alberta Tier 2 Guidelines include human toxicity reference values (TRVs) for inhalation (Table A-7; AEP 2019c). For non-carcinogens, the inhalation TRV represents the concentration of the chemical of concern considered unlikely to cause adverse human health effects after a lifetime of continuous exposure, referred to as the inhalation tolerable concentration (ITC). For carcinogens, the inhalation TRV is referred to as the inhalation unit risk (IUR) and can be used to determine a risk-specific concentration (RSC). To ensure that the incremental lifetime cancer risk of an individual does not exceed 1 in 100,000 (1 x  $10^{-5}$ ) after a lifetime of continuous exposure, the RSC is calculated (as per Health Canada 2012, PQRA Guidance) as follows:

RSC (mg/m<sup>3</sup>) = 
$$1 \times 10^{-5}$$
/IUR

Continuous exposure is expressed as an exposure term (ET), which is unitless. The ET for residential land use is 1 (AEP 2019c) based on 24 hours/day, 7 days/week, and 52 weeks/year. The ET is used to determine appropriate soil vapour screening levels. Soil vapour screening levels were calculated (as per Health Canada 2012, PQRA Guidance) using the equation below:

Vapour Screening Level (mg/m<sup>3</sup>) = (ITC or RSC)/ET

### 4.5.2 Methane and Explosive Risks

Landfill gas (LFG) can be generated from the degradation of wastes under anaerobic conditions. Methane gas can migrate through the ground and enter structures through porous concrete, joints, or fractures in foundations. When present, methane is considered a safety concern due to its explosive risk when it is in an atmosphere at concentrations between 5% and 15% by volume in air, in the presence of an ignition source. At concentrations less than 5% (the lower explosive limit [LEL]) and above 15% (the upper explosive limit), methane is not explosive. Methane on its own is not considered a health risk, although it can represent a concern if it is present at very high concentrations which could displace oxygen and present a risk of asphyxiation.



There are not guidelines for methane as part of the Alberta Tier 1 framework. However, for reference, the Standards for Landfills in Alberta identify maximum methane concentrations proximate to approved landfills, and Alberta Health Services have provided guidance for methane (in conjunction with well headspace pressures that would constitute a driving force); however, that document has not been issued in a final format.

### 4.6 Overall Guidelines

Groundwater concentrations at the site were compared to the Alberta Tier 1 Guidelines under residential and parkland land use for coarse-grained soils (AEP 2019a).

Soil vapour analytical results were compared to A Protocol for the Derivation of Soil Vapour Quality Guidelines for Protection of Human Exposures Via Inhalation of Vapours under residential land use for both slab-on-grade and basement for coarse-grained soils (CCME 2014).

### 5.0 GROUNDWATER MONITORING AND SAMPLING PROGRAM

A discussion of the methods used for the fieldwork and laboratory testing is presented in the following sections. In 2019, Tetra Tech conducted groundwater monitoring on May 9 and 10, June 25, September 18, and December 4. Groundwater sampling was conducted on December 4 and 5, 2019.

### 5.1 Field Program

Groundwater monitoring consisted of measuring combustible vapour concentrations (CVCs) and VOCs in monitoring well headspace, and static groundwater levels in each monitoring well using an electronic water level indicator quarterly (May, June, September, and December).

The methodology for groundwater monitoring and sampling included the following:

- Observing the integrity of each well and noting drainage and site conditions near the well that may have an
  effect on monitoring results or groundwater quality.
- Measuring the VOC and CVC headspace concentrations in each well using an RKI Eagle II calibrated to methane elimination mode.
- Measuring liquid levels in each monitoring well with an interface probe and recording total depths confirming absence of non-aqueous phase liquids (NAPL).
- Recording of field data on standardized forms as documented in Tetra Tech standard operating practices.
- Purging each monitoring well requiring sampling using dedicated polyethylene bailers or Waterra tubing with inertial pump foot valves of at least three well volumes of water, or until the well was practically dry.

Following the completion of groundwater monitoring and purging, groundwater samples were collected from the required wells using the procedures identified below:

 Groundwater samples were collected from five monitoring wells (MW-01, MW-02, MW-03, MW-04, and MW-203). Monitoring well MW-05 contained insufficient water for field parameter measurements or sample collection. Samples were collected and placed into appropriate laboratory supplied, sterile glass and plastic vials and bottles for the required analytical package. Samples were filtered and/or preserved in the field, as required.

- Field measurements were taken for pH, EC, and temperature at the time of sampling.
- Samples were submitted in coolers with ice to ALS Laboratories (ALS) in Calgary, Alberta for laboratory analysis under a chain-of-custody (COC) documentation.

More information on the analytical program is provided in Section 5.2.

#### 5.2 **Analytical Program**

The analytical program for the groundwater monitoring wells was developed based on the recommendations of previous reports and is summarized below:

- BTEX and PHC fractions F1 and F2;
- VOCs:
- Total Kjeldahl nitrogen (TKN);
- Routine water chemistry and dissolved metals;
- Dissolved organic carbon (DOC);
- Ammonia;
- Phosphorus;
- Adsorbable Organic Halides; and
- Volatile Fatty Acids.

#### VAPOUR MONITORING AND SAMPLING PROGRAM 6.0

A discussion of the methods used for the fieldwork and laboratory testing is presented in the following sections. In 2019, Tetra Tech conducted vapour monitoring on May 9 and 10, June 25, September 18, and December 3. Vapour sampling was conducted on December 3, 2019.

#### 6.1 Field Program

Vapour monitoring consisted of measuring and recording soil gas pressure, composition (methane, carbon dioxide, oxygen, hydrogen sulphide, and balance) on a percent volumetric basis and groundwater elevation, quarterly (May, June, September, and December).

The soil vapour probe was inspected for visible signs of damage and the position of the sampling labcock was noted. Soil gas pressure was recorded using a digital manometer. Once the soil gas pressure measurement was recorded, the soil gas probe was purged of three well volumes of air, or until readings stabilized. The soil vapour well on site is a small diameter soil gas probe (1" well), which was purged directly with the GEM landfill gas analyzer.

After purging, gas composition measurements for methane, carbon dioxide, oxygen, balance gas, and hydrogen sulphide were recorded using the GEM analyzer. After recording soil gas concentrations, the probe/well depths and water levels were measured and recorded to confirm the water level within the probe was beneath the screen portion of the soil gas probe (i.e., the probe was not blinded).



A leak detection test was completed to ensure the vapour probe was sealed properly. The test was completed using helium gas a tracer to inspect the testing probe and apparatus for any leaks. If there was a leak beyond the acceptable range (2% of helium concentration), the connections were tightened, and the leak test was conducted again.

Sampling of soil vapour probe VW-01 was based on the methodology of the CCME sampling guidelines, which are summarized as follows:

- Prior to collecting the soil vapour probe samples, the well was purged of three well volumes, or until headspace readings stabilized.
- A 1.4 L Summa vacuum canister was used for sample collection at the soil vapour probe monitoring location.
- Sample data was recorded on the provided sample tag for each canister.
- Sample tubing that was used to connect the canister to the soil vapour probe was low in VOCs and only used once to prevent sample contamination.
- When beginning sample collection, the end cap was removed, and a 60-minute flow controller was attached to the canister. The start time was recorded on the sample tag.
- When sampling was complete, the valve was closed, and the flow controller was removed. The end time was recorded on the sample tag.
- The protective end cap was replaced back on the canister.
- Canisters, flow controllers, and pressure gauges were placed in the original shipping container and returned to the laboratory with a COC.
- The soil vapour probe sampling port was returned to the closed position and the well was securely locked.

The vapour sample was submitted to ALS for chemical analysis. Duplicate samples were collected during the vapour sampling event for QA/QC purposes. More information on the analytical program is provided in Section 6.2.

The vapour monitoring well location is shown on Figure 2.

### 6.2 Analytical Program

The analytical program for the vapour monitoring probe included:

- VOCs;
- Matrix gases including oxygen, carbon dioxide, methane, and nitrogen;
- BTEX and PHCs; and
- Siloxanes.



## 7.0 RESULTS AND DISCUSSION

This section presents the results of the fieldwork conducted in 2019 at the site and discussions of these results.

### 7.1 Groundwater Well Headspace Monitoring

Tetra Tech monitored six groundwater monitoring wells (MW-01, MW-02, MW-03, MW-04, MW-05, and MW-203) during each monitoring event for measurements of CVCs and VOCs in well headspace using an RKI Eagle Hydrocarbon Surveyor II. The results of well headspace monitoring at vapour-specific monitoring wells are provided in Section 7.5.

During the 2019 monitoring events, the CVCs in May and June were non-detect at all monitoring wells. In September, CVCs ranged from non-detect at monitoring wells MW-02 and MW-03 to 170 parts per million (ppm) at MW-05. During the December 2019 event, CVCs ranged from non-detect at several wells to 20 ppm at MW-02 and MW-203. CVCs at the upgradient wells MW-01 and MW-02 were low and consistent with the expected background concentrations.

VOCs in May 2019, June 2019, and September 2019 were non-detect at all monitoring wells. In December 2019, VOCs were 1 ppm at most monitoring wells, except for MW-01, which was non-detect.

The volatile and combustible headspace concentrations for 2019 are presented in Table 1.

### 7.2 Groundwater Elevations

The measured groundwater levels and calculated groundwater elevations for 2019 are presented in Table 1.

Figure 3 presents the groundwater elevation trends (hydrographs) for the groundwater monitoring wells. This figure shows the groundwater elevations in 2013 and 2019. Overall, groundwater elevations decreased at all monitoring wells from those measured in 2013. Seasonal fluctuations were observed at most wells in 2019, with the exception of MW-05 (screened within the waste), where groundwater levels remained fairly constant throughout 2019. An increase in water level was observed at MW-02 between September 2019 and December 2019. Water levels fluctuated the most at MW-02, MW-03, and MW-04, which are located closest to the river. Elevations were not calculated for MW-203, as there was no reference elevation for ground or top of casing available, however the measured depths to groundwater in 2019 followed a similar pattern to MW-02. The elevation of MW-203 should be surveyed to better establish the groundwater flow pattern within the north portion of the site.

In 2019, the average depth to groundwater in the monitoring wells was 2.43 m below grade (mbg) in May, 2.28 mbg in June, 2.58 mbg in September, and 2.15 mbg in December. The groundwater elevations and interpreted contours and are shown on Figure 4 to Figure 7 for the four monitoring events, respectively. The interpreted contoured groundwater elevations for the monitoring wells suggest the groundwater flow was to the north-northeast during the four monitoring events. The differences in inferred groundwater flow direction may be due to the limited number of monitoring wells used to prepare the groundwater contours, or due to water level fluctuations in the nearby Red Deer River. In 2013, the groundwater flow was to the north-northwest. The Red Deer River, west and adjacent to the site, flows to the north. Based on the prepared groundwater contours, monitoring wells MW-03 and MW-04 are down-gradient and MW-02 is up-gradient. The contours do not include MW-203, as no survey data was available. MW-203 should be surveyed to be incorporated into future groundwater contours.

The average horizontal gradient in 2019 was 0.003 m/m. The horizontal gradient is consistent with historical results.



### 7.3 Groundwater Field Parameters

Field measurements for temperature, pH, and EC in December 2019 are shown in Table 2. Monitoring well MW-05 contained insufficient water for field parameter measurements or sample collection. A discussion of the results of the field tests is summarized in this section.

In 2019, groundwater temperatures ranged from 1.2°C (MW-203) to 5.4°C (MW-02).

In 2019, field pH values ranged from 7.25 (MW-04) to 8.53 (MW-01). Field pH was generally less than the laboratory pH except at MW-01 which marginally exceeded the Tier 1 Guidelines range. The difference between field recorded and laboratory pH values may be due to limitations of the field equipment and differences in sample temperature.

In 2019, field EC measurements ranged from 381  $\mu$ S/cm (MW-02) to 1,017  $\mu$ S/cm (MW-03). Field EC results were less than the laboratory measured EC results, which may be due to limitations of field equipment or temperature differences.

### 7.4 Groundwater Analytical Results

The groundwater analytical data for 2019 is summarized in Table 2. Monitoring well MW-05 was not sampled in 2019 due to insufficient water. The 2019 laboratory analytical reports are included in Appendix D. Historical data from the 2013 Phase II ESA is included in Appendix E.

#### **Background Groundwater Quality**

MW-01 and MW-02 are upgradient of the site and may represent background groundwater quality. Concentrations of TDS at MW-01 and MW-02 were 378 mg/L and 333 mg/L, respectively and concentrations of chloride were 17.0 mg/L and 7.67 mg/L, respectively. The concentration of ammonia (0.477 mg-N/L) was consistent with the concentration measured at MW-01 in 2013.

MW-01 contained concentrations of dissolved arsenic, dissolved iron, and dissolved lead greater than the Tier 1 Guidelines. Concentrations of dissolved arsenic, manganese, and iron may be naturally occurring as described below and not necessarily related to former landfill operations. MW-02 contained concentrations of dissolved manganese and dissolved copper greater than the Tier 1 Guidelines. The concentration of dissolved copper was marginally greater than the Tier 1 Guidelines (0.007 mg/L) at monitoring well MW-02 (0.00719 mg/L). Historically in 2013 all dissolved copper concentrations were less than the Tier 1 Guidelines.

Concentrations of BTEX, PHC fractions F1 and F2, and VOCs were less than the analytical detection limits at MW-01 and MW-02.

#### **Routine Water Chemistry Parameters**

In 2019, TDS concentrations ranged from 333 mg/L (MW-02) to 1,090 mg/L (MW-03). TDS concentrations at monitoring wells MW-03, MW-04, and MW-203 were greater than the Tier 1 Guidelines (500 mg/L) in 2019. Historical TDS concentrations were not available for the site. Elevated TDS concentrations often occur in groundwater as a result of the dissolution of naturally occurring salts and minerals, and do not necessarily indicate groundwater quality impact related to the former landfill. However, monitoring wells MW-03, MW-04 and MW-203 exhibit the highest hardness (calcium and magnesium combined) and alkalinity, which is often observed when the groundwater quality is affected by leachate.

In 2019, concentrations of chloride at the site range from 7.67 mg/L at MW-02 (up-gradient) to 49.6 mg/L at MW-03 (down-gradient). The concentrations at all wells were less than the Tier 1 Guidelines (120 mg/L). Concentrations of chloride in 2019 were consistent with concentrations measured in 2013; the maximum chloride concentration measured in 2013 was measured at MW-03 (70 mg/L).

Ammonia concentrations at the site in 2019 ranged from less than the analytical detection limit at MW-02 to 13.3 mg-N/L at MW-203 in December. MW-203 is the closest monitoring well to the Red Deer River. Concentrations of ammonia exceeded Tier 1 Guidelines at MW-01, MW-03, MW-04, and MW-203, and the concentrations at MW-03 (7.0 mg-N/L), MW-04 (10.4 mg-N/L), and MW-203 (13.3 mg-N/L) are clearly elevated and suggest groundwater quality impact by MSW landfill leachate. Concentrations of ammonia in 2013 were greater than the referenced guideline at MW-03 and MW-05 (MW-203 was not sampled in 2013). Concentrations of nitrate and nitrite were less than the analytical detection limits at all monitoring wells, except for nitrate at MW-04 (0.17 mg-N/L), which is less than the Tier 1 Guidelines.

#### **Dissolved Metals**

Concentrations of dissolved arsenic were greater than the Tier 1 Guidelines (0.005 mg/L) at MW-01 and MW-203. For MSW, arsenic can be a chemical of concern related to landfill leachate; however, arsenic is also strongly absorbed into iron(hydr)oxides, which are naturally occurring in most Alberta soils. If these iron precipitates dissolve under anoxic conditions, arsenic is mobilized. The results for the five monitoring wells show a clear correlation between dissolved iron and dissolved arsenic concentrations. The two arsenic exceedances are also near the Tier 1 Guideline and may be predominantly a result of iron(hydr)oxide dissolution rather than originating from MSW leachate.

Boron is often a useful parameter to determine impacts related to MSW leachate. The dissolved boron concentrations did not exceed the Tier 1 Guidelines in December 2019; however, the measured concentrations at MW-03, MW-04, and MW-203 were approximately one order of magnitude greater than at MW-01 and MW-02.

Iron and manganese are redox-sensitive parameters that also naturally occur in groundwater under anaerobic conditions and can help determine whether the groundwater quality is affected by biodegradation reactions, for instance related to landfill leachate. The dissolved manganese concentrations were greater than the Tier 1 Guidelines (0.05 mg/L) at all monitoring wells during the sampling event in 2019. The dissolved iron concentrations were greater than the Tier 1 Guidelines at most monitoring wells in 2019, with the exception of MW-02 and MW-03.

#### **Organic Parameters**

Concentrations of BTEX and PHC fractions F1 to F2, were less than the analytical detection limits at most locations in 2019. MW-203 had a detectable concentration of benzene (0.00053 mg/L), marginally greater than the detection limit (0.00050 mg/L). The concentration was less than the Tier 1 Guidelines (0.005 mg/L).

Concentrations of adsorbable organic halides and volatile fatty/carboxylic acids were less than the analytical detection limits at all locations in December 2019.

In 2019, VOC concentrations were less than the analytical detection limits for all parameters, except for 1,2-dichloroethene (cis) and vinyl chloride at MW-03, MW-04, and MW-203. Concentrations of VOCs were less than the Tier 1 Guidelines with the exception of vinyl chloride at MW-04 (0.00643 mg/L) and MW-203 (0.00289 mg/L), which were greater than the Tier 1 Guidelines but within the same order of magnitude (0.0011 mg/L). Historically, vinyl chloride concentrations were less than the analytical detection limits at MW-03 and MW-04. No historical data is available for MW-203.

Cis 1,2-dichloroethene is a known breakdown product of dry-cleaning liquids (i.e. tetrachloroethene; TCE) and has no established Tier 1 Guidelines value. It typically further degrades to form vinyl chloride (VC). TCE was not detected in 2019; however, in 2013 a TCE concentration of 0.0033 mg/L was measured at MW-05. MW-05 also contained a trace concentration (0.0007 mg/L) vinyl chloride in 2013. As stated above, the well is completed within an area with MSW and contained insufficient water to collect samples in 2019.

## 7.5 Soil Vapour Monitoring Results

The soil vapour monitoring results are presented in Table 3.

Pressures at vapour well VW-01 were negligible during all four monitoring events in 2019. Concentrations of methane and carbon monoxide were less than the instrument detection limits in 2019. Concentrations of carbon dioxide, oxygen, and the balance gas were consistent during the four monitoring events. The vapour well was consistently dry in 2019 indicating the well was not blinded. The site only contains one vapour well (VW-01), which is located between the waste footprint and the building to the southeast. It is Tetra Tech's understanding that there are washroom buildings located near the centre of the site within the waste footprint. A walkthrough of the buildings should be conducted to evaluate the potential for accumulation of vapours and the requirement for vapour monitoring. Further, monitoring of groundwater monitoring well headspaces for methane is suggested as a useful screening tool in the absence of vapour wells in other areas of the site.

## 7.6 Vapour Analytical Results

Table 4 summarizes the soil vapour chemical results collected for 2019 and compares them to the soil vapour screening criteria protective of vapour intrusion into indoor air. The 2019 laboratory analytical reports are included in Appendix C.

BTEX and PHC fractions F1 and F2 (parameters with a TRV for inhalation) were compared against the screening criteria for residential land use for coarse-grained soil. BTEX and/or PHC aliphatic and aromatic fractions that comprise F1 and F2 were detected at concentrations greater than the analytical detection limits in sample VW-01. However, soil vapour concentrations were between 855 and 46,500 times less than the soil vapour screening criteria, which are protective of vapour intrusion into indoor air.

Siloxanes do not have TRVs for inhalation and were, therefore, not compared against the vapour screening criteria. Concentrations of siloxanes in sample VW-01 were less than the analytical detection limits.

Naphthalene was not detected at concentrations greater than the analytical detection limit.

VOCs (parameters with a TRV for inhalation) were compared against the screening criteria for residential land use, coarse-grained soil. Acetone and dichlorodifluoromethane (a freon compound) were detected at concentrations greater than the analytical detection limits in sample VW-01. Acetone was not analyzed in 2013 but soil vapour concentrations for acetone in 2019 were 262,500 times less than the soil vapour screening criteria, . The concentration of dichlorodifluoromethane was greater than in 2013 but the 2019 value was 1,490 times less than the soil vapour screening criteria, which are protective of vapour intrusion into indoor air.

Concentrations of VOC parameters in 2019 were less than concentrations measured in 2013, and concentrations of several compounds detected in 2013 were less than the analytical detection limit in 2019. The concentration of dichlorodifluoromethane increased since 2013.

# 7.7 Quality Assurance/Quality Control

### 7.7.1 Methods

Tetra Tech's groundwater QA/QC procedures include reviewing the data collected for precision and accuracy and following the appropriate field protocols.

The field procedures for QA/QC involved:

- Changing nitrile gloves between sample collections;
- Using sample containers provided by the laboratory;
- Cleaning monitoring and sampling tools between sample locations;
- Filling sample containers for PHC analysis with no headspace (air) when the containers were closed;
- Conducting leak testing at vapour wells prior to the collection of vapour samples;
- Collecting a duplicate vapour sample during the vapour sampling event; and
- Documenting field procedures and sampling activities.

### 7.7.2 Results

The QA/QC results are included in Table 5. The duplicate samples were submitted for analysis of the same parameters as the original samples.

Leak testing was conducted at vapour wells prior to collected vapour samples for analysis. For leak testing, test sample was collected into tedlar bag while tubing was set up in shroud filled with helium. If resulting test samples included concentrations of helium less than 2% of concentration within the shroud, the test was considered successful. Leak testing results for the wells were successful and contained non-detect concentrations for helium.

The duplicate analysis is compared by relative percent difference (RPD). The RPD is calculated using the following equation:

$$\text{RPD} = -\frac{(V_1 - V_2)}{\frac{(V_1 + V_2)}{2}} * 100\%$$

Where:

V<sub>1</sub> = Parent Sample

V<sub>2</sub> = Duplicate Sample

Chemical parameters were considered as having passed the QA/QC reproducibility procedure if the RPD was less than or equal to 20%, indicating a close correlation between the sample-duplicate pair.

RPD values were not calculated if one or both of the sample-duplicate concentrations were between the reportable detection limit (RDL) and five times the RDL. In these cases, chemical parameters were still considered as having passed the QA/QC reproducibility procedure if the sample duplicate concentration difference was less than one RDL value.

Duplicate RPDs were less than 20% for all the reportable concentrations. Based on the QA/QC results, the sample methods and results are considered acceptable.



# 8.0 HAZARD QUOTIENT CALCULATIONS

Using the soil vapour screening levels described above and the soil vapour sampling results, estimated cancer risks (for carcinogens) and estimated hazard quotients (for non-carcinogens) were calculated for the site.

Estimated risks were calculated by dividing the soil vapour concentration by the corresponding soil vapour screening level for carcinogenic effects and multiplying the ratio by the target risk level of  $1 \times 10^{-5}$ . Similarly, the estimated hazard quotients (HQ) represent the soil vapour concentration divided by the corresponding soil vapour screening level for non-carcinogenic effects.

Risk estimates for non-carcinogenic COPCs are defined as HQ. Hazard quotients are calculated based on a ratio of the estimated exposure and the toxicity reference values identified as the tolerable daily intake (TDI) or tolerable concentration (TC) according to the following equation:

Hazard Quotient = <u>Estimated Daily Dose (mg/kg-day or mg/m<sup>3</sup>)</u> Tolerable Daily Intake (mg/kg-day) or Tolerable Concentration (mg/m<sup>3</sup>)

Non-carcinogenic risk characterization in the assessment was completed for all COPCs.

When the HQ is greater than the target risk value, the scenario poses a potential concern and requires further evaluation or risk management. It is important to note that HQs greater than the target risk value do not necessarily indicate that adverse health effects will occur. This is because of the conservative assumptions used in estimating concentrations and in setting the target values. HQ that are less than the target risk value indicate that exposure is within acceptable levels and no further risk management is necessary. HQ greater than the target risk value suggest that further investigation or risk management (e.g., remediation) may be warranted.

For non-carcinogens, the cumulative target risk value used was 1.0. This target risk value accounts for additional exposure to the chemicals of concern from sources other than the site. Therefore, the cumulative target risk value of 1.0 represents an allocation of 20% of a person's daily exposure from site sources and the remaining 80% would come from other sources. Other sources of exposure include ambient air, household products, and soil and water contact from locations other than the site.

For carcinogens, the risk of cancer is assumed to be proportional to dose with the assumption that any exposure results in a nonzero probability of risk. Carcinogenic risk probabilities were calculated by multiplying the estimated exposure level by the route-specific cancer slope factor (SF) or unit risk factor (URF) for each carcinogen:

$$R = E X SF (or URF)$$

Where:

R = Estimated individual excess lifetime cancer risk;

- E = Exposure level for each chemical of potential concern (mg/kg/day or mg/m<sup>3</sup>); and
- SF = Route- and chemical-specific SF  $(mg/kg/day)^{-1}$  or URF  $((mg/m^3)^{-1})$ .

Risk probabilities determined for each carcinogen were also considered to be additive over all exposure pathways so that an overall risk of cancer was estimated for each group of potentially exposed receptors.

When assessing risks posed by exposure to carcinogenic substances, Health Canada and other regulatory agencies assume that any level of exposure is associated with some hypothetical cancer risk. As a result, it is necessary for regulatory agencies to specify an acceptable risk level. Per Health Canada guidance (2010a, 2010b),



cancer risks are deemed essentially negligible where the estimated cumulative incremental lifetime cancer risk is less than or equal to 1 in 100,000 ( $1 \times 10^{-5}$ ).

For this evaluation, target risk and hazard levels were determined in accordance with Alberta Tier 2 Guidelines. For carcinogens, the cumulative target risk level is  $1 \times 10^{-5}$ , as this value is considered by Health Canada to represent a negligible risk. For non-carcinogens a cumulative target hazard level of 1 is used as potential exposures that result in hazard indices equal to or less than 1 signify negligible potential for adverse health effects. Each sampling location was screened individually for every chemical detected.

A cumulative risk level for carcinogens was not calculated as none of the carcinogenic parameters were detected greater than the laboratory detection limits. A cumulative hazard level identified in the sample and its duplicate collected for the non-carcinogens ranged between 0.001 to 0.003. Table 6 summarizes the properties of the compounds being assessed. Table 7 summarizes the soil properties used for the calculations. Table 8 summarizes the building properties used for the calculations, and Table 9 presents the generic soil vapour criteria calculated. Table 10 presents the estimated risk and hazard for the volatile compounds that were detected in soil vapour.

As shown in Table 10, the estimated cumulative risks and hazards associated with the soil vapour samples collected in December 2019 did not exceed the corresponding target risk and hazard levels.

## 9.0 EVALUATION OF SITE CONDITIONS

### 9.1 Summary of Site Conditions

Based on the 2019 and historical data for the site, there is no evidence that there are significant concerns related to the former landfill operations at McKenzie Trails. However, there is evidence of residual impacts by leachate and the site does contain buried landfill waste, therefore some risk management measures are required. Further, there are several elements of the site assessment data requiring further confirmation as detailed below.

The groundwater quality appears to be affected by leachate at several monitoring wells. Most obvious are elevated ammonia concentrations at MW-03, MW-04 and MW-203. Chloride and boron, which are often elevated in MSW leachate, did not exceed the referenced guidelines at the monitoring wells that were sampled. Two chlorinated VOCs were detected in 2019 at the downgradient monitoring wells. One VOC compound (vinyl chloride) exceeded the referenced Tier 1 Guidelines at MW-04 and MW-203.

The proximity of the Red Deer River warrants further assessment of the groundwater flow pattern and trends in groundwater quality and a qualitative evaluation of risks to the adjacent Red Deer River. The site only contains one vapour well (VW-01), which is located between the waste footprint and the building to the southeast. It is Tetra Tech's understanding that there are washroom buildings located near the centre of the site within the waste footprint, A walkthrough of the buildings should be conducted to evaluate the potential for accumulation of vapours and the requirement for vapour monitoring. In addition, as part of the ongoing groundwater monitoring program, well headspace monitoring of all wells (i.e. groundwater and vapour) for methane should be conducted to verify the methane concentrations at the site.

### 9.2 Review of Mitigative Measures from Risk Management Plan

The 2014 RMP presented a proposed site-specific environmental risk management plan as a tool to assist with the review of future subdivision applications on lands lying within the regulated setback distance from the site (300 m). The focus was on potential ingress of soil gas for COPCs with a HQ greater than 1.0. Residential land use was considered most sensitive, and exposure ratings for other land uses (e.g. school, public institutions, commercial complexes) were considered to not be greater than residential; however, unique exceptions would have to be reviewed and addressed on a site-specific basis (Tiamat, 2014). Further, underground utility workers and subsurface utility infrastructure were considered relevant to potential exposure.

The RMP applied a 10x factor of safety to the hazard quotients to address uncertainties. Hazard quotients from the RMP ranged up to 566 (including the 10x factor of safety). Based on these, the RMP then provided recommended generic mitigative measures based on the calculated HQs, ranging from passive to active measures, recognizing that the ultimate approach would require a design professional for the proposed development.

Following the 2014 RMP, CCME released the document "A Protocol for the Derivation of Soil Vapour Quality Guidelines for Protection of Human Exposures Via Inhalation of Vapours" (CCME 2014), designed to provide guidance for developing site-appropriate soil vapour quality guidelines. The guidelines developed using the methods outlined in the CCME document were used for this current study and are included with the vapour sampling results in Table 4. Hazard quotients were calculated using estimated dose (based on concentrations measured at the site) and divided by tolerable daily intake. Soil vapour concentrations from the Phase II ESA conducted in 2013 were not compared to soil vapour quality guidelines, however spot checks of five target compounds with the highest HQs in the 2013 work (benzene, tetrachloroethylene, chloromethane, 1,2,4-trimethylbenzene and styrene) identified that none of the 2013 concentrations would have unacceptable HQs using the updated CCME methodology.

The 2014 RMP was prepared concurrent to RMPs at several other former City landfills, and a common set of mitigative measures was applied based on the HQs. Subsequent to the 2014 RMP and to the release of the CCME Protocol document, The City undertook additional assessment at another former City Landfill (Montfort); as part of that work, their consultant XCG Consulting Limited (XCG) revised the 2014 RMP criteria ranges for each generic mitigative measure category to include a Cancer Risk range to allow comparison of the 2014 RMP ranges with the HQ and Cancer Risks calculated by XCG<sup>2</sup>. From that work, XCG identified the following generic mitigative measures for developments within a 300 m setback of these landfills (based on Tiamat, 2014), and these have been adopted for this site:

#### **Passive Measures**

1. Passive Measures – Level A: for Cancer Risk of >  $1E^{-5}$  and <  $5E^{-5}$  and/or HQ >0.2 and <1.

Compacted clay liner with a minimum thickness of 1m and confirmed maximum hydraulic conductivity of 10<sup>-8</sup> m/sec.

2. Passive Measures – Level B: for Cancer Risk of >  $5E^{-5}$  and <  $5E^{-4}$  and/or HQ >1 and <5.

Synthetic liner with type of material, thickness and installation details dependent on the design professional.

3. Passive Measures – Level C: for Cancer Risk of >  $5E^{-4}$  and <  $1E^{-3}$  and/or HQ >5 and <50.



<sup>&</sup>lt;sup>2</sup> XCG Consulting Limited, 2018. Vapour Intrusion Assessment and Environmental Monitoring Report, prepared for the City of Red Deer's Montfort Landfill.

Passive sub-slab depressurization (SSD) system with a minimum depressurization of 4 to 10 Pa. In some instances (such as a pervious subgrade), the actual depressurization necessary may require an active SSD or alternative active ventilation system.

#### **Active Measures**

Field verify the presence of the identified chemicals of concern and other potential chemicals in the soil gas state at the development site. If confirmed, determine the most appropriate manner to prevent soil vapour intrusion.

1. Active Measures – Level D: for Cancer Risk of >  $1E^{-3}$  and <  $2E^{-3}$  and/or HQ values >50 and <100.

Active SSD must be configured to compensate for depressurization of the building and have adequate negative pressure gradients across the entire footprint of the foundation.

2. Active Measures - Level E: for Cancer Risk of >2E<sup>-3</sup> and/or HQ values >100.

Installation of geomembrane and active soil vapour extraction with system fault notification alarm.

For consistency with XCG's approach from 2017, we compared individual hazard quotients with the individual target hazard level (0.2). Based on the 2019 program, the greatest hazard quotient calculated for the site was 0.001 (vs target individual hazard level of 0.2) and the estimated cancer risk was not calculated as no carcinogenic parameters were detected above the detection limits. The greatest cumulative hazard quotient calculated for the site was 0.003 (vs target cumulative hazard level of 1.0). While development at the site is not currently proposed, for illustrative purposes, based on these hazard quotients calculated from the 2019 vapour data no passive or active measures would be required for the site. It is noted that even if the 10x factor of safety is applied, mitigative measures would still not be required. It should also be notes that assumptions made in the calculations of hazard quotients and cancer risk above are inherently conservative and therefore applying a factor of safety is not needed.

Future applications for development within the setback are subject to review by The City. The developer's team would be responsible for reviewing and verifying the available data relative to their proposed development. The mitigative measures presented above are generic and can be used as a general guide for expectations by The City; ultimately, the developer's design engineer would be responsible for developing measures specific to the intended development based on the above or an appropriate equivalent. Protection of workers (e.g. construction and utility) should form part of any development plan.

### **10.0 CONCLUSIONS AND RECOMMENDATIONS**

Based upon the results of the groundwater and soil vapour monitoring and sampling conducted in 2019 and previous years, Tetra Tech has developed the following conclusions:

- The groundwater elevations in 2019 indicated that the inferred groundwater flow direction was overall northerly, which is consistent with the groundwater flow direction from 2013 and the flow direction in the Red Deer River. The average horizontal hydraulic gradient at the site in 2019 has been estimated as approximately 0.003 m/m. Groundwater elevations in 2019 were overall slightly lower than groundwater elevations measured in 2013.
- Routine groundwater chemistry parameters and dissolved metals that exceeded the Tier 1 Guidelines at one or more monitoring wells in 2019 included TDS, ammonia, arsenic, copper, iron, and manganese. The measured concentrations of one or more of these parameters suggest leachate has impacted the groundwater quality at MW-03, MW-04, and MW-203, each hydraulically downgradient of the waste disposal area.



- Concentrations of dissolved BTEX and PHC fractions F1 to F2, were less than the analytical detection limits at most locations in 2019. MW-203 had a detectable concentration of benzene (0.00053 mg/L), marginally greater than the detection limit (0.00050 mg/L). Concentrations of BTEX and PHC fractions F1 and F2 were less than the Tier 1 Guidelines at all locations.
- Concentrations of vinyl chloride were greater than the Tier 1 Guidelines in the groundwater samples collected from MW-04 and MW-203. Concentrations of vinyl chloride in 2013 were less than the analytical detection limit at MW-04; no historical data was available for MW-203.
- Concentrations of BTEX, hydrocarbons, and VOCs in the soil vapour sample were less than the calculated soil vapour screening criteria.
- Concentrations of siloxanes were less than the analytical detections limits in the vapour sample collected.
- As indicated in Table 10, the estimated individual and cumulative risks and hazards associated with the soil vapour samples collected in December 2019 did not exceed the corresponding target risk and hazard levels.

Based upon the results of the groundwater monitoring program in 2019 and previous years, there appear to be residual impacts in the groundwater and buried waste remains beneath the site, therefore ongoing risk management is required. Risk management is recommended to include ongoing monitoring; and administrative actions. The following recommendations are made according to these risk management elements:

- Ongoing Monitoring:
  - Continue with a semi-annual groundwater monitoring program, with annual sampling at the hydraulically down-gradient monitoring wells (MW-03, MW-04, and MW-203) for another year to confirm trends. These wells should be sampled for routine chemistry, dissolved metals, and VOC parameters. As part of the monitoring program, well headspace monitoring should be included as described further below.
  - Survey the elevation of MW-203 to better establish the groundwater flow pattern within the north portion of the site.
  - If the measured concentrations are stable or decreasing, discontinue monitoring and sampling at the site.
     If the concentrations are confirmed and remain greater than the referenced guidelines, a qualitative evaluation of risks should be made to evaluate the potential concern, if any, these concentrations pose to the adjacent Red Deer River.
  - Based on the results of the soil vapour sample, there is little indication that this pathway will pose a hazard to receptors. The soil vapour concentrations were less than the levels of concern and groundwater concentrations of volatile chemicals were also less than established Tier 1 Guidelines, except for vinyl chloride in monitoring wells MW-04 and MW-203. Historical results have not identified vinyl chloride. If the concentrations of vinyl chloride exceed the referenced guidelines in the next monitoring events, a qualitative evaluation of risks, as stated above, should be conducted.
  - The north portion of the site is interpreted to have a low risk for vapour intrusion and installing additional soil vapour wells near monitoring wells MW-04 and MW-203 is not proposed. To support ongoing assessment of vapours, headspace monitoring of all wells (groundwater and vapour) for methane should be conducted in conjunction with the groundwater monitoring program, however further sampling of vapours in VW-01 is not considered warranted. Further to the well monitoring, it is Tetra Tech's understanding that there are washroom buildings located near the centre of the site within the waste footprint. A walkthrough of the buildings should be conducted to evaluate the potential for accumulation of vapours; if the potential for accumulation is identified, indoor air monitoring could be undertaken in conjunction with the well headspace monitoring. Continue to monitor the riverbank during the semi-annual monitoring events for potential waste exposure and seepage due to bank erosion.



- Administrative Actions:
  - Utilize the revised generic mitigative measures when evaluating applications for development within the setback.
  - Ensure that the site is clearly identified within The City's Land Use Bylaw and appropriate administrative requirements are met for the site in accordance with City policies.

Further to the above recommendations, as noted the site remains an historical landfill. It presently appears to be well maintained and capped. The City should review this status on an ongoing basis to ensure that the cover remains intact and drainage remains positive; repairs or maintenance should be undertaken as required to maintain the site. This evaluation should include regular inspection of the adjacent riverbank for evidence of erosion and potential exposed waste or leachate seepage.



# 11.0 CLOSURE

We trust this report meets your present requirements. If you have any questions or comments, please contact the undersigned.

Respectfully submitted, Tetra Tech Canada Inc.

FILE FILE SWM.SWOP04071-01.003

Prepared by: Megan Rouse, B.Sc., G.I.T. Environmental Geologist-in-Training Environment and Water Practice Direct Line: 403.723.6929 Megan.Rouse@tetratech.com



Reviewed by: Frans Hettinga, B.Sc. Principal Specialist Solid Waste Management Practice Direct Line: 403.723.6860 Frans.Hettinga@tetratech.com



Reviewed by: Sean D. Buckles, M.Sc., P.Eng. Senior Project Engineer- Team Lead Solid Waste Management Practice Direct Line: 403.723.6876 Sean.Buckles@tetratech.com

/sy

1 003

Prepared by (Soil Vapour): Kelly Jones, B.Sc. Environmental Scientist Infrastructure and Environment Direct Line: 306.347.4039 Kelly.Jones@tetratech.com

FILE: SWM.SWOP04071-01 FILE: SWM.SWOP04071-01.00

Reviewed by (Soil Vapour): Theresa Lopez, MSPH Senior Toxicologist WTR – USA Direct Line: 720.235.5521 Theresa.Lopez@tetratech.com

| PERMIT TO PRACTICE<br>TETRA TECH CANADA INC.                                                                                         |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| RM SIGNATURE:                                                                                                                        |  |  |  |  |  |
| DATE: October 2, 2020<br>PERMIT NUMBER: P013774<br>The Association of Professional Engineers and<br>Geoscientists of Alberta (APEGA) |  |  |  |  |  |

25

### REFERENCES

- Alberta Environment and Parks. 2019a. Alberta Tier 1 Soil and Groundwater Remediation Guidelines. Land Policy Branch, Policy and Planning Division. 198 pp.
- Alberta Environment and Parks. 2019b. Water Well Database. Information obtained included in Appendix C. http://www.telusgeomatics.com/tgpub/ag\_water/.
- Alberta Environment and Parks. 2019c. Alberta Tier 2 Soil and Groundwater Remediation Guidelines. Land Policy Branch, Policy and Planning Division. 150 pp.
- Alberta Geological Survey. 2019. Alberta Geological Survey Map 600, Bedrock Geology of Alberta. June 2013. http://www.ags.aer.ca.
- Andriashek, L. comp. (2018): Thalwegs of bedrock valleys, Alberta (GIS data, line features); Alberta Energy Regulator, AER/AGS Digital Data 2018-0001.
- Canadian Council of Ministers of the Environment. 2014. A Protocol for the Derivation of Soil Vapour Quality Guidelines for Exposure Protection of Human Exposures via Inhalation of Vapours. Available online: http://ceqg-rcqe.ccme.ca/en/index.html#void.
- Canadian Council of Ministers of the Environment. 2016. Guidance Manual for Environmental Site Characterization in Support of Environmental and Human Health Risk Assessment. Volume 1 Guidance Manual.
- Health Canada. 2012. Federal Contaminated Site Risk Assessment in Canada, Part I Guidance on Human Health Preliminary Quantitative Risk Assessment (PQRA), version 2.0.
- Natural Resources Canada. 2019. The Atlas of Canada, Topographic Maps. http://atlas.gc.ca/toporama/en/index.html.
- Tiamat Environmental Consultants Ltd. 2013. Phase I Environmental Site Assessment, Historic Waste Disposal Site, McKenzie Trail, The City of Red Deer. September 24, 2013
- Tiamat Environmental Consultants Ltd. 2014a. Phase II Environmental Site Assessment, Historic Waste Disposal Site, McKenzie Trails Recreation Area, The City of Red Deer. February 12, 2014.
- Tiamat Environmental Consultants Ltd. 2014b. Environmental Risk Management Plan, Historic Waste Disposal Sites, McKenzie Trails Recreation Area, The City of Red Deer. November 26, 2014.
- Tetra Tech Canada. 2019. Proposal for Environmental Monitoring Services for Pre-1972 Landfill Sites. The City of Red Deer. RFP No. 1090-2018-26. January 11, 2019.
- The City of Red Deer. 2019. WebMap.http://webmap.reddeer.ca/webmap/.



# TABLES

| Table 1  | Groundwater Elevations                                           |
|----------|------------------------------------------------------------------|
| Table 2  | Groundwater Analytical Results                                   |
| Table 3  | Soil Vapour Monitoring Results                                   |
| Table 4  | Soil Vapour Analytical Results                                   |
| Table 5  | Soil Vapour Quality Assurance/Quality Control Analytical Results |
| Table 6  | Chemical, Physical, and Toxicological Properties                 |
| Table 7  | Soil Properties for Evaluation of Vapour Transport               |
| Table 8  | Building Properties for Evaluation of Vapour Transport           |
| Table 9  | Generic Soil Vapour Criteria                                     |
| Table 10 | Soil Vapour Risk Evaluation                                      |



### Table 1: Groundwater Elevations

| Monitoring Well                   | MW-01  | MW-02  | MW-03  | MW-04  | MW-05  | MW-203 |      |
|-----------------------------------|--------|--------|--------|--------|--------|--------|------|
| Total Drilled Depth (m)           | 5.5    | 10.6   | 9.1    | 3.8    | 6.1    | 5.3    |      |
| Top of Screened Interval (mbg)    | 0.9    | 6.9    | -      | -      | 3.1    | -      |      |
| Bottom of Screened Interval (mbg) | 5.5    | 10.6   | 9.1    | 3.8    | 6.1    | -      |      |
| Stick up (m)                      |        | 0.79   | 0.92   | 0.87   | 0.77   | 0.86   | 0.51 |
| Ground Elevation (m)              | 848.29 | 849.75 | 847.47 | 847.48 | 849.38 | -      |      |
| TPC Elevation (m)                 | 849.09 | 850.67 | 848.34 | 848.25 | 850.24 | -      |      |
| Depth to Groundwater (mBTPC)      | Aug-13 | 1.71   | 3.10   | 1.56   | 1.55   | 3.69   | 4.12 |
|                                   | May-19 | 2.59   | 4.18   | 2.55   | 2.46   | 4.10   | 3.46 |
|                                   | Jun-19 | 2.63   | 4.01   | 2.40   | 2.29   | 4.11   | 2.96 |
|                                   | Sep-19 | 2.89   | 4.27   | 2.72   | 2.67   | 4.12   | 3.52 |
|                                   | Dec-19 | 2.75   | 3.35   | 2.50   | 2.38   | 4.12   | 2.52 |
| Groundwater Elevation (m)         | Aug-13 | 847.38 | 847.57 | 846.78 | 846.70 | 846.55 | -    |
|                                   | May-19 | 846.50 | 846.49 | 845.79 | 845.79 | 846.15 | -    |
|                                   | Jun-19 | 846.46 | 846.66 | 845.94 | 845.96 | 846.14 | -    |
|                                   | Sep-19 | 846.19 | 846.40 | 845.62 | 845.58 | 846.13 | -    |
|                                   | Dec-19 | 846.34 | 847.32 | 845.84 | 845.87 | 846.12 | -    |
| Combustible Vapour                | May-19 | 0      | 0      | 0      | 0      | 0      | 0    |
| Concentrations* (CVCs)            | Jun-19 | 0      | 0      | 0      | 0      | 0      | 0    |
| (ppm)                             | Sep-19 | 35     | 15     | 0      | 0      | 170    | 100  |
|                                   | Dec-19 | 0      | 20     | 0      | 0      | 5      | 20   |
| Volatile Organic Compounds*       | May-19 | 0      | 0      | 0      | 0      | 0      | 0    |
| (VOCs)                            | Jun-19 | 0      | 0      | 0      | 0      | 0      | 0    |
| (ppm)                             | Sep-19 | 0      | 0      | 0      | 0      | 0      | 0    |
|                                   | Dec-19 | 0      | 1      | 1      | 1      | 1      | 1    |

Notes:

mbg - Metres below grade.

mBTPC - Metres below top of plastic pipe casing.

ppm - Parts per million.

- Unavailable.

\* Measured using an RKI Eagle Hydrocarbon Surveyor II operated in methane elimination mode.
#### **Table 2: Groundwater Analytical Results**

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | Location Code                   | MW-01                               | MW-02                               | MW-03                        | MW-04                        | MW-203                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------|-------------------------------------|-------------------------------------|------------------------------|------------------------------|------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | Sample Date                     | 4-Dec-2019                          | 4-Dec-2019                          | 4-Dec-2019                   | 4-Dec-2019                   | 5-Dec-2019                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | l ab Bonort Number              | 1 2203/110                          | 1 2303/10                           | 1 2303/10                    | 1 2303/10                    | 1 2303/10                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                 | 1 2000 4 40 4                       | 10000440.0                          | 10000410                     | 10000410                     | 10000440 5                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | Laboratory ID                   | L2393410-1                          | L2393410-2                          | L2393410-3                   | L2393410-4                   | L2393410-5                   |
| Deveryeter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11                                   |                                 |                                     |                                     |                              |                              |                              |
| Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Unit                                 | Tier 1 Guideline "-             |                                     |                                     |                              |                              |                              |
| Field                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      |                                 |                                     |                                     |                              |                              |                              |
| Fleid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      |                                 |                                     |                                     |                              |                              |                              |
| Field Temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | °C                                   | -                               | 2.90                                | 5.42                                | 2.64                         | 2.67                         | 1.15                         |
| Field Electric Conductivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | uS/cm                                | _                               | 434                                 | 381                                 | 1 017                        | 973                          | 510                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | 0.5.4.0.5                       | 0.50                                | 7.00                                | 7.40                         | 7.05                         | 7.04                         |
| Гіеїа рн                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | pH Units                             | 6.5 to 8.5                      | 8.53                                | 7.98                                | 7.48                         | 7.25                         | 7.64                         |
| Routine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                      |                                 |                                     |                                     |                              |                              |                              |
| рН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nH Units                             | 6 5 to 8 5                      | 8 13                                | 8 22                                | 7 77                         | 7 53                         | 8.03                         |
| pri<br>Electrical Ocurductivity (EO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | prionita                             | 0.0 10 0.0                      | 0.15                                | 0.22                                | 1.11                         | 1.00                         | 0.00                         |
| Electrical Conductivity (EC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | µS/cm                                | -                               | 617                                 | 559                                 | 1,680                        | 1,660                        | 1,030                        |
| Total Dissolved Solids (TDS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/L                                 | 500                             | 378                                 | 333                                 | 1,090                        | 1,010                        | 633                          |
| Hardness as CaCO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ma/l                                 | _                               | 289                                 | 269                                 | 646                          | 664                          | 437                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ing/L                                |                                 | 200                                 | 200                                 | 0+0                          | 007                          |                              |
| Alkalinity (total as $CaCO_3$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mg/L                                 | -                               | 337                                 | 255                                 | 934                          | 872                          | 510                          |
| Bicarbonate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mg/L                                 | -                               | 411                                 | 311                                 | 1,140                        | 1,060                        | 622                          |
| Carbonate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ma/l                                 | _                               | <5.0                                | <5.0                                | <5.0                         | <5.0                         | <5.0                         |
| Lludravida                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |                                 | -5.0                                | -0.0                                | -0.0                         | -0.0                         | -0.0                         |
| Hydroxide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mg/L                                 | -                               | <5.0                                | <5.0                                | <5.0                         | <5.0                         | <5.0                         |
| Calcium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mg/L                                 | -                               | 71.7                                | 72.2                                | 168                          | 168                          | 119                          |
| Magnesium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ma/l                                 | _                               | 26.8                                | 21.6                                | 55.0                         | 59.3                         | 33.9                         |
| Deteccium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ing/L                                |                                 | 20.0                                | 21.0                                | 00.0                         | 00.0                         | 40.0                         |
| Polassium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mg/L                                 | -                               | 4.27                                | 2.70                                | 9.68                         | 20.7                         | 13.8                         |
| Sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mg/L                                 | 200                             | 40.1                                | 16.4                                | 174                          | 96.6                         | 47.1                         |
| Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ma/l                                 | 120                             | 17 0                                | 7 67                                | 49.6                         | 42.9                         | 19.5                         |
| Eluarida                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                      |                                 | 0.004                               | 0.000                               | 10.0                         | 10.40                        | 10.0                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mg/L                                 | 1.5                             | 0.094                               | 0.086                               | <0.10                        | <0.10                        | <0.10                        |
| Phosphorus - Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mg/L                                 | -                               | 0.412                               | 0.0202                              | 0.273                        | 0.568                        | 0.35                         |
| Sulphate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ma/l                                 | 120 <sup>3</sup>                | 16.0                                | 59.6                                | 69.5                         | 94 7                         | 93.2                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | 423                             | 10.0                                | 00.0                                | 00.0                         | 04.4                         | 00.2                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N/A                                  | -                               | 102                                 | 94.0                                | 98.6                         | 91.1                         | 95.2                         |
| Nutrients                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      |                                 |                                     |                                     |                              |                              |                              |
| Ammonia as N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ma/l                                 | 0 374 to 0 74 6                 | 0 477                               | <0.050                              | 70                           | 10.4                         | 13.3                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ing/∟                                | 0.374 10 9.71                   | 0.477                               | <0.000                              | 7.0                          | 10.4                         | 10.0                         |
| Nitrate (as NO <sub>3</sub> -N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mg/L                                 | 3                               | <0.020                              | <0.020                              | <0.10                        | 0.17                         | <0.10                        |
| Nitrite (as NO <sub>2</sub> -N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mg/L                                 | 0.08 to 0.20 <sup>4</sup>       | <0.010                              | <0.010                              | < 0.050                      | < 0.050                      | < 0.050                      |
| Nitrate and Nitrite (as N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mg/l                                 |                                 | <0.022                              | <0.022                              | <0.11                        | 0.17                         | <0.11                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nig/L                                | -                               | <0.02Z                              | <0.02Z                              | <b>\U.11</b>                 | 0.17                         | <b>NO.11</b>                 |
| Total Kjeldahl Nitrogen (TKN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mg/L                                 | -                               | 1.29                                | 0.23                                | 8.2                          | 13.3                         | 15                           |
| Carbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                      |                                 |                                     |                                     |                              |                              |                              |
| Dissolved Organic Carbon (DOC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ma/l                                 |                                 | 5 /                                 | 16                                  | 11 /                         | 20.7                         | 0.5                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mg/∟                                 | -                               | 5.4                                 | 4.0                                 | 11.4                         | 20.7                         | 9.0                          |
| Dissolved Metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      |                                 |                                     |                                     |                              |                              |                              |
| Aluminum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mg/L                                 | 0.050 5                         | 0.0033                              | 0.0074                              | < 0.0050                     | 0.0348                       | 0.0035                       |
| Antimony                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ma/l                                 | 0.006                           | 0 00014                             | 0.00013                             | <0.00050                     | <0.00050                     | <0.00010                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | iiig/L                               | 0.000                           | 0.00014                             | 0.00010                             | <0.00000                     | -0.00000                     | -0.00010                     |
| Arsenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mg/L                                 | 0.005                           | 0.00828                             | 0.00029                             | 0.00137                      | 0.00440                      | 0.00796                      |
| Barium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mg/L                                 | 1                               | 0.421                               | 0.152                               | 0.309                        | 0.253                        | 0.188                        |
| Boron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ma/l                                 | 15                              | 0.024                               | 0.016                               | 0.875                        | 0 977                        | 0 4 9 4                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | iiig/L                               | 1.5                             | 0.024                               | 0.010                               | 0.010                        | 0.011                        | 0.404                        |
| Cadmium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mg/L                                 | 0.00036 to 0.00037 <sup>3</sup> | <0.0000050                          | 0.000148                            | <0.000025                    | 0.0000830                    | 0.0000408                    |
| Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mg/L                                 | 0.05                            | <0.00010                            | <0.00010                            | < 0.00050                    | < 0.00050                    | 0.00015                      |
| Copper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ma/l                                 | 0.007                           | <0.00020                            | 0.00719                             | 0.0052                       | <0.0010                      | <0.00020                     |
| leen and a second secon | ing/L                                | 0.001                           | -0.00020                            | 0.00110                             | 0.0002                       | .0.0010                      | -0.00020                     |
| Iron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mg/L                                 | 0.3                             | 3.09                                | 0.041                               | 0.123                        | 3.85                         | 2.23                         |
| Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mg/L                                 | 0.0070 <sup>3</sup>             | < 0.000050                          | 0.000219                            | < 0.00025                    | < 0.00025                    | < 0.000050                   |
| Manganese                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ma/l                                 | 0.05                            | 0.861                               | 0 0843                              | 1 02                         | 1 16                         | 0 303                        |
| Manaumi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | iiig/L                               | 0.00                            | 0.001                               | 0.0040                              | 1.02                         | 1.10                         | 0.000                        |
| Mercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mg/L                                 | 0.000005                        | <0.0000050                          | <0.0000050                          | <0.0000050                   | <0.0000050                   | <0.0000050                   |
| Nickel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mg/L                                 | 0.120 to 0.259 <sup>3</sup>     | 0.00192                             | 0.00099                             | 0.0171                       | 0.0093                       | 0.00054                      |
| Selenium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ma/l                                 | 0.002                           | 0.000104                            | 0.000132                            | < 0.00025                    | < 0.00025                    | 0.000242                     |
| Silvor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                      | 0.0001                          | <0.000010                           | <0.000010                           |                              |                              | <0.000010                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | iiig/L                               | 0.0001                          | ~0.000010                           | ~0.000010                           | VCUUUU.U~                    | VCUUUU.U~                    | ~0.000010                    |
| Uranium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mg/L                                 | 0.015                           | 0.000733                            | 0.000851                            | 0.00242                      | 0.00297                      | 0.00059                      |
| Zinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mg/L                                 | 0.03                            | <0.0010                             | 0.0058                              | 0.0247                       | 0.0097                       | 0.0011                       |
| Organics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                      |                                 |                                     |                                     |                              |                              | •                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | T T                             |                                     |                                     |                              |                              |                              |
| AUX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mg/L                                 | -                               | ND                                  | ND                                  | ND                           | ND                           | ND                           |
| Hydrocarbons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                      |                                 |                                     |                                     |                              |                              |                              |
| Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ma/l                                 | 0.005                           | <0 00050                            | <0.00050                            | <0.00050                     | <0.00020                     | 0 00053                      |
| Taluana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                      | 0.000                           | -0.00000                            | -0.00000                            | -0.00000                     | -0.00000                     | 0.00000                      |
| roluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mg/L                                 | 0.021                           | <0.00050                            | <0.00050                            | <0.00050                     | <0.00050                     | <0.00050                     |
| Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/L                                 | 0.0016                          | <0.00050                            | <0.00050                            | <0.00050                     | <0.00050                     | <0.00050                     |
| Xvlenes (m & p)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ma/l                                 |                                 | <0 00050                            | <0.00020                            | <0.00020                     | <0.00020                     | <0.00050                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                 | 0.00000                             | -0.00000                            | -0.00000                     | -0.00000                     | -0.00000                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mg/L                                 | -                               | <0.00050                            | <0.00050                            | <0.00050                     | <0.00050                     | <0.00050                     |
| Xylenes Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mg/L                                 | 0.02                            | <0.00071                            | <0.00071                            | <0.00071                     | <0.00071                     | <0.00071                     |
| Styrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ma/l                                 | 0 072                           | <0 00050                            | <0.00050                            | <0.00050                     | <0.00050                     | <0.00050                     |
| $F1(C_{12}C_{12})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                      | 0.012                           | 20.40                               | -0.40                               | 20.40                        | 20.40                        | -0.40                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mg/L                                 | -                               | <0.10                               | <0.10                               | <0.10                        | <0.10                        | <0.10                        |
| F1 (C <sub>6</sub> -C <sub>10</sub> ) - BTEX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/L                                 | 0.81                            | <0.10                               | <0.10                               | <0.10                        | <0.10                        | <0.10                        |
| F2 (C <sub>10</sub> -C <sub>16</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ma/l                                 | 11                              | <0 10                               | <0 10                               | <0 10                        | <0 10                        | <0 10                        |
| Volatile Fatty/Carboxylic Acide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | g, L                                 |                                 | 0.10                                | 0.10                                | 0.10                         | 0.10                         | 0.10                         |
| Volatile Fatty/Carboxylic Acids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                 |                                     |                                     |                              |                              |                              |
| Acetic Acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mg/L                                 | -                               | <10                                 | <10                                 | <10                          | <10                          | <10                          |
| Butyric Acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ma/L                                 |                                 | <1.0                                | <1.0                                | <1.0                         | <1.0                         | <1.0                         |
| Formic Acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ···· 3' -                            |                                 |                                     |                                     | ~=0                          | ~=0                          | ~=0                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                 | 2EN                                 | 2611                                |                              |                              | 500                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mg/L                                 | -                               | <50                                 | <50                                 | <b>~</b> 50                  | <b>~</b> 50                  |                              |
| Hexanoic Acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mg/L<br>mg/L                         | -  <br>-                        | <50<br><1.0                         | <50                                 | <1.0                         | <1.0                         | <1.0                         |
| Hexanoic Acid<br>iso-Butyric Acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mg/L<br>mg/L<br>ma/L                 | -<br>-<br>-                     | <50<br><1.0<br><1.0                 | <50<br><1.0<br><1.0                 | <1.0<br><1.0                 | <1.0<br><1.0                 | <1.0<br><1.0                 |
| Hexanoic Acid<br>iso-Butyric Acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mg/L<br>mg/L<br>mg/L                 | -<br>-<br>-                     | <50<br><1.0<br><1.0                 | <50<br><1.0<br><1.0                 | <1.0<br><1.0                 | <1.0<br><1.0                 | <1.0<br><1.0                 |
| Hexanoic Acid<br>iso-Butyric Acid<br>Isovaleric Acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mg/L<br>mg/L<br>mg/L<br>mg/L         | -<br>-<br>-<br>-                | <50<br><1.0<br><1.0<br><1.0         | <50<br><1.0<br><1.0<br><1.0         | <1.0<br><1.0<br><1.0         | <1.0<br><1.0<br><1.0         | <1.0<br><1.0<br><1.0<br><1.0 |
| Hexanoic Acid<br>iso-Butyric Acid<br>Isovaleric Acid<br>Propanoic Acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L | -<br>-<br>-<br>-<br>-           | <50<br><1.0<br><1.0<br><1.0<br><5.0 | <50<br><1.0<br><1.0<br><1.0<br><5.0 | <1.0<br><1.0<br><1.0<br><5.0 | <1.0<br><1.0<br><1.0<br><5.0 | <1.0<br><1.0<br><1.0<br><5.0 |

#### Notes:

<sup>1</sup> Alberta Environment and Parks (AEP). 2019. Alberta Tier 1 Soil and Groundwater Remediation Guidelines. Land Policy Branch, Policy and Planning Division. 198 pp. Referenced guidelines are for coarse-textured soils under Residential/Parkland land use.

<sup>2</sup> Alberta Environment and Parks (AEP). Environmental Quality Guidelines for Alberta Surface Waters. March 2018. Table 1 Surface water quality guidelines for the protection of freshwater aquatic life (FAL). Most conservative values applied (chronic or acute).

<sup>3</sup> Guideline varies with hardness. Values shown based on site hardness range of 269 mg/L to 664 mg/L.

<sup>4</sup> Guideline varies with chloride. Values shown based on site chloride range of 7.70 mg/L to 49.6 mg/L.

 $^{5}$  Guideline varies with pH. Values shown based on site pH range of 7.25 to 8.53.

<sup>6</sup> Guideline varies with pH and temperature. Values shown based on pH range of 7.25 to 8.53 and temperature range of 1.15 to 5.42°c.

"-" No applicable guideline.

"ND" Non-detected.

**BOLD** - Greater than Tier 1 Guideline.

N/A - Not applicable.



#### **Table 2: Groundwater Analytical Results**

|                                   |      | Location Code                   | MW-01      | MW-02      | MW-03      | MW-04      | MW-203     |
|-----------------------------------|------|---------------------------------|------------|------------|------------|------------|------------|
|                                   |      | Sample Date                     | 4-Dec-2019 | 4-Dec-2019 | 4-Dec-2019 | 4-Dec-2019 | 5-Dec-2019 |
|                                   |      | Lab Report Number               | L2393410   | L2393410   | L2393410   | L2393410   | L2393410   |
|                                   |      | Laboratory ID                   | L2393410-1 | L2393410-2 | L2393410-3 | L2393410-4 | L2393410-5 |
| Parameter                         | Unit | Tier 1 Guideline <sup>1,2</sup> |            |            |            |            |            |
| Volatile Organic Compounds (VOCs) |      | 1 1                             |            |            |            |            |            |
| Bromobenzene                      | mg/L | -                               | <0.0010    | <0.0010    | <0.0010    | <0.0010    | <0.0010    |
| Bromochloromethane                | mg/L | -                               | <0.0010    | <0.0010    | <0.0010    | <0.0010    | <0.0010    |
| Bromodichloromethane              | mg/L | -                               | <0.00050   | <0.00050   | <0.00050   | <0.00050   | <0.00050   |
| Bromoform                         | mg/L | -                               | <0.00050   | <0.00050   | <0.00050   | <0.00050   | <0.00050   |
| Bromomethane                      | mg/L | -                               | <0.0010    | <0.0010    | <0.0010    | <0.0010    | <0.0010    |
| n-Butylbenzene                    | mg/L | -                               | <0.0010    | <0.0010    | <0.0010    | <0.0010    | <0.0010    |
| sec-Butylbenzene                  | mg/L | -                               | <0.0010    | <0.0010    | <0.0010    | <0.0010    | <0.0010    |
| tert-Butylbenzene                 | mg/L | -                               | <0.0010    | <0.0010    | <0.0010    | <0.0010    | <0.0010    |
| Carbon tetrachloride              | mg/L | 0.00057                         | <0.00050   | <0.00050   | <0.00050   | < 0.00050  | < 0.00050  |
| Chlorobenzene                     | ma/L | 0.0013                          | <0.00050   | <0.00050   | <0.00050   | < 0.00050  | < 0.00050  |
| Chloroethane                      | ma/L | -                               | <0.0010    | < 0.0010   | <0.0010    | < 0.0010   | < 0.0010   |
| Chloroform                        | mg/L | 0.018                           | <0.00050   | <0.00050   | <0.00050   | <0.00050   | <0.00050   |
| Chloromethane                     | mg/L | -                               | <0.0010    | <0.0010    | <0.0010    | <0.0010    | <0.0010    |
| 2-Chlorotoluene                   | mg/L | _                               | <0.0010    | <0.0010    | <0.0010    | <0.0010    | <0.0010    |
| 4-Chlorotoluene                   | mg/L | _                               | <0.0010    | <0.0010    | <0.0010    | <0.0010    | <0.0010    |
| Dibromochloromethane              | mg/L | 0.19                            | <0.00050   | <0.0010    | <0.0010    | <0.0010    | <0.0010    |
| 1 2-Dibromo-3-chloropropane       | mg/L | 0.10                            | <0.00000   | <0.00030   | <0.00030   | <0.00000   | <0.00000   |
| 1 2-Dibromoethane                 | mg/L | _                               | <0.0010    |            |            | <0.0010    | <0.0010    |
| Dibromomethane                    | mg/L | _                               | <0.00050   | <0.00050   | <0.00050   | <0.00050   | <0.00050   |
| 1 2-Dichlorobenzene               | mg/L | - 0.007                         | <0.00050   | <0.00050   | <0.00050   | <0.00050   | <0.00050   |
| 1.3-Dichlorobenzene               | mg/L | 0.0007                          | <0.00050   | <0.00050   | <0.00050   | <0.00050   | <0.00050   |
| 1,0-Dichlorobenzene               | mg/L | -                               | <0.00050   | <0.00050   | <0.00050   | <0.00050   | <0.00050   |
| 1,4-Dichloroethane                | mg/L | 0.001                           | <0.00050   | <0.00050   | <0.00050   | <0.00050   | <0.00050   |
| 1,1-Dichloroethano                | mg/L | -                               | <0.00050   | <0.00050   | <0.00050   | <0.00050   | <0.00050   |
|                                   | mg/L | 0.005                           | <0.0010    | <0.0010    | <0.0010    | <0.0010    | <0.0010    |
| 1,1-Dichloroethene (cis)          | mg/L | 0.014                           | <0.00050   | <0.00050   | <0.00050   | <0.00050   | <0.00050   |
| 1,2-Dichloroethene (cis)          | mg/L | -                               | <0.0010    | <0.0010    | 0.0036     | 0.00050    | 0.00050    |
|                                   | mg/L | -                               | <0.00050   | <0.00050   | <0.00050   | <0.00050   | <0.00050   |
|                                   | mg/L | -                               | <0.00050   | <0.00050   | <0.00050   | <0.00050   | <0.00050   |
| 1,2-Dichloropropane               | mg/L | -                               | <0.00050   | <0.00050   | <0.00050   | <0.00050   | <0.00050   |
| 1,3-Dichloropropane               | mg/L | -                               | <0.0010    | <0.0010    | <0.0010    | <0.0010    | <0.0010    |
| 2,2-Dichloropropane               | mg/L | -                               | <0.0010    | <0.0010    | <0.0010    | <0.0010    | < 0.0010   |
| 1, 1-Dichloropropene              | mg/L | -                               | <0.0010    | <0.0010    | <0.0010    | <0.0010    | <0.0010    |
| 1,3-Dichloropropene [cis]         | mg/L | -                               | <0.00050   | <0.00050   | <0.00050   | <0.00050   | < 0.00050  |
|                                   | mg/L | -                               | <0.0010    | <0.0010    | <0.0010    | <0.0010    | < 0.0010   |
| Hexachiorobutadiene               | mg/L | 0.0013                          | <0.0010    | <0.0010    | < 0.0010   | <0.0010    | < 0.0010   |
|                                   | mg/L | -                               | <0.0010    | <0.0010    | <0.0010    | < 0.0010   | < 0.0010   |
| Methylene Chloride                | mg/L | 0.05                            | <0.0010    | <0.0010    | <0.0010    | <0.0010    | < 0.0010   |
| Iso-Propylbenzene (cumene)        | mg/L | -                               | <0.0010    | <0.0010    | <0.0010    | <0.0010    | <0.0010    |
| n-Propylbenzene                   | mg/L | -                               | <0.0010    | <0.0010    | <0.0010    | <0.0010    | <0.0010    |
| 1,1,1,2-Tetrachloroethane         | mg/L | -                               | <0.0010    | <0.0010    | <0.0010    | <0.0010    | <0.0010    |
| 1,1,2,2-Tetrachloroethane         | mg/L | -                               | <0.00050   | <0.00050   | <0.00050   | <0.00050   | <0.00050   |
| Tetrachloroethene                 | mg/L | 0.01                            | <0.00050   | <0.00050   | <0.00050   | <0.00050   | <0.00050   |
| 1,2,3-Trichlorobenzene            | mg/L | 0.008                           | <0.0010    | <0.0010    | <0.0010    | <0.0010    | <0.0010    |
| 1,2,4-Trichlorobenzene            | mg/L | 0.015                           | <0.0010    | <0.0010    | <0.0010    | <0.0010    | <0.0010    |
| 1,1,1-Trichloroethane             | mg/L | -                               | <0.00050   | <0.00050   | <0.00050   | <0.00050   | <0.00050   |
| 1,1,2-Trichloroethane             | mg/L | -                               | <0.00050   | <0.00050   | <0.00050   | <0.00050   | <0.00050   |
| Trichloroethene                   | mg/L | 0.005                           | <0.00050   | <0.00050   | <0.00050   | <0.00050   | <0.00050   |
| Trichlorofluoromethane            | mg/L | -                               | <0.0010    | <0.0010    | <0.0010    | <0.0010    | <0.0010    |
| 1,2,3-Trichloropropane            | mg/L | -                               | <0.00050   | <0.00050   | <0.00050   | <0.00050   | <0.00050   |
| 1,2,4-Trimethylbenzene            | mg/L | -                               | <0.0010    | <0.0010    | <0.0010    | < 0.0010   | <0.0010    |
| 1,3,5-Trimethylbenzene            | mg/L | -                               | <0.0010    | <0.0010    | <0.0010    | <0.0010    | <0.0010    |
| Vinyl chloride                    | mg/L | 0.0011                          | <0.00050   | <0.00050   | 0.00070    | 0.00643    | 0.00289    |

Notes:

<sup>1</sup> Alberta Environment and Parks (AEP). 2019. Alberta Tier 1 Soil and Groundwater Remediation Guidelines. Land Policy Branch, Policy and Planning Division. 198 pp. Referenced guidelines are for coarse-textured soils under Residential/Parkland land use.

<sup>2</sup> Alberta Environment and Parks (AEP). Environmental Quality Guidelines for Alberta Surface Waters. March 2018. Table 1 Surface water quality guidelines for the protection of freshwater aquatic life (FAL). Most conservative values applied (chronic or acute).

<sup>3</sup> Guideline varies with hardness. Values shown based on site hardness range of 269 mg/L to 664 mg/L.

<sup>4</sup> Guideline varies with chloride. Values shown based on site chloride range of 7.70 mg/L to 49.6 mg/L.

 $^{5}$  Guideline varies with pH. Values shown based on site pH range of 7.25 to 8.53.

<sup>6</sup> Guideline varies with pH and temperature. Values shown based on pH range of 7.25 to 8.53 and temperature range of 1.15 to 5.42°c.

-" No applicable guideline.

"ND" Non-detected.

BOLD - Greater than Tier 1 Guideline.

N/A - Not applicable.



### Table 3: 2019 Soil Vapour Monitoring Results

|                                         | Gas Well |        |        |        |        |  |  |
|-----------------------------------------|----------|--------|--------|--------|--------|--|--|
| Parameter                               | VW-01    |        |        |        |        |  |  |
|                                         | Aug-13   | May-19 | Jun-19 | Sep-19 | Dec-19 |  |  |
| Pressure (kPa) <sup>1</sup>             |          | 0.0    | 0.0    | 0.0    | 0.0    |  |  |
| CH <sub>4</sub> (%)                     | 0.0      | 0.0    | 0.0    | 0.0    | 0.0    |  |  |
| CO (ppm) <sup>2</sup>                   |          | 0.0    | 0.0    | 0.0    | 0.0    |  |  |
| CO <sub>2</sub> (%)                     | 9.5      | 1.3    | 2.0    | 5.4    | 2.2    |  |  |
| O <sub>2</sub> (%)                      | 5.8      | 18.8   | 18.2   | 17.4   | 19.3   |  |  |
| Balance (% v/v)                         | 84.7     | 79.9   | 79.8   | 77.2   | 78.5   |  |  |
| Static Water Level (mbtoc) <sup>3</sup> |          | Dry    | Dry    | Dry    | Dry    |  |  |
| Depth to Bottom (m)                     | 5.50     | 2.56   | 2.56   | 2.56   | 2.67   |  |  |
| Stick up (m)                            |          | 0.77   | 0.77   | 0.87   | 0.87   |  |  |

Notes:

<sup>1</sup> kPa - Kilopascal.

<sup>2</sup> ppm - Parts per million.

<sup>3</sup> mbtoc - Meters below top of casing.

N/A - Not applicable - well can not be accessed to obtain measurement.

### Table 4: Soil Vapour Analytical Results

|                                                     | Gonoria Sail      | VW-01                |                            |            |
|-----------------------------------------------------|-------------------|----------------------|----------------------------|------------|
|                                                     | Field ID          | Vapour Criteria -    | VW-01                      | 19DUP01    |
|                                                     | Sample Date       | Residential          | 3-Dec-2019                 | 3-Dec-2019 |
|                                                     | Lab Report Number | Coarse-Grained       | L2393598                   | L2393598   |
|                                                     | Laboratory ID     | (µg/m³) <sup>1</sup> | L2393598-1 /<br>L2393598-3 | L2393598-2 |
| Parameter                                           | Unit              | μg/m³                |                            |            |
| Field Tests                                         |                   |                      |                            |            |
| Air Volume                                          | L                 |                      | 0.06                       | -          |
| Initial Pressure                                    | in Hg             |                      | -9.2                       | -9.2       |
| Aliphatic/Aromatic PHC Sub-Fractionation            | J J               |                      |                            |            |
| Aliphatics (C <sub>6</sub> -C <sub>8</sub> )        | µg/m <sup>3</sup> | 740,737              | 17                         | 29         |
| Aliphatics (>C <sub>8</sub> -C <sub>10</sub> )      | µg/m <sup>3</sup> | 40,257               | <15                        | 41         |
| Aliphatics (>C <sub>10</sub> -C <sub>12</sub> )     | ug/m <sup>3</sup> | 40,257               | <15                        | <15        |
| Aliphatics (>C <sub>12</sub> -C <sub>16</sub> )     | µg/m <sup>3</sup> | 40,257               | <30                        | <30        |
| Aromatics (>C <sub>8</sub> -C <sub>10</sub> )       | ug/m <sup>3</sup> | 805                  | <15                        | <15        |
| Aromatics (>C <sub>10</sub> -C <sub>12</sub> )      | µg/m <sup>3</sup> | 8,051                | <15                        | <15        |
| Aromatics (>C <sub>12</sub> -C <sub>16</sub> )      | µg/m <sup>3</sup> | 8,051                | <30                        | <30        |
| Linear and Cyclic Methyl Siloxanes                  | 10                |                      |                            |            |
| Hexamethylcyclotrisiloxane, D3(CVMS)                | µg/m <sup>3</sup> | NG                   | <170                       | -          |
| Octamethylcyclotetrasiloxane, D4(CVMS)              | µg/m <sup>3</sup> | NG                   | <170                       | -          |
| Decamethylcyclopentasiloxane, D5(CVMS)              | µg/m <sup>3</sup> | NG                   | <170                       | -          |
| Dodecamethylcyclohexasiloxane, D6(CVMS)             | µg/m <sup>3</sup> | NG                   | <170                       | -          |
| Hexamethyldisiloxane, MM(LVMS)                      | µg/m <sup>3</sup> | NG                   | <170                       | -          |
| Octamethyltrisiloxane, MDM(LVMS)                    | µg/m <sup>3</sup> | NG                   | <170                       | -          |
| Decamethyltetrasiloxane, MD2M(LVMS)                 | µg/m <sup>3</sup> | NG                   | <170                       | -          |
| Dodecamethylpentasiloxane, MD3M(LVMS)               | µg/m <sup>3</sup> | NG                   | <170                       | -          |
| Hydrocarbons                                        |                   |                      |                            |            |
| Benzene                                             | µg/m³             | 195                  | <0.64                      | <0.64      |
| Toluene                                             | µg/m <sup>3</sup> | 124,220              | <0.75                      | 2.67       |
| Ethylbenzene                                        | µg/m <sup>3</sup> | 34,330               | <0.87                      | <0.87      |
| Xylenes (m & p)                                     | µg/m <sup>3</sup> | NG                   | <1.7                       | 6.0        |
| Xylene (o)                                          | µg/m <sup>3</sup> | NG                   | <0.87                      | 1.38       |
| Xylenes Total                                       | µg/m <sup>3</sup> | 6,330                | <2.0                       | 7.4        |
| Styrene                                             | µg/m <sup>3</sup> | 3,220                | <0.85                      | <0.85      |
| F1 (C <sub>6</sub> -C <sub>10</sub> )               | µg/m <sup>3</sup> | 867,383              | 16                         | 62         |
| F2 (C <sub>10</sub> -C <sub>16</sub> )              | µg/m <sup>3</sup> | 52,495               | <15                        | <15        |
| Alcohols                                            |                   |                      |                            |            |
| Isopropanol                                         | µg/m <sup>3</sup> | 6,219                | <2.5                       | <2.5       |
| High Level Fixed Gases                              |                   |                      |                            |            |
| Nitrogen                                            | %                 | NG                   | 74.7                       | 75.8       |
| Oxygen                                              | %                 | NG                   | 19.5                       | 20.1       |
| Carbon Dioxide                                      | %                 | NG                   | 1.76                       | 1.73       |
| Carbon Monoxide                                     | %                 | NG                   | <0.050                     | <0.050     |
| Methane                                             | %                 | NG                   | <0.050                     | <0.050     |
| Hydrocarbon Gases (C <sub>1</sub> -C <sub>5</sub> ) | -                 |                      |                            |            |
| Methane                                             | %                 | NG                   | 0.00017                    | 0.00013    |
| Ethane                                              | %                 | NG                   | <0.00020                   | <0.00020   |
| Ethene                                              | %                 | NG                   | <0.00020                   | <0.00020   |
| Propane                                             | %                 | NG                   | <0.00020                   | <0.00020   |
| Propene                                             | %                 | NG                   | <0.00020                   | <0.00020   |
| Butane                                              | %                 | NG                   | <0.00020                   | <0.00020   |
| Pentane                                             | %                 | NG                   | <0.00020                   | <0.00020   |
| POIVEVELIC Aromatic Hydrocarbons (PAHs)             |                   |                      |                            |            |

## Naphthalene µg/m<sup>3</sup> 112 <2.6

## Notes:

<sup>1</sup> Canadian Council of Ministers of the Environment (CCME). 2014. A Protocol for the Derivation of Soil Vapour Quality Guidelines for Protection of Human Exposures via Inhalation of Vapours. Refer to Tables 6 to 9 for further information.

NG - No applicable criteria.

BOLD - Greater than criteria.



<2.6

| Table 4: | Soil | Vapour | Analytica | I Results |
|----------|------|--------|-----------|-----------|
|          |      |        |           |           |

|                                   | Location Code     | Ganaria Sail          | VW-01                      |            |  |
|-----------------------------------|-------------------|-----------------------|----------------------------|------------|--|
|                                   | Field ID          | Vapour Criteria -     | VW-01                      | 19DUP01    |  |
|                                   | Sample Date       | Residential           | 3-Dec-2019                 | 3-Dec-2019 |  |
|                                   | Lab Report Number | <b>Coarse-Grained</b> | L2393598                   | L2393598   |  |
|                                   | Laboratory ID     | (µg/m³) <sup>1</sup>  | L2393598-1 /<br>L2393598-3 | L2393598-2 |  |
| Parameter                         | Unit              | µg/m³                 |                            |            |  |
| Volatile Organic Compounds (VOCs) |                   |                       |                            |            |  |
| 1,1,1-Trichloroethane             | µg/m <sup>3</sup> | 1,693,510             | <1.1                       | <1.1       |  |
| 1,1,2,2-Tetrachloroethane         | µg/m <sup>3</sup> | 11                    | <1.4                       | <1.4       |  |
| 1,1,2-Trichloroethane             | µg/m <sup>3</sup> | 7                     | <1.1                       | <1.1       |  |
| 1,1-Dichloroethane                | µg/m <sup>3</sup> | 430                   | <0.81                      | <0.81      |  |
| 1,1-Dichloroethene                | µg/m <sup>3</sup> | 6,470                 | <0.79                      | <0.79      |  |
| 1,2,4-Trichlorobenzene            | µg/m <sup>3</sup> | 365                   | <1.5                       | <1.5       |  |
| 1,2,4-Trimethylbenzene            | µg/m <sup>3</sup> | 2,235                 | <0.98                      | <0.98      |  |
| 1,2-Dibromoethane                 | µg/m <sup>3</sup> | 590                   | <1.5                       | <1.5       |  |
| 1,2-Dichlorobenzene               | µg/m <sup>3</sup> | 7,072                 | <1.2                       | <1.2       |  |
| 1,2-Dichloroethane                | µg/m <sup>3</sup> | 24                    | <0.81                      | <0.81      |  |
| 1,2-Dichloroethene (cis)          | µg/m <sup>3</sup> | 242                   | <0.79                      | <0.79      |  |
| 1,2-Dichloroethene (trans)        | µg/m³             | 245                   | <0.79                      | <0.79      |  |
| 1,2-Dichloropropane               | μg/m <sup>3</sup> | 135                   | <0.92                      | <0.92      |  |
| 1,2-Dichlorotetrafluoroethane     | μg/m <sup>3</sup> | 566,335               | <1.4                       | <1.4       |  |
| 1,3,5-Trimethylbenzene            | μg/m <sup>3</sup> | 2,235                 | <0.98                      | <0.98      |  |
| 1,3-Butadiene                     | µg/m³             | 17                    | <0.44                      | <0.44      |  |
| 1,3-Dichlorobenzene               | μg/m <sup>3</sup> | 64                    | <1.2                       | <1.2       |  |
| 1,3-Dichloropropene [cis]         | µg/m <sup>3</sup> | 163                   | <0.91                      | <0.91      |  |
| 1,3-Dichloropropene [trans]       | μg/m <sup>3</sup> | 149                   | <0.91                      | <0.91      |  |
| 1,4-Dichlorobenzene               | μg/m <sup>3</sup> | 64                    | <1.2                       | <1.2       |  |
| 1,4-Dioxane                       | μg/m <sup>3</sup> | 105                   | <0.72                      | <0.72      |  |
| 1-Methyl-4 ethyl benzene          | μg/m <sup>3</sup> | 14,461                | <0.98                      | <0.98      |  |
| 2-Butanone (MEK)                  | μg/m <sup>3</sup> | 167,364               | <0.59                      | <0.59      |  |
| 2-Hexanone (MBK)                  | μg/m <sup>3</sup> | 1,053                 | <4.1                       | <4.1       |  |
| 4-Methyl-2-pentanone (MIBK)       | μg/m <sup>3</sup> | 103                   | <0.82                      | <0.82      |  |
| Acetone                           | μg/m <sup>3</sup> | 918,788               | 2.3                        | 3.5        |  |
| Allyl chloride                    | μg/m <sup>3</sup> | 32                    | <0.63                      | <0.63      |  |
| Benzyl chloride                   | μg/m <sup>3</sup> | 34                    | <1.0                       | <1.0       |  |
| Bromodichloromethane              | µg/m³             | 28                    | <1.3                       | <1.3       |  |
| Bromoform                         | µg/m³             | 1,494                 | <2.1                       | <2.1       |  |
| Bromomethane                      | μg/m <sup>3</sup> | 173                   | <0.78                      | <0.78      |  |
| Carbon disulfide                  | µg/m <sup>3</sup> | 21,713                | <0.62                      | <0.62      |  |
| Carbon tetrachloride              | µg/m <sup>3</sup> | 113                   | <1.3                       | <1.3       |  |
| Chlorobenzene                     | µg/m³             | 347                   | <0.92                      | <0.92      |  |
| Chloroethane                      | µg/m <sup>3</sup> | 31,019                | <0.53                      | <0.53      |  |
| Chloroform                        | μg/m <sup>3</sup> | 27                    | <0.98                      | <0.98      |  |
| Chloromethane                     | µg/m <sup>3</sup> | 2,657                 | <0.41                      | <0.41      |  |
| Cyclohexane                       | μg/m <sup>3</sup> | 201,510               | <0.69                      | <0.69      |  |
| Dibromochloromethane              | µg/m <sup>3</sup> | 4,750                 | <1.7                       | <1.7       |  |
| Dichlorodifluoromethane           | µg/m³             | 3,584                 | 1.89                       | 2.40       |  |
| Ethyl acetate                     | µg/m³             | 2,509                 | <0.72                      | <0.72      |  |
| Freon 113                         | μg/m³             | 230,627               | <1.5                       | <1.5       |  |
| Heptane                           | µg/m³             | 14,461                | <0.82                      | <0.82      |  |
| Hexachlorobutadiene               | µg/m³             | 51                    | <2.1                       | <2.1       |  |
| Hexane                            | µg/m³             | 18,839                | <0.70                      | <0.70      |  |
| Isooctane                         | µg/m³             | 14,917                | <0.93                      | <0.93      |  |
|                                   | μg/m³             | 14,461                | <0.98                      | <0.98      |  |
|                                   | μg/m³             | 1,153                 | <0.72                      | <0.72      |  |
|                                   | μg/m³             | 18,764                | <0.69                      | <0.69      |  |
|                                   | μg/m³             | 91,723                | <0.34                      | <0.34      |  |
|                                   | μg/m³             | 2,679                 | <1.4                       | <1.4       |  |
| retranyaroturan                   | μg/m³             | 62,828                | <0.59                      | <0.59      |  |
|                                   | μg/m³             | 153                   | <1.1                       | <1.1       |  |
|                                   | μg/m³             | 34,325                | <1.1                       | <1.1       |  |
|                                   | µg/m³             | 6,586                 | <1.8                       | <1.8       |  |
|                                   | µg/m³             | 94                    | <0.87                      | <0.87      |  |
| vinyi chionae                     | μg/m³             | 140                   | <0.51                      | <0.51      |  |

### Notes:

<sup>1</sup> Canadian Council of Ministers of the Environment (CCME). 2014. A Protocol for the Derivation of Soil Vapour Quality Guidelines for Protection of Human Exposures via Inhalation of Vapours. Refer to Tables 6 to 9 for further information.

NG - No applicable criteria.

BOLD - Greater than criteria.



### Table 5: Soil Vapour Quality Assurance/Quality Control Analytical Results

|                                                     |                           | Field ID          | VW-01                    | 19DUP01        |           |
|-----------------------------------------------------|---------------------------|-------------------|--------------------------|----------------|-----------|
|                                                     | Sample Date               |                   | 3-Dec-2019               | 3-Dec-2019     | RPD (%)   |
|                                                     |                           | Lab Report Number | L2393598<br>L2393598-1 / | L2393598       | 11 0 (70) |
|                                                     | 1                         | Laboratory ID     | L2393598-3               | L2393598-2     |           |
| Parameter                                           | Unit                      | RDL               |                          |                |           |
| Field Tests                                         |                           |                   |                          | I              |           |
| Air Volume<br>Initial Pressure                      | L<br>in Hg                | -30               | -9.2                     | 9.2            | - 0       |
| Aliphatic/Aromatic PHC Sub-Fractionation            |                           |                   |                          |                | -         |
| Aliphatics ( $C_6$ - $C_8$ )                        | µg/m³                     | 15                | 17                       | 29             | -         |
| Aliphatics (> $C_8$ - $C_{10}$ )                    | µg/m <sup>3</sup>         | 15                | <15                      | 41             | -         |
| Aliphatics ( $>C_{10}-C_{12}$ )                     | µg/m <sup>3</sup>         | 15                | <15                      | <15            | -         |
| Aromatics (> $C_8$ - $C_{10}$ )                     | μg/m<br>μg/m <sup>3</sup> | 15                | <15                      | <15            | -         |
| Aromatics (>C <sub>10</sub> -C <sub>12</sub> )      | µg/m <sup>3</sup>         | 15                | <15                      | <15            | -         |
| Aromatics (>C <sub>12</sub> -C <sub>16</sub> )      | µg/m <sup>3</sup>         | 30                | <30                      | <30            | -         |
| Linear and Cyclic Methyl Siloxanes                  |                           |                   |                          |                | 1         |
| Hexamethylcyclotrisiloxane, D3(CVMS)                | µg/m <sup>3</sup>         | 170               | <170                     | -              | -         |
| Decamethylcyclotetrasiloxarie, D4(CVMS)             | μg/m <sup>-</sup>         | 170               | <170                     | -              | -         |
| Dodecamethylcyclohexasiloxane, D6(CVMS)             | μg/m <sup>3</sup>         | 170               | <170                     | -              | -         |
| Hexamethyldisiloxane, MM(LVMS)                      | µg/m <sup>3</sup>         | 170               | <170                     | -              | -         |
| Octamethyltrisiloxane, MDM(LVMS)                    | µg/m <sup>3</sup>         | 170               | <170                     | -              | -         |
| Decamethyltetrasiloxane, MD2M(LVMS)                 | µg/m <sup>3</sup>         | 170               | <170                     | -              | -         |
| Hydrocarbons                                        | µg/m                      | 170               | \$170                    | -              | -         |
| Benzene                                             | µg/m <sup>3</sup>         | 0.64              | <0.64                    | <0.64          | -         |
| Toluene                                             | µg/m <sup>3</sup>         | 0.75              | <0.75                    | 2.67           | -         |
| Ethylbenzene                                        | µg/m <sup>3</sup>         | 0.87              | <0.87                    | <0.87          | -         |
| Xylenes (m & p)                                     | μg/m <sup>3</sup>         | 1.7               | <1.7                     | 6.0            | -         |
| Xylenes Total                                       | µg/m°                     | 0.87              | <0.87<br><2 0            | 1.38<br>7 4    | -         |
| Styrene                                             | µg/m<br>µa/m <sup>3</sup> | 0.85              | <0.85                    | <0.85          | -         |
| F1 (C <sub>6</sub> -C <sub>10</sub> )               | μg/m <sup>3</sup>         | 15                | 16                       | 62             | -         |
| F2 (C <sub>10</sub> -C <sub>16</sub> )              | µg/m <sup>3</sup>         | 15                | <15                      | <15            | -         |
| Alcohols                                            |                           |                   |                          |                |           |
| Isopropanol<br>High Level Fixed Gases               | µg/m°                     | 2.5               | <2.5                     | <2.5           | -         |
| Nitrogen                                            | %                         | 1                 | 74.7                     | 75.8           | 1         |
| Oxygen                                              | %                         | 0.1               | 19.5                     | 20.1           | 3         |
| Carbon Dioxide                                      | %                         | 0.05              | 1.76                     | 1.73           | 2         |
| Methane                                             | %                         | 0.0001            | <0.050                   | <0.050         | -         |
| Hydrocarbon Gases (C <sub>1</sub> -C <sub>5</sub> ) | 1                         |                   |                          |                | 1         |
| Methane                                             | %                         | 0.0001            | 0.00017                  | 0.00013        | -         |
| Ethene                                              | %                         | 0.0002            | <0.00020                 | <0.00020       | -         |
| Propane                                             | %                         | 0.0002            | <0.00020                 | <0.00020       | -         |
| Propene<br>Butane                                   | %                         | 0.0002            | <0.00020                 | <0.00020       | -         |
| Pentane                                             | %                         | 0.0002            | <0.00020                 | <0.00020       | -         |
| Polycyclic Aromatic Hydrocarbons (PAHs)             |                           |                   |                          |                | 1         |
| Naphthalene                                         | µg/m³                     | 2.6               | <2.6                     | <2.6           | -         |
| 1,1,1-Trichloroethane                               | ua/m <sup>3</sup>         | 1.1               | <1.1                     | <1.1           | -         |
| 1,1,2,2-Tetrachloroethane                           | μg/m <sup>3</sup>         | 1.4               | <1.4                     | <1.4           | -         |
| 1,1,2-Trichloroethane                               | µg/m <sup>3</sup>         | 1.1               | <1.1                     | <1.1           | -         |
| 1,1-Dichloroethane                                  | µg/m <sup>3</sup>         | 0.81              | <0.81                    | <0.81          | -         |
| 1,1-Dichloroethene                                  | μg/m <sup>3</sup>         | 0.79              | <0.79                    | <0.79          | -         |
| 1,2,4-Trimethylbenzene                              | μg/m<br>μg/m <sup>3</sup> | 0.98              | <0.98                    | <0.98          | -         |
| 1,2-Dibromoethane                                   | μg/m <sup>3</sup>         | 1.5               | <1.5                     | <1.5           | -         |
| 1,2-Dichlorobenzene                                 | µg/m³                     | 1.2               | <1.2                     | <1.2           | -         |
| 1,2-Dichloroethane                                  | µg/m <sup>3</sup>         | 0.81              | <0.81                    | <0.81          | -         |
| 1.2-Dichloroethene (CIS)                            | µg/m <sup>3</sup>         | 0.79              | <0.79                    | <0.79          | -         |
| 1,2-Dichloropropane                                 | μg/m <sup>3</sup>         | 0.92              | <0.92                    | <0.92          | -         |
| 1,2-Dichlorotetrafluoroethane                       | μg/m <sup>3</sup>         | 1.4               | <1.4                     | <1.4           | -         |
| 1,3,5-Trimethylbenzene                              | µg/m <sup>3</sup>         | 0.98              | <0.98                    | <0.98          | -         |
| 1,3-Butadiene                                       | μg/m <sup>3</sup>         | 0.44              | < 0.44                   | <0.44          | -         |
| 1.3-Dichloropenzene                                 | µg/m <sup>°</sup>         | 1.2               | <1.2                     | <1.2<br><0.91  | -         |
| 1,3-Dichloropropene [trans]                         | μg/m<br>μα/m <sup>3</sup> | 0.91              | <0.91                    | <0.91          | -         |
| 1,4-Dichlorobenzene                                 | μg/m <sup>3</sup>         | 1.2               | <1.2                     | <1.2           | -         |
| 1,4-Dioxane                                         | µg/m <sup>3</sup>         | 0.72              | <0.72                    | <0.72          | -         |
| 1-Methyl-4 ethyl benzene                            | µg/m <sup>3</sup>         | 0.98              | <0.98                    | <0.98          | -         |
| ∠-outanone (MEK)                                    | μg/m <sup>3</sup>         | 0.59              | <0.59                    | <0.59          | -         |
| 4-Methyl-2-pentanone (MIBK)                         | μg/m <sup>3</sup>         | 0.82              | <0.82                    | <0.82          | -         |
| Acetone                                             | μg/m <sup>3</sup>         | 1.2               | 2.3                      | 3.5            | -         |
| Allyl chloride                                      | μg/m <sup>3</sup>         | 0.63              | <0.63                    | <0.63          | -         |
| Benzyl chloride                                     | µg/m <sup>3</sup>         | 1                 | <1.0                     | <1.0           | -         |
| Bromodicriloromethane                               | μg/m <sup>3</sup>         | 1.3               | <1.3                     | <1.3           | -         |
| Bromomethane                                        | μg/m <sup>3</sup>         | 0.78              | <0.78                    | <0.78          | -         |
| Carbon disulfide                                    | μg/m <sup>3</sup>         | 0.62              | <0.62                    | <0.62          | -         |
| Carbon tetrachloride                                | µg/m <sup>3</sup>         | 1.3               | <1.3                     | <1.3           | -         |
| Chlorobenzene                                       | µg/m <sup>3</sup>         | 0.92              | <0.92                    | <0.92          | -         |
| Chloroform                                          | µg/m <sup>3</sup>         | 0.53              | < 0.53                   | < 0.53         | -         |
| Chloromethane                                       | μg/m <sup>3</sup>         | 0.98              | <0.98<br><0 41           | <0.98<br><0.41 | -         |
| Cyclohexane                                         | μg/m<br>μα/m <sup>3</sup> | 0.69              | <0.69                    | <0.69          | -         |
| Dibromochloromethane                                | µg/m <sup>3</sup>         | 1.7               | <1.7                     | <1.7           | -         |
| Dichlorodifluoromethane                             | µg/m <sup>3</sup>         | 0.99              | 1.89                     | 2.4            | -         |
| Etnyl acetate                                       | µg/m <sup>3</sup>         | 0.72              | <0.72                    | <0.72          | -         |
|                                                     | µg/m                      | 1.5               | <1.5                     | <1.5           |           |

Notes:

-

<

RDL

RPD

Not analyzed or RPD not calculated.

Concentration is less than the laboratory detection limit indicated.

Laboratory Reportable Detection Limit.

RPD is Relative Percentage Difference calculated as RPD(%)=(|V1-V2|/[(V1+V2)/2])\*100 where V1,V2 = concentrations of parent and duplicate sample, respectively.

RPDs have only been calculated where a concentration is greater than 5 times the RDL



#### Table 5: Soil Vapour Quality Assurance/Quality Control Analytical Results

|                                   |                   | Field ID         | VW-01                      | 19DUP01    |         |
|-----------------------------------|-------------------|------------------|----------------------------|------------|---------|
|                                   | 3-Dec-2019        | 3-Dec-2019       |                            |            |         |
|                                   | L                 | ab Report Number | L2393598                   | L2393598   | RPD (%) |
|                                   |                   | Laboratory ID    | L2393598-1 /<br>L2393598-3 | L2393598-2 |         |
| Parameter                         | Unit              | RDL              |                            |            |         |
| Volatile Organic Compounds (VOCs) |                   |                  |                            |            |         |
| Heptane                           | µg/m³             | 0.82             | <0.82                      | <0.82      | -       |
| Hexachlorobutadiene               | µg/m <sup>3</sup> | 2.1              | <2.1                       | <2.1       | -       |
| Hexane                            | µg/m <sup>3</sup> | 0.7              | <0.70                      | <0.70      | -       |
| Isooctane                         | µg/m <sup>3</sup> | 0.93             | <0.93                      | <0.93      | -       |
| iso-Propylbenzene (cumene)        | µg/m <sup>3</sup> | 0.98             | <0.98                      | <0.98      | -       |
| Methyl t-Butyl Ether (MTBE)       | µg/m <sup>3</sup> | 0.72             | <0.72                      | <0.72      | -       |
| Methylene Chloride                | µg/m <sup>3</sup> | 0.69             | <0.69                      | <0.69      | -       |
| Propylene                         | µg/m <sup>3</sup> | 0.34             | <0.34                      | <0.34      | -       |
| Tetrachloroethene                 | µg/m <sup>3</sup> | 1.4              | <1.4                       | <1.4       | -       |
| Tetrahydrofuran                   | µg/m <sup>3</sup> | 0.59             | <0.59                      | <0.59      | -       |
| Trichloroethene                   | µg/m <sup>3</sup> | 1.1              | <1.1                       | <1.1       | -       |
| Trichlorofluoromethane            | µg/m <sup>3</sup> | 1.1              | <1.1                       | <1.1       | -       |
| Vinyl acetate                     | µg/m <sup>3</sup> | 1.8              | <1.8                       | <1.8       | -       |
| Vinyl bromide (bromoethene)       | µg/m <sup>3</sup> | 0.87             | <0.87                      | <0.87      | -       |
| Vinyl chloride                    | µg/m <sup>3</sup> | 0.51             | <0.51                      | <0.51      | -       |
| Notes:                            |                   | •                |                            |            | •       |

Not analyzed or RPD not calculated.

Concentration is less than the laboratory detection limit indicated.

Laboratory Reportable Detection Limit.

RDL RPD

-<

RPD is Relative Percentage Difference calculated as RPD(%)=(|V1-V2|/[(V1+V2)/2])\*100 where V1,V2 = concentrations of parent and duplicate sample, respectively.

RPDs have only been calculated where a concentration is greater than 5 times the RDL



#### Dair BAF MF H' D<sub>water</sub> тс RsC Pure component Pure component Mass Fraction in Mass Fraction in Mass Fraction in Parameter Tolerable **Risk-specific** Bioattenuation Unitless Henry's . molecular Soil (Coarse and Soil Vapour - Fine molecular Soil Vapour Concentration concentration Law Constant Factor diffusivity in air diffusivity in wate Fine) **Coarse Soil** Soil Units unitless unitless unitless unitless unitless mg/m<sup>3</sup> mg/m cm<sup>2</sup>/s cm<sup>2</sup>/s Benzene 0.003 0.225 0.088 1.00E-05 10 Toluene 3.8 0.274 0.087 9.20E-06 10 ---Ethylbenzene 1 0.358 0.075 8.50E-06 10 ---------0.18 0.252 0.078 9.90E-06 10 Xylenes ------------0.003 0.017 0.059 7.50E-06 10 Naphthalene ---Aliphatic C>6-C8 0.854 0.55 0.842 18.4 50 0.05 0.00001 10 Aliphatic C>8-C10 F1 1 80 0.05 0.00001 10 0.36 0.141 0.153 Aromatic C>8-C10 0.2 ---0.48 0.05 0.00001 10 0.09 0.005 0.005 Aliphatic C>10-C12 120 0.05 0.00001 10 0.36 0.767 0.766 1 ---Aliphatic C>12-C16 520 0.05 0.00001 10 0.44 0.205 0.206 1 ---F2 Aromatic C>10-C12 0.2 0.14 0.05 0.00001 10 0.09 0.023 0.023 ---Aromatic C>12-C16 0.2 0.053 0.05 0.00001 10 0.11 0.005 0.005 1,1,1-Trichloroethane 5 0.688 0.078 0.000009 10 ------1,1,2,2-Tetrachloroethane 0.000172 0.019 0.071 0.000008 10 ---------0.0002 0.000625 0.038 0.078 0.000009 10 1,1,2-Trichloroethane ------1.1-Dichloroethane 0.006250 0.240 0.074 0.000011 10 ---1,1-Dichloroethene 0.2 0.942 0.090 0.000010 10 1,2,4-Trichlorobenzene 0.007 0.112 0.030 0.000008 10 ---------1,2,4-Trimethylbenzene 0.06 0.230 0.061 0.000008 10 ---------1,2-Dibromoethane 0.0093 0.016700 0.027 0.022 0.000012 10 0.072 0.069 0.000008 10 1,2-Dichlorobenzene 0.2 1,2-Dichloroethane 0.007 0.000385 0.049 0.104 0.000010 10 1,2-Dichloropropane 0.004 0.002703 0.110 0.078 0.000009 10 ------1,3,5-Trimethylbenzene 0.06 0.359 0.060 0.000008 10 ---------1,3-Butadiene 0.002 0.000333 3.009 0.249 0.000011 10 1,3-Dichlorobenzene 0.095 0.000909 0.128 0.069 0.000008 10 1,4-Dichlorobenzene 0.000008 0.095 0.000909 0.098 0.069 10 1,4-Dioxane 0.03 0.002000 0.000 0.229 0.000010 10 ------0.03 0.004 0.070 0.000008 10 2-Hexanone ---------0.002 0.124 0.000011 Acetone 31 10 -----------0.450 0.094 0.000011 Allyl chloride 0.001 10 Benzyl chloride 0.001 0.017 0.075 0.000008 10 Bromodichloromethane 0.000270 0.098 0.030 0.000011 10 ------0.009091 0.024 0.015 0.000010 10 Bromoform ---------0.005 0.255 0.073 0.000012 10 Bromomethane --------0.000010 0.7 0.705 0.104 Carbon Disulfide 10 0.000009 Carbon Tetrachloride 0.1 0.001667 1.183 0.078 10 Chlorobenzene 0.01 0.148 0.073 0.000009 10 ------0.073 0.271 0.000012 10 Chloroethane 1 ---------Chloroform 0.098 0.000435 0.154 0.104 0.000010 10 --------0.09 0.388 0.126 0.000007 Chloromethane 10 cis-1,2-Dichloroethene 0.007 0.302 0.074 0.000011 10 cis-1,3-Dichloropropene 0.02 0.002500 0.053 0.087 0.000010 10 ------Cyclohexane 6 7.618 0.080 0.000009 10 ---------0.07 0.040 0.020 0.000011 Dibromochloromethane 10 -----------0.000010 16.475 0.067 Dichlorodifluoromethane 0.1 10 4-Ethyltoluene 0.40 0.205 0.065 0.000007 10 Ethyl acetate 0.07 0.006 0.067 0.000010 10 ---------5 21.500 0.038 0.000009 10 Freon 113 ------------0.082 115.000 0.000009 Freon 114 17 10 -----------0.4 83.709 0.065 0.000007 Heptane 10 0.027 Hexachlorobutadiene 0.000455 0.421 0.000007 10 Isooctane 0.4 30.500 0.060 0.000007 10 ------Isopropyl alcohol 0.2 0.000331 0.103 0.000011 10 ------------0.065 0.000007 Isopropylbenzene 0.4 0.591 10 -----------Methyl ethyl ketone 5 0.001 0.081 0.000010 10 Methyl isobutyl ketone 0.003 0.006 0.075 0.000008 10 Methylene chloride 0.6 1 0.151 0.101 0.000012 10 ------MTBE 0.037 0.028 0.102 0.000011 10 -----------n-Hexane 73.916 0.000008 0.7 0.200 10 -----------8.013 0.110 0.000011 Propylene 3 10 Styrene 0.092 0.130 0.071 0.000008 10 Tetrachloroethylene 0.36 0.038462 1.077 0.072 800000.0 10 ------0.003 0.099 0.000011 10 Tetrahydrofuran 2 --------trans-1,2-Dichloroethene 0.277 0.071 0.000012 10 --------0.02 0.002500 0.053 0.087 0.000010 trans-1,3-Dichloropropene 10 Trichloroethylene 0.04 0.002439 0.477 0.079 0.000009 10 Trichlorofluoromethane 1.05 5.200 0.087 0.000010 10 ------Vinyl acetate 0.2 0.024 0.085 0.000009 10 ------------Vinyl bromide 0.003 0.260 0.100 0.000012 10 --------0.002273 0.000012 Vinyl chloride 3.236 0.106 0.1 10 ---Hydrogen Sulfide 0.002 0.350 0.188 0.000022 10

#### Table 6: Chemical, Physical, and Toxicological Properties

Notes:

 $\mbox{cm}^2\mbox{/s}$  Square centimetres per second

F1 Fraction 1 (C6-C10)

F2 Fraction 2 (C>10-C16)

mg/m<sup>3</sup> Milligrams per cubic metre PHC Petroleum hydrocarbon

-- not applicable

Refere Canadian Council of Ministers of the Environment (CCME). 2014. A Protocol for the Derivation of Soil Vapour Quality Guidelines for Protection of Human Exposures via Inhalation of Vapours

#### Table 7: Soil Properties for Evaluation of Vapour Transport

|                   | Parameter                | Units              | Coarse-Grained Soil | Fine-Grained Soil |
|-------------------|--------------------------|--------------------|---------------------|-------------------|
| θ <sub>a</sub>    | Vapour-filled porosity   | unitless           | 0.31                | 0.303             |
| ρ <sub>b</sub>    | Dry bulk density         | g/cm <sup>3</sup>  | 1.7                 | 1.4               |
| n                 | Total soil porosity      | unitless           | 0.36                | 0.47              |
| θ <sub>w</sub>    | Moisture-filled porosity | unitless           | 0.05                | 0.167             |
| Q <sub>soil</sub> | Soil gas flow rate       | cm <sup>3</sup> /s | 167                 | 16.7              |

Notes:

Values from CCME (2014).

cm Centimetre

cm<sup>2</sup> Square centimetre

g/cm<sup>3</sup> Grams per cubic centimetre

PHC Petroleum hydrocarbon

References:

Canadian Council of Ministers of the Environment (CCME). 2014. A Protocol for the Derivation of Soil Vapour Quality Guidelines for Protection of Human Exposures via Inhalation of Vapours.

#### Table 8: Building Properties for Evaluation of Vapour Transport

|                    | Parameter                                                           |                 | Residential Land Use |
|--------------------|---------------------------------------------------------------------|-----------------|----------------------|
|                    |                                                                     |                 | Basement             |
| L <sub>B</sub>     | Building length                                                     | cm              | 1,225                |
| W <sub>B</sub>     | Building width                                                      | cm              | 1,225                |
| A <sub>B</sub>     | Building area exposed to soil, including basement wall area         | cm <sup>2</sup> | 2.7E+06              |
| H <sub>B</sub>     | Building height                                                     | cm              | 360                  |
| L <sub>crack</sub> | Thickness of the foundation                                         | cm              | 11.25                |
| A <sub>crack</sub> | Area of cracks through which contaminant vapours enter the building | cm <sup>2</sup> | 994.5                |
| ACH                | Air exchanges per hour                                              | h <sup>-1</sup> | 0.5                  |

Notes:

Values taken from CCME (2014).

cm<sup>2</sup> Square centimetre

h<sup>-1</sup> Per hour

References:

Canadian Council of Ministers of the Environment (CCME). 2014. A Protocol for the Derivation of Soil Vapour Quality Guidelines for Protection of Human Exposures via Inhalation of Vapours.

cm Centimetre

18,839

| - /                         |                   | Residential Land Use       |                   |                |  |  |
|-----------------------------|-------------------|----------------------------|-------------------|----------------|--|--|
| Parameter                   | Units             | Basement and Slab-on-Grade |                   |                |  |  |
| Deserve                     |                   | Coarse Grained             | Units             | Coarse Grained |  |  |
|                             |                   | 0.195                      |                   | 195            |  |  |
|                             |                   | 124                        |                   | 124,220        |  |  |
|                             |                   | 34                         |                   | 34,330         |  |  |
|                             |                   | 6                          |                   | 6,330          |  |  |
|                             |                   | 867                        |                   | 867,380        |  |  |
| PHC F2                      |                   | 53                         |                   | 52,500         |  |  |
| Naphthalene                 |                   | 0.112                      |                   | 112            |  |  |
| Isopropanol                 |                   | 6.22                       |                   | 6,219          |  |  |
| 1,1,1-I richloroethane      |                   | 1,694                      |                   | 1,693,510      |  |  |
| 1,1,2,2- I etrachioroethane |                   | 0.01                       |                   | 11             |  |  |
| 1,1,2- I richloroethane     |                   | 0.01                       |                   | /              |  |  |
| 1,1-Dichloroethane          |                   | 0.43                       |                   | 430            |  |  |
| 1,1-Dichloroethene          |                   | 6.47                       |                   | 6,470          |  |  |
| 1,2,4-Irichlorobenzene      |                   | 0.36                       |                   | 365            |  |  |
| 1,2,4-1 rimethylbenzene     |                   | 2.23                       |                   | 2,235          |  |  |
| 1,2-Dibromoethane           |                   | 0.59                       |                   | 590            |  |  |
| 1,2-Dichlorobenzene         |                   | 7.07                       |                   | 7,072          |  |  |
| 1,2-Dichloroethane          |                   | 0.02                       |                   | 24             |  |  |
| 1,2-Dichloroethene (cis)    |                   | 0.24                       |                   | 242            |  |  |
| 1,2-Dichloroethene (trans)  |                   | NG                         |                   | NG             |  |  |
| 1,2-Dichloropropane         |                   | 0.14                       |                   | 135            |  |  |
| 1,3,5-Trimethylbenzene      |                   | 2.23                       |                   | 2,235          |  |  |
| 1,3-Butadiene               |                   | 0.02                       |                   | 17             |  |  |
| 1,3-Dichlorobenzene         |                   | 0.06                       |                   | 64             |  |  |
| 1,3-Dichloropropene [cis]   |                   | 0.16                       |                   | 163            |  |  |
| 1,3-Dichloropropene [trans] |                   | 0.15                       |                   | 149            |  |  |
| 1,4-Dichlorobenzene         |                   | 0.06                       |                   | 64             |  |  |
| 1,4-Dioxane                 |                   | 0.11                       |                   | 105            |  |  |
| 1-Methyl-4 ethyl benzene    |                   | 14.46                      |                   | 14,461         |  |  |
| 2-Butanone (MEK)            |                   | 167                        |                   | 167,364        |  |  |
| 2-Hexanone (MBK)            |                   | 1.05                       |                   | 1,053          |  |  |
| 4-Methyl-2-pentanone (MIBK) |                   | 0.1                        |                   | 103            |  |  |
| Acetone                     | ma/m <sup>3</sup> | 919                        | ua/m <sup>3</sup> | 918,788        |  |  |
| Allyl chloride              |                   | 0.03                       | P9/11             | 32             |  |  |
| Benzyl chloride             |                   | 0.03                       |                   | 34             |  |  |
| Bromodichloromethane        |                   | 0.03                       |                   | 28             |  |  |
| Bromoform                   |                   | 1.49                       |                   | 1,494          |  |  |
| Bromomethane                |                   | 0.17                       |                   | 173            |  |  |
| Carbon disulfide            |                   | 21.71                      |                   | 21,713         |  |  |
| Carbon tetrachloride        |                   | 0.11                       |                   | 113            |  |  |
| Chlorobenzene               |                   | 0.35                       |                   | 347            |  |  |
| Chloroethane                |                   | 31                         |                   | 31,019         |  |  |
| Chloroform                  |                   | 0.03                       |                   | 27             |  |  |
| Chloromethane               |                   | 2.66                       |                   | 2,657          |  |  |
| Cyclohexane                 |                   | 202                        |                   | 201,510        |  |  |
| Dibromochloromethane        |                   | 4.75                       |                   | 4,750          |  |  |
| Dichlorodifluoromethane     |                   | 3.58                       |                   | 3,584          |  |  |
| Ethyl acetate               |                   | 2.51                       |                   | 2,509          |  |  |
| Freon 113                   |                   | 231                        |                   | 230,627        |  |  |
| Freon 114                   |                   | 566.00                     |                   | 566,335        |  |  |
| Heptane                     |                   | 14.46                      |                   | 14,461         |  |  |
| Hexachlorobutadiene         |                   | 0.05                       |                   | 51             |  |  |

### Table 9: Generic Soil Vapour Criteria

| Isooctane                   | 14.92 | 14,917 |
|-----------------------------|-------|--------|
| iso-Propylbenzene (cumene)  | 14.46 | 14,461 |
| Methyl t-Butyl Ether (MTBE) | 1.15  | 1,153  |
| Methylene Chloride          | 18.76 | 18,764 |
| Propylene                   | 92    | 91,723 |
| Styrene                     | 3.22  | 3,220  |
| Tetrachloroethene           | 2.68  | 2,679  |
| Tetrahydrofuran             | 62.83 | 62,828 |
| Trichloroethene             | 0.15  | 153    |
| Trichlorofluoromethane      | 34.32 | 34,325 |
| Vinyl acetate               | 6.59  | 6,586  |
| Vinyl bromide (bromoethene) | 0.09  | 94     |
| Vinyl chloride              | 0.14  | 140    |

18.84

Notes:

Hexane

mg/m3 milligrams per cubic metre μg/m3 micrograms per cubic metre



|                         |                   | Soil Vapour                        | Soil Vanour P    | $P_{aaulta} (ug/m^3)$ | Comparisons of Soil Vapour Measurements to Soil Vapour Criteria |                         |                                       |          |  |  |  |  |
|-------------------------|-------------------|------------------------------------|------------------|-----------------------|-----------------------------------------------------------------|-------------------------|---------------------------------------|----------|--|--|--|--|
| Parameter               | Unit              | Screening<br>Criteria <sup>a</sup> |                  | (esuits (µg/m )       | Estimated C                                                     | ancer Risk <sup>b</sup> | Estimated Hazard Quotients $^{\circ}$ |          |  |  |  |  |
|                         |                   | ontenta                            | VW-01            | 19DUP01               | VW-01                                                           | 19DUP01                 | VW-01                                 | 19DUP01  |  |  |  |  |
| Toluene                 | µg/m³             | 124,220                            | <0.75            | 2.67                  | -                                                               | -                       | ND                                    | 2.15E-05 |  |  |  |  |
| Xylenes, Total          | µg/m <sup>3</sup> | 6,330                              | <2.0             | 7.4                   | -                                                               | -                       | ND                                    | 1.17E-03 |  |  |  |  |
| Aliphatic >C6-C8        | µg/m <sup>3</sup> | 740,737                            | 17               | 29                    | -                                                               | -                       | 2.30E-05                              | 3.92E-05 |  |  |  |  |
| Aliphatic >C8-C10       | µg/m <sup>3</sup> | 40,257                             | <15              | 41                    | -                                                               | -                       | ND                                    | 1.02E-03 |  |  |  |  |
| F1 (C6-C10)             | µg/m <sup>3</sup> | 867,383                            | 465              | 85.4                  | -                                                               | -                       | 5.36E-04                              | 9.85E-05 |  |  |  |  |
| Acetone                 | µg/m³             | 918,788                            | 2.3              | 3.5                   | -                                                               | -                       | 2.50E-06                              | 3.81E-06 |  |  |  |  |
| Dichlorodifluoromethane | µg/m³             | 3,584                              | 1.89             | 2.40                  | -                                                               | -                       | 5.27E-04                              | 6.70E-04 |  |  |  |  |
| Cu                      | mulative R        | isk and Hazard In                  | dex <sup>d</sup> |                       | 0.0E+00                                                         | 0.0E+00                 | 0.001                                 | 0.003    |  |  |  |  |
|                         | Target Risl       | k and Hazard Leve                  | ls               |                       | 1.0 >                                                           | k 10 <sup>-5</sup>      | 1.00                                  |          |  |  |  |  |

### Table 10: Soil Vapour Risk Evaluation

Notes:

< - not detected. Listed value is the corresponding detection limit.

- = screening criteria not calculated as appropriate toxicity data not available.

**Bold** = identifies estimated risks and hazards that exceed the target risk level of  $1 \times 10^{-5}$  or target hazard level of 1.

<sup>a</sup> Listed soil vapour screening criteria derived in accordance with CCME, 2014.

<sup>b</sup> Estimated cancer risk = (soil vapour concentration/cancer soil vapour screening level) x 10<sup>-5</sup>.

<sup>c</sup> Estimated hazard quotient = (soil vapour concentration/non-cancer soil vapour screening level).

<sup>d</sup> Cumulative risk and hazard index represent the sum of chemical-specific cancer risks and hazard quotients.



# FIGURES

| Figure 1 | Site Location Plan                                               |
|----------|------------------------------------------------------------------|
| Figure 2 | Site Plan and Surrounding Land Use                               |
| Figure 3 | Historical Groundwater Elevations (Groundwater Monitoring Wells) |
| Figure 4 | Groundwater Elevation Contours – May 2019                        |
| Figure 5 | Groundwater Elevation Contours – June 2019                       |
| Figure 6 | Groundwater Elevation Contours – September 2019                  |
| Figure 7 | Groundwater Elevation Contours – December 2019                   |











\_\_\_\_\_



pinese of **MW-03** A MW-203 MW-02 MW-05 VW-01 MW-0 Man Made Pond



Q:\Edmonton\GIS\SOLID\_WASTE\SWOP\SWOP04071-01\Maps\Task003\SWOP04071-01\_Figure6\_GW\_Sept2019.mxd modified 2020-10-01 by Darren.Schouls



<u>Q:\Edmonton\GIS\SOLID\_WASTE\SWOP\SWOP04071-01\Maps\Task003\SWOP04071-01\_Figure7\_GW\_Dec2019.mxd modified 2020-10-01 by Darren.Schouls</u>







# APPENDIX A

## TETRA TECH'S LIMITATIONS ON THE USE OF THIS DOCUMENT



## GEOENVIRONMENTAL

#### 1.1 USE OF DOCUMENT AND OWNERSHIP

This document pertains to a specific site, a specific development, and a specific scope of work. The document may include plans, drawings, profiles and other supporting documents that collectively constitute the document (the "Professional Document").

The Professional Document is intended for the sole use of TETRA TECH's Client (the "Client") as specifically identified in the TETRA TECH Services Agreement or other Contractual Agreement entered into with the Client (either of which is termed the "Contract" herein). TETRA TECH does not accept any responsibility for the accuracy of any of the data, analyses, recommendations or other contents of the Professional Document when it is used or relied upon by any party other than the Client, unless authorized in writing by TETRA TECH.

Any unauthorized use of the Professional Document is at the sole risk of the user. TETRA TECH accepts no responsibility whatsoever for any loss or damage where such loss or damage is alleged to be or, is in fact, caused by the unauthorized use of the Professional Document.

Where TETRA TECH has expressly authorized the use of the Professional Document by a third party (an "Authorized Party"), consideration for such authorization is the Authorized Party's acceptance of these Limitations on Use of this Document as well as any limitations on liability contained in the Contract with the Client (all of which is collectively termed the "Limitations on Liability"). The Authorized Party should carefully review both these Limitations on Use of this Document and the Contract prior to making any use of the Professional Document. Any use made of the Professional Document by an Authorized Party constitutes the Authorized Party's express acceptance of, and agreement to, the Limitations on Liability.

The Professional Document and any other form or type of data or documents generated by TETRA TECH during the performance of the work are TETRA TECH's professional work product and shall remain the copyright property of TETRA TECH.

The Professional Document is subject to copyright and shall not be reproduced either wholly or in part without the prior, written permission of TETRA TECH. Additional copies of the Document, if required, may be obtained upon request.

#### **1.2 ALTERNATIVE DOCUMENT FORMAT**

Where TETRA TECH submits electronic file and/or hard copy versions of the Professional Document or any drawings or other project-related documents and deliverables (collectively termed TETRA TECH's "Instruments of Professional Service"), only the signed and/or sealed versions shall be considered final. The original signed and/or sealed electronic file and/or hard copy version archived by TETRA TECH shall be deemed to be the original. TETRA TECH will archive a protected digital copy of the original signed and/or sealed version for a period of 10 years.

Both electronic file and/or hard copy versions of TETRA TECH's Instruments of Professional Service shall not, under any circumstances, be altered by any party except TETRA TECH. TETRA TECH's Instruments of Professional Service will be used only and exactly as submitted by TETRA TECH.

Electronic files submitted by TETRA TECH have been prepared and submitted using specific software and hardware systems. TETRA TECH makes no representation about the compatibility of these files with the Client's current or future software and hardware systems.

#### **1.3 STANDARD OF CARE**

Services performed by TETRA TECH for the Professional Document have been conducted in accordance with the Contract, in a manner

consistent with the level of skill ordinarily exercised by members of the profession currently practicing under similar conditions in the jurisdiction in which the services are provided. Professional judgment has been applied in developing the conclusions and/or recommendations provided in this Professional Document. No warranty or guarantee, express or implied, is made concerning the test results, comments, recommendations, or any other portion of the Professional Document.

If any error or omission is detected by the Client or an Authorized Party, the error or omission must be immediately brought to the attention of TETRA TECH.

#### 1.4 DISCLOSURE OF INFORMATION BY CLIENT

The Client acknowledges that it has fully cooperated with TETRA TECH with respect to the provision of all available information on the past, present, and proposed conditions on the site, including historical information respecting the use of the site. The Client further acknowledges that in order for TETRA TECH to properly provide the services contracted for in the Contract, TETRA TECH has relied upon the Client with respect to both the full disclosure and accuracy of any such information.

#### **1.5 INFORMATION PROVIDED TO TETRA TECH BY OTHERS**

During the performance of the work and the preparation of this Professional Document, TETRA TECH may have relied on information provided by persons other than the Client.

While TETRA TECH endeavours to verify the accuracy of such information, TETRA TECH accepts no responsibility for the accuracy or the reliability of such information even where inaccurate or unreliable information impacts any recommendations, design or other deliverables and causes the Client or an Authorized Party loss or damage.

#### **1.6 GENERAL LIMITATIONS OF DOCUMENT**

This Professional Document is based solely on the conditions presented and the data available to TETRA TECH at the time the data were collected in the field or gathered from available databases.

The Client, and any Authorized Party, acknowledges that the Professional Document is based on limited data and that the conclusions, opinions, and recommendations contained in the Professional Document are the result of the application of professional judgment to such limited data.

The Professional Document is not applicable to any other sites, nor should it be relied upon for types of development other than those to which it refers. Any variation from the site conditions present, or variation in assumed conditions which might form the basis of design or recommendations as outlined in this report, at or on the development proposed as of the date of the Professional Document requires a supplementary investigation and assessment.

TETRA TECH is neither qualified to, nor is it making, any recommendations with respect to the purchase, sale, investment or development of the property, the decisions on which are the sole responsibility of the Client.

#### **1.7 NOTIFICATION OF AUTHORITIES**

In certain instances, the discovery of hazardous substances or conditions and materials may require that regulatory agencies and other persons be informed and the client agrees that notification to such bodies or persons as required may be done by TETRA TECH in its reasonably exercised discretion.



# APPENDIX B

**CROSS-SECTIONS (TIAMAT 2014)** 





| 0            | 20 |  | 50 | 100m |  |  |  |  |  |  |
|--------------|----|--|----|------|--|--|--|--|--|--|
| ШП           |    |  |    |      |  |  |  |  |  |  |
| Scale 1:2000 |    |  |    |      |  |  |  |  |  |  |

PHASE II TEST LOCATIONS WW-## GROUNDWATER MONITORING WELL (5) TH-## TESTHOLE (2) VP-## SOIL VAPOUR MONITORING WELL (1) REFER TO TABLE 1 FOR TESTHOLE INFORMATION LEGEND HISTORIC WASTE DISPOSAL LOT BOUNDARY 100 YEAR FLOOD LINE CROSS SECTION LOCATION

| ELECTRICAL   |
|--------------|
| <br>SANITARY |
| <br>STORM    |
| <br>WATER    |

ENVIRONMENTAL RISK MANAGEMENT PLAN HISTORIC WASTE DISPOSAL SITE McKENZIE TRAILS RECREATION AREA

|    | SCALE:    | DATE:       | PROJECT NO .:  | FIGURE NO .: |
|----|-----------|-------------|----------------|--------------|
|    | 1 : 2000  | June 24/14  | 12-435         |              |
|    | DRAWN BY: | CHECKED BY: | CAD FILE NO.:  | FIGURE 2     |
| TE | LCH       | LTM         | ERMP v1.00.dwg |              |



| <br>Tiamat H | Environmer  | ntal Consul         | tants Ltd.   |
|--------------|-------------|---------------------|--------------|
| SCALE:       | DATE:       | PROJECT NO .:       | FIGURE NO .: |
| AS SHOWN     | Jan. 30/15  | 12-435              |              |
| DRAWN BY:    | CHECKED BY: | CAD FILE NO.:       | FIGURE 3     |
| LCH          | LTM         | ERMP Sections v1.01 |              |

# APPENDIX C

## WATER WELL DATA



Alberta

View in Metric Export to Excel

# **Groundwater Wells**

Please click the water Well ID to generate the Water Well Drilling Report.

| GIC Well     | ISD | SEC | TWP | RGF | м | DRILLING COMPANY                             | DATE<br>COMPLETED | DEPTH  | TYPE OF WORK           | USF                 | СНМ      | IT | РТ | WELLOWNER                        | STATIC<br>LEVEL<br>(ft) | TEST<br>RATE<br>(igpm) | SC_DIA |
|--------------|-----|-----|-----|-----|---|----------------------------------------------|-------------------|--------|------------------------|---------------------|----------|----|----|----------------------------------|-------------------------|------------------------|--------|
| <u>96285</u> | 13  | 22  | 38  | 27  | 4 | HI-RATE DRILLING COMPANY<br>LTD.             | 1970-11-10        | 310.00 | Test Hole              | Investigatio<br>n   |          | 26 |    | ALTA PUBLIC<br>WORKS#DEERHOME 2A | (10)                    | (19911)                | 0.00   |
| <u>96351</u> | SW  | 27  | 38  | 27  | 4 | UNKNOWN DRILLER                              |                   | 8.00   | Cathodic<br>Protection | Domestic            | 1        |    |    | PROUDFOTT, J.A.                  | 5.00                    |                        | 0.00   |
| <u>96352</u> | SW  | 27  | 38  | 27  | 4 | UNKNOWN DRILLER                              |                   | 150.00 | Chemistry              | Domestic            | 1        |    |    | PROUDFOOT, J.A.                  |                         |                        | 0.00   |
| <u>96353</u> | SW  | 27  | 38  | 27  | 4 | UNKNOWN DRILLER                              |                   | 100.00 | Chemistry              | Domestic            | <u>1</u> |    |    | PROUDFOOT, J.A.                  |                         |                        | 0.00   |
| <u>96354</u> | 4   | 27  | 38  | 27  | 4 | UNKNOWN DRILLER                              | 1958-09-16        | 16.00  | Chemistry              | Domestic            | <u>2</u> |    |    | JANKE HLDG                       | 12.00                   |                        | 0.00   |
| <u>96355</u> | SW  | 27  | 38  | 27  | 4 | UNKNOWN DRILLER                              |                   | 0.00   | Chemistry              | Domestic            |          |    |    | JOHNSON, DON A.                  |                         |                        | 0.00   |
| <u>96356</u> | SW  | 27  | 38  | 27  | 4 | FORRESTER DRILLING                           | 1977-09-15        | 147.00 | New Well               | Domestic            |          | 11 |    | GRANDE, RUTH                     | 37.00                   | 20.00                  | 7.00   |
| <u>96357</u> | SW  | 27  | 38  | 27  | 4 | FORRESTER DRILLING                           | 1977-09-13        | 140.00 | New Well               | Domestic            | 1        | 8  |    | FIVE-O-DEV LTD                   | 30.00                   | 30.00                  | 7.00   |
| <u>96358</u> | SW  | 27  | 38  | 27  | 4 | TELNING                                      | 1921-01-01        | 180.00 | Federal Well<br>Survey | Domestic &<br>Stock |          |    |    | NICHOLSON, R.J.                  | 50.00                   |                        | 0.00   |
| <u>96359</u> | SW  | 27  | 38  | 27  | 4 | FORRESTER WATER WELL<br>DRILLING (1981) LTD. | 1984-11-27        | 143.00 | New Well               | Domestic            |          | 18 |    | BORDER PAVING                    | 35.00                   | 42.00                  | 7.00   |
| <u>96360</u> | SW  | 27  | 38  | 27  | 4 | FORRESTER WATER WELL<br>DRILLING (1981) LTD. | 1984-11-29        | 110.00 | New Well               | Domestic            |          | 14 |    | BORDER PAVING                    | 34.00                   | 42.00                  | 7.00   |
| <u>96361</u> | SW  | 27  | 38  | 27  | 4 | UNKNOWN DRILLER                              |                   | 0.00   | Chemistry              | Domestic            |          |    |    | RIVERBEND GOLF COURSE            |                         |                        | 0.00   |
| <u>96362</u> | 4   | 27  | 38  | 27  | 4 | UNKNOWN DRILLER                              |                   | 0.00   | Well Inventory         | Unknown             |          |    |    | NICKELSON                        |                         |                        | 0.00   |
| <u>96363</u> | 4   | 27  | 38  | 27  | 4 | UNKNOWN DRILLER                              |                   | 160.00 | Chemistry              | Domestic            | 1        |    |    | POHL, HARRY                      | 75.00                   |                        | 0.00   |
| <u>96364</u> | NW  | 27  | 38  | 27  | 4 | UNKNOWN DRILLER                              | 1934-01-01        | 25.00  | Federal Well<br>Survey | Domestic            |          |    |    | FEDRER                           | 20.00                   |                        | 48.00  |
| <u>96365</u> | NW  | 27  | 38  | 27  | 4 | BIG IRON DRILLING LTD.                       | 1987-06-03        | 160.00 | New Well               | Domestic            |          | 11 |    | RED DEER, CITY OF                | 26.00                   | 10.00                  | 5.56   |
| <u>96366</u> | NW  | 27  | 38  | 27  | 4 | BIG IRON DRILLING LTD.                       | 1987-06-11        | 127.00 | New Well               | Domestic            |          | 8  |    | RED DEER, CITY OF                | 27.00                   | 10.00                  | 5.56   |
| <u>96377</u> |     | 27  | 38  | 27  | 4 | UNKNOWN DRILLER                              |                   | 30.00  | Chemistry              | Domestic            | 1        |    |    | POHL, HARRY                      | 26.00                   |                        | 0.00   |
| <u>96378</u> | SE  | 28  | 38  | 27  | 4 | FORRESTER DRILLING                           | 1964-04-13        | 123.00 | New Well               | Unknown             |          | 12 |    | CNR                              | 40.00                   | 22.00                  | 7.00   |
| <u>96379</u> | 1   | 28  | 38  | 27  | 4 | UNKNOWN DRILLER                              | 1952-05-04        | 630.00 | Structure Test<br>Hole | Industrial          |          |    |    | CALIFORNIA STANDARD<br>CO        |                         |                        | 0.00   |

Alberta

View in Metric

**Export to Excel** 

| GIC Well<br>ID | LSD | SEC | тwр | RGE | м | DRILLING COMPANY                 | DATE<br>COMPLETED | DEPTH<br>(ft) | TYPE OF WORK   | USE               | СНМ | ιт | РТ | WELL OWNER                        | STATIC<br>LEVEL<br>(ft) | TEST<br>RATE<br>(igpm) | SC_DIA<br>(in) |
|----------------|-----|-----|-----|-----|---|----------------------------------|-------------------|---------------|----------------|-------------------|-----|----|----|-----------------------------------|-------------------------|------------------------|----------------|
| <u>96380</u>   | 2   | 28  | 38  | 27  | 4 | HI-RATE DRILLING COMPANY<br>LTD. | 1969-11-18        | 180.00        | Test Hole      | Investigatio<br>n |     | 21 |    | RED DEER, CITY OF# TH2<br>-28     |                         |                        | 5.50           |
| <u>96380</u>   | 2   | 28  | 38  | 27  | 4 | UNKNOWNDRILLINGCOMP11            |                   | 180.00        | Old Well-Yield | Unknown           |     | 1  | 22 | RED DEER                          | 48.78                   | 11.00                  |                |
| <u>96381</u>   | 2   | 28  | 38  | 27  | 4 | FORRESTER DRILLING               | 1961-03-09        | 44.00         | Test Hole      | Investigatio<br>n | 1   | 4  |    | RED DEER, CITY OF#<br>TH1, SITE1  |                         |                        | 0.00           |
| <u>96382</u>   | 2   | 28  | 38  | 27  | 4 | FORRESTER DRILLING               | 1961-03-08        | 53.00         | Test Hole      | Investigatio<br>n | 1   | 5  |    | RED DEER, CITY OF# TH2<br>SITE 1  |                         |                        | 0.00           |
| <u>96383</u>   | 2   | 28  | 38  | 27  | 4 | FORRESTER DRILLING               | 1961-03-08        | 85.00         | Test Hole      | Investigatio<br>n |     | 4  |    | RED DEER, CITY OF#<br>TH5, SITE 1 |                         |                        | 0.00           |
| <u>96384</u>   | 7   | 28  | 38  | 27  | 4 | FORRESTER DRILLING               | 1961-03-18        | 15.00         | Test Hole      | Investigatio<br>n |     | 3  |    | RED DEER, CITY OF#<br>THRB, SITE1 |                         |                        | 0.00           |
| <u>96385</u>   | 7   | 28  | 38  | 27  | 4 | FORRESTER DRILLING               | 1961-03-11        | 85.00         | Test Hole      | Investigatio<br>n | 1   | 6  |    | RED DEER, CITY OF #TH3<br>SITE1   | 26.00                   | 40.00                  | 7.00           |
| <u>96386</u>   | 7   | 28  | 38  | 27  | 4 | FORRESTER DRILLING               | 1961-03-17        | 72.00         | Test Hole      | Investigatio<br>n |     |    |    | RED DEER, CITY OF# TH6<br>SITE 1  |                         |                        | 0.00           |
| <u>96387</u>   | 7   | 28  | 38  | 27  | 4 | FORRESTER DRILLING               | 1961-03-23        | 80.00         | Test Hole      | Investigatio<br>n |     | 10 |    | RED DEER, CITY OF #<br>TH7 SITE 1 | 20.30                   | 30.00                  | 0.00           |
| <u>96388</u>   | 7   | 28  | 38  | 27  | 4 | FORRESTER DRILLING               | 1961-03-25        | 70.00         | Test Hole      | Investigatio<br>n |     | 7  |    | RED DEER, CITY OF#<br>TH8, SITE 1 |                         |                        | 0.00           |
| <u>96667</u>   | 7   | 28  | 38  | 27  | 4 | FORRESTER DRILLING               | 1961-03-29        | 80.00         | Test Hole      | Investigatio<br>n |     | 7  |    | RED DEER, CITY OF# TH<br>9,SITE 1 |                         |                        | 0.00           |
| <u>96668</u>   | 7   | 28  | 38  | 27  | 4 | FORRESTER DRILLING               | 1961-05-24        | 42.00         | New Well       | Investigatio<br>n |     | 3  |    | RED DEER, CITY OF#TH<br>10,SITE 1 | 12.50                   | 131.00                 | 0.00           |
| <u>96669</u>   | 7   | 28  | 38  | 27  | 4 | FORRESTER DRILLING               | 1961-05-25        | 22.00         | New Well       | Observation       |     | 3  |    | RED DEER, CITY<br>OF#TH11, SITE 1 |                         |                        | 7.00           |
| <u>96684</u>   | SE  | 28  | 38  | 27  | 4 | FORRESTER DRILLING               | 1960-03-18        | 29.00         | New Well       | Unknown           |     | 5  | 1  | RED DEER, CITY OF                 | 8.50                    | 20.00                  | 6.00           |
| <u>96685</u>   | NE  | 28  | 38  | 27  | 4 | FORRESTER DRILLING               | 1960-03-04        | 35.00         | New Well       | Investigatio<br>n |     | 4  |    | RED DEER, CITY OF# TH<br>4        | 13.30                   |                        | 6.00           |
| <u>96686</u>   | NE  | 28  | 38  | 27  | 4 | FORRESTER DRILLING               | 1960-02-29        | 70.00         | New Well       | Investigatio<br>n |     | 7  |    | RED DEER, CITY OF# TH3            | 25.00                   |                        | 6.00           |
| <u>96687</u>   | NE  | 28  | 38  | 27  | 4 | FORRESTER DRILLING               | 1960-02-23        | 58.00         | New Well       | Investigatio<br>n |     | 7  |    | RED DEER, CITY OF# TH<br>2        | 23.30                   |                        | 6.00           |
| <u>96688</u>   | NE  | 28  | 38  | 27  | 4 | FORRESTER DRILLING               | 1960-02-19        | 72.00         | Test Hole      | Investigatio<br>n |     | 5  |    | RED DEER, CITY OF# TH<br>1        |                         |                        | 0.00           |
| 96689          | NE  | 28  | 38  | 27  | 4 | ALBERTA EAGLE DRILLING LTD.      | 1986-05-07        | 23.00         | Other          | Other             |     | 3  |    | CAN FRACMASTER                    |                         |                        | 7.00           |
| <u>96690</u>   | 9   | 28  | 38  | 27  | 4 | FORRESTER DRILLING               | 1961-03-10        | 53.00         | Test Hole      | Investigatio<br>n | 1   | 4  |    | RED DEER, CITY OF#<br>TH4, SITE 1 |                         |                        | 0.00           |

Alberta

View in Metric

**Export to Excel** 

| GIC Well<br>ID | LSD | SEC | TWP | RGE | м | DRILLING COMPANY                   | DATE<br>COMPLETED | DEPTH<br>(ft) | TYPE OF WORK           | USE                 | СНМ | LT | РТ | WELL OWNER                        | STATIC<br>LEVEL<br>(ft) | TEST<br>RATE<br>(igpm) | SC_DIA<br>(in) |
|----------------|-----|-----|-----|-----|---|------------------------------------|-------------------|---------------|------------------------|---------------------|-----|----|----|-----------------------------------|-------------------------|------------------------|----------------|
| <u>96691</u>   | 16  | 28  | 38  | 27  | 4 | FORRESTER DRILLING                 | 1961-06-16        | 308.00        | New Well               | Industrial          |     | 22 |    | RED DEER PACKERS<br>LTD#TH8,WELL1 | 28.50                   | 160.00                 | 8.63           |
| <u>96692</u>   | 16  | 28  | 38  | 27  | 4 | FORRESTER DRILLING                 | 1961-05-19        | 120.00        | New Well               | Industrial          |     | 11 |    | RED DEER PACKERS LTD#<br>TH7      | 20.00                   | 35.00                  | 8.63           |
| <u>96693</u>   | 16  | 28  | 38  | 27  | 4 | FORRESTER DRILLING                 | 1961-05-05        | 30.00         | Test Hole              | Industrial          |     | 5  |    | RED DEER PACKERS LTD#<br>TH6      |                         |                        | 0.00           |
| <u>96694</u>   | 16  | 28  | 38  | 27  | 4 | FORRESTER DRILLING                 | 1961-05-04        | 25.00         | Test Hole              | Investigatio<br>n   |     | 4  |    | RED DEER PACKERS<br>LTD#TH5       |                         |                        | 0.00           |
| <u>96695</u>   | 16  | 28  | 38  | 27  | 4 | FORRESTER DRILLING                 | 1961-05-04        | 50.00         | Test Hole              | Investigatio<br>n   |     | 7  |    | RED DEER PACKERS<br>LTD#TH 4      |                         |                        | 0.00           |
| <u>96696</u>   | 16  | 28  | 38  | 27  | 4 | FORRESTER DRILLING                 | 1961-05-03        | 35.00         | Test Hole              | Investigatio<br>n   |     | 5  |    | RED DEER PACKERS LTD#<br>TH 3     |                         |                        | 0.00           |
| <u>96697</u>   | 16  | 28  | 38  | 27  | 4 | FORRESTER DRILLING                 | 1961-05-02        | 45.00         | Test Hole              | Investigatio<br>n   |     | 6  |    | RED DEER PACKERS LTD#<br>TH2      |                         |                        | 0.00           |
| <u>96698</u>   | 16  | 28  | 38  | 27  | 4 | FORRESTER DRILLING                 | 1961-05-01        | 55.00         | Test Hole              | Investigatio<br>n   |     | 8  |    | RED DEER PACKERS LTD#<br>TH 1     |                         |                        | 0.00           |
| <u>96699</u>   | 16  | 28  | 38  | 27  | 4 | FORRESTER DRILLING                 | 1961-07-09        | 306.00        | New Well               | Industrial          |     | 24 |    | RED DEER PACKERS<br>LTD#TH 9, WW2 | 30.00                   | 24.00                  | 8.63           |
| <u>96699</u>   | 16  | 28  | 38  | 27  | 4 | FORRESTER DRILLING                 | 1961-07-09        | 306.00        | New Well               | Industrial          |     | 24 |    | RED DEER PACKERS<br>LTD#TH 9, WW2 | 31.70                   | 75.00                  | 8.63           |
| <u>96700</u>   | 16  | 28  | 38  | 27  | 4 | FORRESTER DRILLING                 | 1966-06-16        | 600.00        | New Well               | Industrial          |     | 46 |    | INTERCONTINENTAL<br>PACKERS LTD   |                         |                        | 10.75          |
| <u>96701</u>   |     | 28  | 38  | 27  | 4 | FORRESTER DRILLING                 | 1961-04-27        | 44.00         | New Well               | Investigatio<br>n   |     |    |    | RED DEER, CITY OF#TH8,<br>SITE 1  | 0.00                    | 87.00                  | 0.00           |
| <u>96800</u>   | 4   | 34  | 38  | 27  | 4 | UNKNOWN DRILLER                    | 1952-04-27        | 613.00        | Structure Test<br>Hole | Industrial          |     |    |    | CALIFORNIA STANDARD<br>CO         |                         |                        | 0.00           |
| <u>152575</u>  | SE  | 28  | 38  | 27  | 4 | RANKIN DRILLING                    | 1990-08-09        | 72.00         | New Well               | Domestic            |     | 7  |    | STENE, GARY                       | 25.00                   | 10.00                  | 5.56           |
| <u>156935</u>  | SW  | 27  | 38  | 27  | 4 | LOUSANA WATER WELLS (1987)<br>LTD. | 1991-03-12        | 60.00         | New Well               | Domestic            |     | 11 | 7  | CHAPMAN, BRYCE                    | 12.90                   | 30.00                  | 5.56           |
| <u>166852</u>  | SW  | 27  | 38  | 27  | 4 | ALBERTA EAGLE DRILLING LTD.        | 1992-06-01        | 180.00        | New Well               | Domestic &<br>Stock |     | 10 |    | BELICK, NICK                      | 6.00                    | 20.00                  | 6.62           |
| <u>167204</u>  | SW  | 27  | 38  | 27  | 4 | LOUSANA WATER WELLS (1987)<br>LTD. | 1992-05-07        | 300.00        | New Well               | Domestic            |     | 18 | 8  | GRANDE, RUTH                      | 40.60                   | 40.00                  | 5.56           |
| <u>237628</u>  | SW  | 27  | 38  | 27  | 4 | LOUSANA WATER WELLS (1987)<br>LTD. | 1994-04-14        | 80.00         | New Well               | Domestic            |     | 11 | 10 | WASCHUK, KEVIN                    | 23.60                   | 8.00                   | 5.56           |
| 258848         | NW  | 27  | 38  | 27  | 4 | ALBERTA EAGLE DRILLING LTD.        | 1995-06-20        | 140.00        | New Well               | Domestic            |     | 9  | 24 | RED DEER, CITY OF                 | 30.00                   | 20.00                  | 6.62           |
| 282170         | SW  | 27  | 38  | 27  | 4 | UNKNOWN DRILLER                    |                   | 15.00         | Chemistry              | Domestic            | 2   |    |    | PROUDFOOT, J.A.                   |                         |                        | 0.00           |

Alberta

View in Metric

### **Export to Excel**

| GIC Well<br>ID | LSD | SEC | ТWP | RGE | м | DRILLING COMPANY                   | DATE<br>COMPLETED | DEPTH<br>(ft) | TYPE OF WORK   | USE       | СНМ | LT | РТ | WELL OWNER                     | STATIC<br>LEVEL<br>(ft) | TEST<br>RATE<br>(igpm) | SC_DIA<br>(in) |
|----------------|-----|-----|-----|-----|---|------------------------------------|-------------------|---------------|----------------|-----------|-----|----|----|--------------------------------|-------------------------|------------------------|----------------|
| <u>282171</u>  | 11  | 27  | 38  | 27  | 4 | UNKNOWN DRILLER                    |                   | 0.00          | Well Inventory | Injection |     |    |    | IMPERIAL                       |                         |                        | 0.00           |
| <u>282172</u>  | 11  | 27  | 38  | 27  | 4 | UNKNOWN DRILLER                    |                   | 0.00          | Well Inventory | Injection |     |    |    | IMPERIAL                       |                         |                        | 0.00           |
| 285358         | SW  | 27  | 38  | 27  | 4 | ALKEN BASIN DRILLING LTD.          | 1996-08-22        | 85.00         | New Well       | Domestic  |     | 8  | 15 | GYORI, RIM                     | 26.00                   | 7.00                   | 5.50           |
| <u>298600</u>  | SW  | 27  | 38  | 27  | 4 | LOUSANA WATER WELLS (1987)<br>LTD. | 2001-08-22        | 50.00         | New Well       | Domestic  |     | 8  | 11 | SURBEY, SANDY                  | 27.40                   | 7.00                   | 5.56           |
| <u>1735484</u> | 4   | 34  | 38  | 27  | 4 | TALL PINE DRILLING LTD.            | 2008-06-08        | 166.00        | New Well       | Other     |     | 12 | 1  | RED DEER, CITY OF (S. OLSON)   | 36.00                   | 150.00                 | 5.56           |
| <u>1735517</u> | SW  | 34  | 38  | 27  | 4 | TALL PINE DRILLING LTD.            | 2008-06-10        | 200.00        | New Well       | Other     |     | 12 | 3  | STUART OLSON/ CITY OF RED DEER | 126.00                  | 160.00                 | 5.56           |



# APPENDIX D

## LABORATORY ANALYTICAL REPORTS



TETRA TECH CANADA INC. ATTN: Darby Madalena 110, 140 Quarry Park Blvd SE Calgary AB T2C 3G3 Date Received: 06-DEC-19 Report Date: 20-DEC-19 14:32 (MT) Version: FINAL

Client Phone: 403-203-3355

# Certificate of Analysis

## Lab Work Order #: L2393410

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: SWM.SWOP04071-01.003 SWM.SWOP04071-01.003 MCKENZIE TRAILS

rlivol

Inayat Dhaliwal Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 2559 29 Street NE, Calgary, AB T1Y 7B5 Canada | Phone: +1 403 291 9897 | Fax: +1 403 291 0298 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🐊

www.alsglobal.com

**RIGHT SOLUTIONS** RIGHT PARTNER

## ALS ENVIRONMENTAL ANALYTICAL REPORT

| Sample Details/Parameters                                      | Result    | Qualifier* | D.L.      | Units               | Extracted | Analyzed  | Batch    |
|----------------------------------------------------------------|-----------|------------|-----------|---------------------|-----------|-----------|----------|
| 2303410-1 MW/-01                                               |           |            |           |                     |           |           |          |
| Sampled By: BM on $04$ -DEC-19 @ $08:05$                       |           |            |           |                     |           |           |          |
| Motrix: MATER                                                  |           |            |           |                     |           |           |          |
| F1 (C6-C10) and F2 (>C10-C16)                                  |           |            |           |                     |           |           |          |
| CCME E2-4 Hydrocarbons                                         |           |            |           |                     |           |           |          |
| F2: (C10-C16)                                                  | <0.10     |            | 0.10      | ma/L                | 16-DEC-19 | 16-DEC-19 | R4943576 |
| Surrogate: 2-Bromobenzotrifluoride                             | 73.0      |            | 60-140    | %                   | 16-DEC-19 | 16-DEC-19 | R4943576 |
| F1 (C6-C10)                                                    |           |            |           |                     |           |           |          |
| F1(C6-C10)                                                     | <0.10     |            | 0.10      | mg/L                |           | 10-DEC-19 | R4938070 |
| F1-BTEX                                                        | <0.10     |            | 0.10      | mg/L                |           | 10-DEC-19 | R4938070 |
| Surrogate: 3,4-Dichlorotoluene                                 | 117.8     |            | 70-130    | %                   |           | 10-DEC-19 | R4938070 |
| Miscellaneous Parameters                                       |           |            |           |                     |           |           |          |
| AOX                                                            | ND U      |            | 10        | mg/L                |           | 12-DEC-19 | R4949027 |
| Ammonia, Total (as N)                                          | 0.477     |            | 0.050     | mg/L                |           | 16-DEC-19 | R4943991 |
| Dissolved Organic Carbon                                       | 5.4       |            | 1.0       | mg/L                |           | 13-DEC-19 | R4943327 |
| Xylenes                                                        | <0.00071  |            | 0.00071   | mg/L                |           | 16-DEC-19 |          |
| Total Kjeldahl Nitrogen                                        | 1.29      |            | 0.20      | mg/L                |           | 12-DEC-19 | R4943090 |
| Phosphorus (P)-Total                                           | 0.412     | DLHC       | 0.025     | mg/L                |           | 13-DEC-19 | R4943276 |
| Volatile fatty/carboxylic acids                                |           |            |           |                     |           |           |          |
| Formic Acid                                                    | <50       | DLM        | 50        | mg/L                |           | 13-DEC-19 | R4943956 |
| Acetic Acid                                                    | <10       |            | 10        | mg/L                |           | 13-DEC-19 | R4943956 |
| Propionic Acid                                                 | <5.0      |            | 5.0       | mg/L                |           | 13-DEC-19 | R4943956 |
| Butyric Acid                                                   | <1.0      |            | 1.0       | mg/L                |           | 13-DEC-19 | R4943956 |
| Isobutyric Acid                                                | <1.0      |            | 1.0       | mg/L                |           | 13-DEC-19 | R4943956 |
|                                                                | <1.0      |            | 1.0       | mg/L                |           | 13-DEC-19 | R4943956 |
| Isovaleric Acid                                                | <1.0      |            | 1.0       | mg/L                |           | 13-DEC-19 | R4943956 |
| Caproid (Hexanoid) Adid<br>Major Jons & Traco Dissolved Motals | <1.0      |            | 1.0       | mg/∟                |           | 13-DEC-19 | R4943956 |
| Chlorido in Water by IC                                        |           |            |           |                     |           |           |          |
| Chloride (Cl)                                                  | 17.0      |            | 0.50      | ma/l                |           | 07-DFC-19 | R4942649 |
| Dissolved Mercury in Water by CVAAS                            | 11.0      |            | 0.00      | <u>g</u> / <b>_</b> |           | 0. 220 .0 | 1012010  |
| Mercury (Hg)-Dissolved                                         | <0.000050 |            | 0.0000050 | mg/L                |           | 13-DEC-19 | R4943011 |
| Dissolved Mercury Filtration Location                          | FIELD     |            |           | -                   |           | 13-DEC-19 | R4942998 |
| Dissolved Metals in Water by CRC ICPMS                         |           |            |           |                     |           |           |          |
| Dissolved Metals Filtration Location                           | FIELD     |            |           |                     |           | 09-DEC-19 | R4938487 |
| Aluminum (Al)-Dissolved                                        | 0.0033    |            | 0.0010    | mg/L                |           | 09-DEC-19 | R4937828 |
| Antimony (Sb)-Dissolved                                        | 0.00014   |            | 0.00010   | mg/L                |           | 09-DEC-19 | R4937828 |
| Arsenic (As)-Dissolved                                         | 0.00828   |            | 0.00010   | mg/L                |           | 09-DEC-19 | R4937828 |
| Barium (Ba)-Dissolved                                          | 0.421     |            | 0.00010   | mg/L                |           | 09-DEC-19 | R4937828 |
| Boron (B)-Dissolved                                            | 0.024     |            | 0.010     | mg/L                |           | 09-DEC-19 | R4937828 |
| Cadmium (Ca)-Dissolved                                         | <0.000050 |            | 0.0000050 | mg/∟<br>∞α/l        |           | 09-DEC-19 | R4937828 |
| Chromium (Cr) Dissolved                                        | / 1./     |            | 0.000     | mg/L                |           | 09-DEC-19 | R4937020 |
| Copper (Cu)-Dissolved                                          | <0.00010  |            | 0.00010   | mg/L                |           | 09-DEC-19 | R4937020 |
| Iron (Fe)-Dissolved                                            | 3.09      |            | 0.00020   | ma/l                |           | 09-DEC-19 | R4937828 |
| Lead (Pb)-Dissolved                                            | <0.000050 |            | 0.000050  | ma/l                |           | 09-DEC-19 | R4937828 |
| Magnesium (Mg)-Dissolved                                       | 26.8      |            | 0.0050    | ma/L                |           | 09-DEC-19 | R4937828 |
| Manganese (Mn)-Dissolved                                       | 0.861     |            | 0.00010   | mg/L                |           | 09-DEC-19 | R4937828 |
| Nickel (Ni)-Dissolved                                          | 0.00192   |            | 0.00050   | mg/L                |           | 09-DEC-19 | R4937828 |
| Potassium (K)-Dissolved                                        | 4.27      |            | 0.050     | mg/L                |           | 09-DEC-19 | R4937828 |
| Selenium (Se)-Dissolved                                        | 0.000104  |            | 0.000050  | mg/L                |           | 09-DEC-19 | R4937828 |
| Silver (Ag)-Dissolved                                          | <0.000010 |            | 0.000010  | mg/L                |           | 09-DEC-19 | R4937828 |
| Sodium (Na)-Dissolved                                          | 40.1      |            | 0.050     | mg/L                |           | 09-DEC-19 | R4937828 |
| Uranium (U)-Dissolved                                          | 0.000733  |            | 0.000010  | mg/L                |           | 09-DEC-19 | R4937828 |
| Zinc (Zn)-Dissolved                                            | <0.0010   |            | 0.0010    | mg/L                |           | 09-DEC-19 | R4937828 |

\* Refer to Referenced Information for Qualifiers (if any) and Methodology.

## ALS ENVIRONMENTAL ANALYTICAL REPORT

| Sample Details/Parameters                | Result   | Qualifier* | D.L.    | Units        | Extracted | Analyzed  | Batch     |
|------------------------------------------|----------|------------|---------|--------------|-----------|-----------|-----------|
| 1 2202 440 4 MW/ 04                      |          |            |         |              |           |           |           |
| L2393410-1 MW-01                         |          |            |         |              |           |           |           |
| Sampled By. RM 01104-DEC-19 @ 08.05      |          |            |         |              |           |           |           |
| Matrix: WATER                            |          |            |         |              |           |           |           |
| Fluoride in Water by IC<br>Fluoride (F)  | 0.094    |            | 0.020   | mg/L         |           | 07-DEC-19 | R4942649  |
| Ion Balance Calculation                  |          |            |         |              |           |           |           |
| Ion Balance                              | 102      |            |         | %            |           | 16-DEC-19 |           |
| TDS (Calculated)                         | 378      |            |         | mg/L         |           | 16-DEC-19 |           |
| Hardness (as CaCO3)                      | 289      |            |         | mg/L         |           | 16-DEC-19 |           |
| Nitrate in Water by IC<br>Nitrate (as N) | <0.020   |            | 0.020   | mg/L         |           | 07-DEC-19 | R4942649  |
| Nitrate+Nitrite                          |          |            |         |              |           |           |           |
| Nitrate and Nitrite (as N)               | <0.022   |            | 0.022   | mg/L         |           | 13-DEC-19 |           |
| Nitrite in Water by IC                   |          |            |         |              |           |           |           |
| Nitrite (as N)                           | <0.010   |            | 0.010   | mg/L         |           | 07-DEC-19 | R4942649  |
| Sulfate in Water by IC<br>Sulfate (SO4)  | 16.0     |            | 0.30    | mg/L         |           | 07-DEC-19 | R4942649  |
| pH, Conductivity and Total Alkalinity    |          |            |         |              |           |           |           |
| pH                                       | 8.13     |            | 0.10    | pН           |           | 14-DEC-19 | R4943994  |
| Conductivity (EC)                        | 617      |            | 2.0     | uS/cm        |           | 14-DEC-19 | R4943994  |
| Bicarbonate (HCO3)                       | 411      |            | 5.0     | mg/L         |           | 14-DEC-19 | R4943994  |
| Carbonate (CO3)                          | <5.0     |            | 5.0     | mg/L         |           | 14-DEC-19 | R4943994  |
| Hydroxide (OH)                           | <5.0     |            | 5.0     | mg/L         |           | 14-DEC-19 | R4943994  |
| Alkalinity, Total (as CaCO3)             | 337      |            | 2.0     | mg/L         |           | 14-DEC-19 | R4943994  |
| EPA 8260 Volatile Organics               |          |            |         |              |           |           |           |
| VOCs in Water                            | 0.0040   |            | 0.0040  |              | 40 050 40 | 40 050 40 | D (007000 |
| 1,1,1,2- I etrachloroethane              | <0.0010  |            | 0.0010  | mg/L         | 10-DEC-19 | 10-DEC-19 | R4937909  |
| 1,1,1-1 nchloroethane                    | <0.00050 |            | 0.00050 | mg/∟<br>∞α/l | 10-DEC-19 | 10-DEC-19 | R4937909  |
| 1,1,2,2-Tetrachioroethane                | <0.00050 |            | 0.00050 | mg/∟         | 10-DEC-19 | 10-DEC-19 | R4937909  |
| 1,1,2-menoroethane                       | <0.00050 |            | 0.00050 | mg/L         | 10-DEC-19 | 10-DEC-19 | R4937909  |
| 1 1-Dichloroethene                       | <0.00050 |            | 0.00050 | mg/L         | 10-DEC-19 | 10-DEC-19 | R4937909  |
| 1 1-Dichloropropene                      | <0.00030 |            | 0.00030 | mg/L         | 10-DEC-19 | 10-DEC-19 | R4937909  |
| 1,1 2,3-Trichlorobenzene                 | <0.0010  |            | 0.0010  | mg/L         | 10-DEC-19 | 10-DEC-19 | R4937909  |
| 1.2.3-Trichloropropane                   | <0.00050 |            | 0.00050 | ma/L         | 10-DEC-19 | 10-DEC-19 | R4937909  |
| 1,2,4-Trichlorobenzene                   | < 0.0010 |            | 0.0010  | mg/L         | 10-DEC-19 | 10-DEC-19 | R4937909  |
| 1,2,4-Trimethylbenzene                   | <0.0010  |            | 0.0010  | mg/L         | 10-DEC-19 | 10-DEC-19 | R4937909  |
| 1,2-Dibromo-3-chloropropane              | <0.0010  |            | 0.0010  | mg/L         | 10-DEC-19 | 10-DEC-19 | R4937909  |
| 1,2-Dichlorobenzene                      | <0.00050 |            | 0.00050 | mg/L         | 10-DEC-19 | 10-DEC-19 | R4937909  |
| 1,2-Dichloroethane                       | <0.0010  |            | 0.0010  | mg/L         | 10-DEC-19 | 10-DEC-19 | R4937909  |
| 1,2-Dichloropropane                      | <0.00050 |            | 0.00050 | mg/L         | 10-DEC-19 | 10-DEC-19 | R4937909  |
| 1,3,5-Trimethylbenzene                   | <0.0010  |            | 0.0010  | mg/L         | 10-DEC-19 | 10-DEC-19 | R4937909  |
| 1,3-Dichlorobenzene                      | <0.00050 |            | 0.00050 | mg/L         | 10-DEC-19 | 10-DEC-19 | R4937909  |
| 1,3-Dichloropropane                      | <0.0010  |            | 0.0010  | mg/L         | 10-DEC-19 | 10-DEC-19 | R4937909  |
| 1,4-Dichlorobenzene                      | <0.00050 |            | 0.00050 | mg/L         | 10-DEC-19 | 10-DEC-19 | R4937909  |
| 2,2-Dichloropropane                      | <0.0010  |            | 0.0010  | mg/L         | 10-DEC-19 | 10-DEC-19 | R4937909  |
| 2-Chlorotoluene                          | <0.0010  |            | 0.0010  | mg/L         | 10-DEC-19 | 10-DEC-19 | R4937909  |
| 4-Chlorotoluene                          | <0.0010  |            | 0.0010  | mg/L         | 10-DEC-19 | 10-DEC-19 | R4937909  |
| p-Isopropyltoluene                       | <0.0010  |            | 0.0010  | mg/L         | 10-DEC-19 | 10-DEC-19 | R4937909  |
| Benzene                                  | <0.00050 |            | 0.00050 | mg/L         | 10-DEC-19 | 10-DEC-19 | R4937909  |
| Bromobenzene                             | <0.0010  |            | 0.0010  | mg/L         | 10-DEC-19 | 10-DEC-19 | R4937909  |
| Bromochloromethane                       | < 0.0010 |            | 0.0010  | mg/L         | 10-DEC-19 | 10-DEC-19 | R4937909  |
| Bromodichloromethane                     | <0.00050 |            | 0.00050 | mg/L         | 10-DEC-19 | 10-DEC-19 | R4937909  |
| Bromomothene                             | <0.00050 |            | 0.00050 | rng/L        | 10-DEC-19 | 10-DEC-19 | R4937909  |
| Carbon totrachlarida                     | <0.0010  |            | 0.0010  | mg/L         | 10-DEC-19 | 10-DEC-19 | R4937909  |
|                                          | <0.00050 |            | 0.00050 | mg/∟         | 10-DEC-19 | 10-DEC-19 | R4937909  |

\* Refer to Referenced Information for Qualifiers (if any) and Methodology.

## ALS ENVIRONMENTAL ANALYTICAL REPORT

| Sample Details/Parameters           | Result   | Qualifier* | D.L.    | Units                                  | Extracted | Analyzed  | Batch     |
|-------------------------------------|----------|------------|---------|----------------------------------------|-----------|-----------|-----------|
| L2393410-1 MW-01                    |          |            |         |                                        |           |           |           |
| Sampled By: RM on 04-DEC-19 @ 08:05 |          |            |         |                                        |           |           |           |
| Matrix: WATER                       |          |            |         |                                        |           |           |           |
| VOCs in Water                       |          |            |         |                                        |           |           |           |
| Chlorobenzene                       | <0.00050 |            | 0.00050 | ma/L                                   | 10-DEC-19 | 10-DEC-19 | R4937909  |
| Chloroethane                        | < 0.0010 |            | 0.0010  | mg/L                                   | 10-DEC-19 | 10-DEC-19 | R4937909  |
| Chloroform                          | <0.00050 |            | 0.00050 | mg/L                                   | 10-DEC-19 | 10-DEC-19 | R4937909  |
| Chloromethane                       | <0.0010  |            | 0.0010  | mg/L                                   | 10-DEC-19 | 10-DEC-19 | R4937909  |
| cis-1,2-Dichloroethene              | <0.0010  |            | 0.0010  | mg/L                                   | 10-DEC-19 | 10-DEC-19 | R4937909  |
| cis-1,3-Dichloropropene             | <0.00050 |            | 0.00050 | mg/L                                   | 10-DEC-19 | 10-DEC-19 | R4937909  |
| Dibromochloromethane                | <0.00050 |            | 0.00050 | mg/L                                   | 10-DEC-19 | 10-DEC-19 | R4937909  |
| Dibromomethane                      | <0.00050 |            | 0.00050 | mg/L                                   | 10-DEC-19 | 10-DEC-19 | R4937909  |
| Dichlorodifluoromethane             | <0.00050 |            | 0.00050 | mg/L                                   | 10-DEC-19 | 10-DEC-19 | R4937909  |
| Ethylbenzene                        | <0.00050 |            | 0.00050 | mg/L                                   | 10-DEC-19 | 10-DEC-19 | R4937909  |
| Ethylene dibromide                  | <0.00050 |            | 0.00050 | mg/L                                   | 10-DEC-19 | 10-DEC-19 | R4937909  |
| Hexachlorobutadiene                 | <0.0010  |            | 0.0010  | mg/L                                   | 10-DEC-19 | 10-DEC-19 | R4937909  |
| Isopropylbenzene                    | <0.0010  |            | 0.0010  | mg/L                                   | 10-DEC-19 | 10-DEC-19 | R4937909  |
| m+p-Xylenes                         | <0.00050 |            | 0.00050 | mg/L                                   | 10-DEC-19 | 10-DEC-19 | R4937909  |
| Methylene chloride                  | <0.0010  |            | 0.0010  | mg/L                                   | 10-DEC-19 | 10-DEC-19 | R4937909  |
| n-Butylbenzene                      | <0.0010  |            | 0.0010  | mg/L                                   | 10-DEC-19 | 10-DEC-19 | R4937909  |
| n-Propylbenzene                     | <0.0010  |            | 0.0010  | mg/L                                   | 10-DEC-19 | 10-DEC-19 | R4937909  |
| o-Xylene                            | <0.00050 |            | 0.00050 | mg/L                                   | 10-DEC-19 | 10-DEC-19 | R4937909  |
| sec-Butylbenzene                    | <0.0010  |            | 0.0010  | mg/L                                   | 10-DEC-19 | 10-DEC-19 | R4937909  |
| Styrene                             | <0.00050 |            | 0.00050 | mg/L                                   | 10-DEC-19 | 10-DEC-19 | R4937909  |
| tert-Butylbenzene                   | <0.0010  |            | 0.0010  | mg/L                                   | 10-DEC-19 | 10-DEC-19 | R4937909  |
| l etrachioroetnylene                | <0.00050 |            | 0.00050 | mg/L                                   | 10-DEC-19 | 10-DEC-19 | R4937909  |
| roluene                             | <0.00050 |            | 0.00050 | mg/L                                   | 10-DEC-19 | 10-DEC-19 | R4937909  |
| trans-1,2-Dichloropropage           | <0.00050 |            | 0.00050 | mg/∟<br>∞α/l                           | 10-DEC-19 | 10-DEC-19 | R4937909  |
|                                     | <0.0010  |            | 0.0010  | mg/L                                   | 10-DEC-19 | 10-DEC-19 | R4937909  |
| Trichlorofluoromethane              | <0.00050 |            | 0.00050 | mg/L                                   | 10-DEC-19 | 10-DEC-19 | R4937909  |
| Vinvl chloride                      |          |            | 0.0010  | mg/L                                   | 10-DEC-19 | 10-DEC-19 | R4937909  |
| Surrogate: 1.4-Difluorobenzene      | 99.6     |            | 70-130  | ////////////////////////////////////// | 10-DEC-19 | 10-DEC-19 | R4937909  |
| Surrogate: 4-Bromofluorobenzene     | 80.4     |            | 70-130  | %                                      | 10-DEC-19 | 10-DEC-19 | R4937909  |
|                                     | 00.4     |            | 70 130  | 70                                     | 10 020 10 |           | 1(400/000 |
|                                     |          |            |         |                                        |           |           |           |
|                                     |          |            |         |                                        |           |           |           |
|                                     |          |            |         |                                        |           |           |           |
|                                     |          |            |         |                                        |           |           |           |
|                                     |          |            |         |                                        |           |           |           |
|                                     |          |            |         |                                        |           |           |           |
|                                     |          |            |         |                                        |           |           |           |
|                                     |          |            |         |                                        |           |           |           |
|                                     |          |            |         |                                        |           |           |           |
|                                     |          |            |         |                                        |           |           |           |
|                                     |          |            |         |                                        |           |           |           |
|                                     |          |            |         |                                        |           |           |           |
|                                     |          |            |         |                                        |           |           |           |
|                                     |          |            |         |                                        |           |           |           |
|                                     |          |            |         |                                        |           |           |           |
|                                     |          |            |         |                                        |           |           |           |
|                                     |          |            |         |                                        |           |           |           |
|                                     |          |            |         |                                        |           |           |           |
|                                     |          |            |         |                                        |           |           |           |
|                                     |          |            |         |                                        |           |           |           |

\* Refer to Referenced Information for Qualifiers (if any) and Methodology.
| Sample Details/Parameters                     | Result     | Qualifier* | D.L.      | Units        | Extracted | Analyzed  | Batch     |
|-----------------------------------------------|------------|------------|-----------|--------------|-----------|-----------|-----------|
| 1 2303410 2 MW 02                             |            |            |           |              |           |           |           |
| Sampled By: PM on $04_{\rm DEC}$ 19 @ 00:45   |            |            |           |              |           |           |           |
|                                               |            |            |           |              |           |           |           |
| $F1 (C_6 - C_{10}) and F2 (-C_{10} - C_{16})$ |            |            |           |              |           |           |           |
| CCME E2-4 Hydrocarbons                        |            |            |           |              |           |           |           |
| F2: (C10-C16)                                 | <0.10      |            | 0 10      | ma/l         | 16-DEC-19 | 16-DFC-19 | R4943576  |
| Surrogate: 2-Bromobenzotrifluoride            | 66.3       |            | 60-140    | %            | 16-DEC-19 | 16-DEC-19 | R4943576  |
| F1 (C6-C10)                                   |            |            |           |              |           |           |           |
| F1(C6-C10)                                    | <0.10      |            | 0.10      | mg/L         |           | 10-DEC-19 | R4938070  |
| F1-BTEX                                       | <0.10      |            | 0.10      | mg/L         |           | 10-DEC-19 | R4938070  |
| Surrogate: 3,4-Dichlorotoluene                | 120.6      |            | 70-130    | %            |           | 10-DEC-19 | R4938070  |
| Miscellaneous Parameters                      |            |            |           |              |           |           |           |
| AOX                                           | ND U       |            | 10        | mg/L         |           | 12-DEC-19 | R4949027  |
| Ammonia, Total (as N)                         | <0.050     |            | 0.050     | mg/L         |           | 16-DEC-19 | R4943991  |
| Dissolved Organic Carbon                      | 4.6        |            | 1.0       | mg/L         |           | 13-DEC-19 | R4943327  |
| Xylenes                                       | <0.00071   |            | 0.00071   | mg/L         |           | 16-DEC-19 |           |
| Total Kjeldahl Nitrogen                       | 0.23       |            | 0.20      | mg/L         |           | 12-DEC-19 | R4943090  |
| Phosphorus (P)-Total                          | 0.0202     |            | 0.0050    | mg/L         |           | 13-DEC-19 | R4943276  |
| Volatile fatty/carboxylic acids               |            |            |           | -            |           |           |           |
| Formic Acid                                   | <50        | DLM        | 50        | mg/L         |           | 13-DEC-19 | R4943956  |
| Acetic Acid                                   | <10        |            | 10        | mg/L         |           | 13-DEC-19 | R4943956  |
| Propionic Acid                                | <5.0       |            | 5.0       | mg/L         |           | 13-DEC-19 | R4943956  |
| Butyric Acid                                  | <1.0       |            | 1.0       | mg/L         |           | 13-DEC-19 | R4943956  |
| Isobutyric Acid                               | <1.0       |            | 1.0       | mg/L         |           | 13-DEC-19 | R4943956  |
| Valeric Acid                                  | <1.0       |            | 1.0       | mg/L         |           | 13-DEC-19 | R4943956  |
| Isovaleric Acid                               | <1.0       |            | 1.0       | mg/L         |           | 13-DEC-19 | R4943956  |
| Caproic (Hexanoic) Acid                       | <1.0       |            | 1.0       | mg/L         |           | 13-DEC-19 | R4943956  |
| Major Ions & Trace Dissolved Metals           |            |            |           |              |           |           |           |
| Chloride in Water by IC                       | 7.67       |            | 0.50      | ma/l         |           | 07-DEC-19 | P4042640  |
| Dissolved Mercury in Water by CVAAS           | 1.07       |            | 0.50      | iiig/∟       |           | 07-020-19 | 114942049 |
| Mercury (Ha)-Dissolved                        | <0.0000050 |            | 0.0000050 | ma/L         |           | 13-DEC-19 | R4943011  |
| Dissolved Mercury Filtration Location         | FIELD      |            |           |              |           | 13-DEC-19 | R4942998  |
| Dissolved Metals in Water by CRC ICPMS        |            |            |           |              |           |           |           |
| Dissolved Metals Filtration Location          | FIELD      |            |           |              |           | 09-DEC-19 | R4938487  |
| Aluminum (AI)-Dissolved                       | 0.0074     |            | 0.0010    | mg/L         |           | 09-DEC-19 | R4937828  |
| Antimony (Sb)-Dissolved                       | 0.00013    |            | 0.00010   | mg/L         |           | 09-DEC-19 | R4937828  |
| Arsenic (As)-Dissolved                        | 0.00029    |            | 0.00010   | mg/L         |           | 09-DEC-19 | R4937828  |
| Barium (Ba)-Dissolved                         | 0.152      |            | 0.00010   | mg/L         |           | 09-DEC-19 | R4937828  |
| Boron (B)-Dissolved                           | 0.016      |            | 0.010     | mg/L         |           | 09-DEC-19 | R4937828  |
| Cadmium (Cd)-Dissolved                        | 0.000148   |            | 0.0000050 | mg/L         |           | 09-DEC-19 | R4937828  |
| Calcium (Ca)-Dissolved                        | 72.2       |            | 0.050     | mg/L         |           | 09-DEC-19 | R4937828  |
|                                               | <0.00010   |            | 0.00010   | mg/L         |           | 09-DEC-19 | R4937828  |
| Lopper (Cu)-Dissolved                         | 0.00719    |            | 0.00020   | mg/∟<br>∞α/l |           | 09-DEC-19 | R4937828  |
| Load (Pb) Dissolved                           | 0.041      |            | 0.010     | mg/∟         |           | 09-DEC-19 | R4937828  |
| Lead (FD)-Dissolved                           | 0.000219   |            | 0.000050  | mg/L         |           | 09-DEC-19 | R4937020  |
| Manganese (Mn)-Dissolved                      | 0.0843     |            | 0.0000    | ma/l         |           | 09-DEC-19 | R4937828  |
| Nickel (Ni)-Dissolved                         | 0 00099    |            | 0.00050   | ma/l         |           | 09-DFC-19 | R4937828  |
| Potassium (K)-Dissolved                       | 2.70       |            | 0.050     | ma/l         |           | 09-DEC-19 | R4937828  |
| Selenium (Se)-Dissolved                       | 0.000132   |            | 0.000050  | ma/L         |           | 09-DEC-19 | R4937828  |
| Silver (Ag)-Dissolved                         | <0.000010  |            | 0.000010  | mg/L         |           | 09-DEC-19 | R4937828  |
| Sodium (Na)-Dissolved                         | 16.4       |            | 0.050     | mg/L         |           | 09-DEC-19 | R4937828  |
| Uranium (U)-Dissolved                         | 0.000851   |            | 0.000010  | mg/L         |           | 09-DEC-19 | R4937828  |
| Zinc (Zn)-Dissolved                           | 0.0058     |            | 0.0010    | mg/L         |           | 09-DEC-19 | R4937828  |
|                                               |            |            |           |              |           |           |           |

| Sample Details/Parameters               | Result          | Qualifier* | D.L.    | Units | Extracted | Analyzed  | Batch     |
|-----------------------------------------|-----------------|------------|---------|-------|-----------|-----------|-----------|
| 1 0000 440 0 NWV 00                     |                 |            |         |       |           |           |           |
| L2393410-2 MW-02                        |                 |            |         |       |           |           |           |
| Sampled By: RM on 04-DEC-19 @ 09:45     |                 |            |         |       |           |           |           |
| Matrix: WATER                           |                 |            |         |       |           |           |           |
| Fluoride in Water by IC<br>Fluoride (F) | 0.086           |            | 0.020   | mg/L  |           | 07-DEC-19 | R4942649  |
| Ion Balance Calculation                 |                 |            |         |       |           |           |           |
| Ion Balance                             | 94.0            |            |         | %     |           | 16-DEC-19 |           |
| TDS (Calculated)                        | 333             |            |         | mg/L  |           | 16-DEC-19 |           |
| Hardness (as CaCO3)                     | 269             |            |         | mg/L  |           | 16-DEC-19 |           |
| Nitrate in Water by IC                  | -0.020          |            | 0.020   | ma/l  |           |           | P4042640  |
| Nitrate (as N)                          | <0.020          |            | 0.020   | mg/∟  |           | 07-020-19 | K4942049  |
| Nitrate and Nitrite (as N)              | <0.022          |            | 0.022   | ma/l  |           | 13-DEC-19 |           |
| Nitrite in Water by IC                  | <b>NO.022</b>   |            | 0.022   |       |           | 10 220 10 |           |
| Nitrite (as N)                          | <0.010          |            | 0.010   | mg/L  |           | 07-DEC-19 | R4942649  |
| Sulfate in Water by IC                  |                 |            |         | 0     |           |           |           |
| Sulfate (SO4)                           | 59.6            |            | 0.30    | mg/L  |           | 07-DEC-19 | R4942649  |
| pH, Conductivity and Total Alkalinity   |                 |            |         |       |           |           |           |
| pH                                      | 8.22            |            | 0.10    | рН    |           | 14-DEC-19 | R4943994  |
| Conductivity (EC)                       | 559             |            | 2.0     | uS/cm |           | 14-DEC-19 | R4943994  |
| Bicarbonate (HCO3)                      | 311             |            | 5.0     | mg/L  |           | 14-DEC-19 | R4943994  |
| Carbonate (CO3)                         | <5.0            |            | 5.0     | mg/L  |           | 14-DEC-19 | R4943994  |
| Hydroxide (OH)                          | <5.0            |            | 5.0     | mg/L  |           | 14-DEC-19 | R4943994  |
| Alkalinity, Total (as CaCO3)            | 255             |            | 2.0     | mg/L  |           | 14-DEC-19 | R4943994  |
| EPA 8260 Volatile Organics              |                 |            |         |       |           |           |           |
| VOCs in Water                           | -0.0010         |            | 0.0010  | ma/l  | 10 DEC 10 | 10 DEC 10 | D4027000  |
| 1,1,1,2-Tetrachioroethane               | <0.0010         |            | 0.0010  | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909  |
| 1,1,2,-Tetrachloroethane                | <0.00050        |            | 0.00050 | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909  |
| 1 1 2-Trichloroethane                   | <0.00050        |            | 0.00050 | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909  |
| 1 1-Dichloroethane                      | <0.00050        |            | 0.00050 | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909  |
| 1.1-Dichloroethene                      | <0.00050        |            | 0.00050 | ma/l  | 10-DEC-19 | 10-DEC-19 | R4937909  |
| 1.1-Dichloropropene                     | <0.0010         |            | 0.0010  | ma/L  | 10-DEC-19 | 10-DEC-19 | R4937909  |
| 1,2,3-Trichlorobenzene                  | <0.0010         |            | 0.0010  | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909  |
| 1,2,3-Trichloropropane                  | <0.00050        |            | 0.00050 | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909  |
| 1,2,4-Trichlorobenzene                  | <0.0010         |            | 0.0010  | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909  |
| 1,2,4-Trimethylbenzene                  | <0.0010         |            | 0.0010  | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909  |
| 1,2-Dibromo-3-chloropropane             | <0.0010         |            | 0.0010  | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909  |
| 1,2-Dichlorobenzene                     | <0.00050        |            | 0.00050 | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909  |
| 1,2-Dichloroethane                      | <0.0010         |            | 0.0010  | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909  |
| 1,2-Dichloropropane                     | <0.00050        |            | 0.00050 | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909  |
| 1,3,5-Trimethylbenzene                  | <0.0010         |            | 0.0010  | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909  |
| 1,3-Dichlorobenzene                     | <0.00050        |            | 0.00050 | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909  |
| 1,3-Dichloropropane                     | <0.0010         |            | 0.0010  | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909  |
| 1,4-Dichlorobenzene                     | <0.00050        |            | 0.00050 | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909  |
| 2,2-Dichloropropane                     | <0.0010         |            | 0.0010  | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909  |
| 2-Chlorotoluene                         | <0.0010         |            | 0.0010  | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909  |
|                                         | <0.0010         |            | 0.0010  | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909  |
| p-Isopropyltoluene                      | <0.0010         |            | 0.0010  | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909  |
| Benzene                                 | <0.00050        |            | 0.00050 | mg/L  | 10-DEC-19 | 10-DEC-19 | K4937909  |
| Bromobleramethana                       | <0.0010         |            | 0.0010  | mg/L  | 10-DEC-19 | 10-DEC-19 | K4937909  |
| Bromochioromethane                      | <0.0010         |            | 0.0010  | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909  |
| Bromoform                               |                 |            |         | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909  |
| Bromomethane                            |                 |            | 0.00050 | ma/l  | 10-DEC-19 | 10-DEC-19 | R4937909  |
| Carbon tetrachloride                    |                 |            | 0.0010  | ma/l  | 10-DEC-19 | 10-DEC-19 | R4937000  |
|                                         | <b>NO.00000</b> |            | 0.00000 | mg/∟  | 10 020-13 | 10-020-13 | 114301303 |

| Sample Details/Parameters           | Result    | Qualifier* D.I | Units    | Extracted | Analyzed  | Batch    |
|-------------------------------------|-----------|----------------|----------|-----------|-----------|----------|
| L2393410-2 MW-02                    |           |                |          |           |           |          |
| Sampled By: RM on 04-DEC-19 @ 09:45 |           |                |          |           |           |          |
| Matrix: WATER                       |           |                |          |           |           |          |
| VOCs in Water                       |           |                |          |           |           |          |
| Chlorobenzene                       | <0.00050  | 0.00           | 050 ma/L | 10-DEC-19 | 10-DEC-19 | R4937909 |
| Chloroethane                        | <0.0010   | 0.00           | 10 mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909 |
| Chloroform                          | <0.00050  | 0.00           | 050 mg/L | 10-DEC-19 | 10-DEC-19 | R4937909 |
| Chloromethane                       | <0.0010   | 0.00           | )10 mg/L | 10-DEC-19 | 10-DEC-19 | R4937909 |
| cis-1,2-Dichloroethene              | <0.0010   | 0.00           | 010 mg/L | 10-DEC-19 | 10-DEC-19 | R4937909 |
| cis-1,3-Dichloropropene             | <0.00050  | 0.00           | 050 mg/L | 10-DEC-19 | 10-DEC-19 | R4937909 |
| Dibromochloromethane                | <0.00050  | 0.00           | 050 mg/L | 10-DEC-19 | 10-DEC-19 | R4937909 |
| Dibromomethane                      | <0.00050  | 0.00           | 050 mg/L | 10-DEC-19 | 10-DEC-19 | R4937909 |
| Dichlorodifluoromethane             | <0.00050  | 0.00           | 050 mg/L | 10-DEC-19 | 10-DEC-19 | R4937909 |
| Ethylbenzene                        | <0.00050  | 0.00           | 050 mg/L | 10-DEC-19 | 10-DEC-19 | R4937909 |
| Ethylene dibromide                  | <0.00050  | 0.00           | 050 mg/L | 10-DEC-19 | 10-DEC-19 | R4937909 |
| Hexachlorobutadiene                 | <0.0010   | 0.00           | )10 mg/L | 10-DEC-19 | 10-DEC-19 | R4937909 |
| Isopropylbenzene                    | <0.0010   | 0.00           | )10 mg/L | 10-DEC-19 | 10-DEC-19 | R4937909 |
| m+p-Xylenes                         | <0.00050  | 0.00           | 050 mg/L | 10-DEC-19 | 10-DEC-19 | R4937909 |
| Methylene chloride                  | <0.0010   | 0.00           | 010 mg/L | 10-DEC-19 | 10-DEC-19 | R4937909 |
|                                     | < 0.0010  | 0.00           | 10 mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909 |
| n-Propyidenzene                     | < 0.0010  | 0.00           | 010 mg/L | 10-DEC-19 | 10-DEC-19 | R4937909 |
|                                     | <0.00050  | 0.00           | 10 mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909 |
| Styrepe                             | <0.0010   | 0.00           |          | 10-DEC-19 | 10-DEC-19 | R4937909 |
| tert-Butylbenzene                   | <0.00050  | 0.00           | 10 mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909 |
| Tetrachloroethylene                 |           | 0.00           | 050 mg/L | 10-DEC-19 | 10-DEC-19 | R4937909 |
| Toluene                             | <0.00050  | 0.00           | 050 mg/L | 10-DEC-19 | 10-DEC-19 | R4937909 |
| trans-1,2-Dichloroethene            | <0.00050  | 0.00           | 050 mg/L | 10-DEC-19 | 10-DEC-19 | R4937909 |
| trans-1,3-Dichloropropene           | <0.00000  | 0.00           | 10 mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909 |
| Trichloroethene                     | < 0.00050 | 0.00           | 050 mg/L | 10-DEC-19 | 10-DEC-19 | R4937909 |
| Trichlorofluoromethane              | <0.0010   | 0.00           | 010 mg/L | 10-DEC-19 | 10-DEC-19 | R4937909 |
| Vinyl chloride                      | <0.00050  | 0.00           | 050 mg/L | 10-DEC-19 | 10-DEC-19 | R4937909 |
| Surrogate: 1,4-Difluorobenzene      | 99.5      | 70-1           | 30 %     | 10-DEC-19 | 10-DEC-19 | R4937909 |
| Surrogate: 4-Bromofluorobenzene     | 79.6      | 70-1           | 30 %     | 10-DEC-19 | 10-DEC-19 | R4937909 |
|                                     |           |                |          |           |           |          |
|                                     |           |                |          |           |           |          |

| Sample Details/Parameters                                          | Result           | Qualifier* | D.L.      | Units                                  | Extracted | Analyzed  | Batch                                     |
|--------------------------------------------------------------------|------------------|------------|-----------|----------------------------------------|-----------|-----------|-------------------------------------------|
| 1 2303/10-3 MW-03                                                  |                  |            |           |                                        |           |           |                                           |
| Sampled By: BM on 04-DEC-19 @ 08:55                                |                  |            |           |                                        |           |           |                                           |
|                                                                    |                  |            |           |                                        |           |           |                                           |
| Matrix: $WATER$<br><b>E1</b> (C6-C10) and <b>E2</b> ( $>$ C10-C16) |                  |            |           |                                        |           |           |                                           |
|                                                                    |                  |            |           |                                        |           |           |                                           |
| $F2^{\circ}$ (C10-C16)                                             | <0.10            |            | 0.10      | ma/l                                   | 16-DEC-19 | 16-DEC-19 | R4943576                                  |
| Surrogate: 2-Bromobenzotrifluoride                                 | 71.0             |            | 60-140    | ////////////////////////////////////// | 16-DEC-19 | 16-DEC-19 | R4943576                                  |
| F1 (C6-C10)                                                        | 11.0             |            | 00 140    | 70                                     | 10 220 10 | 10 220 10 | 114040070                                 |
| F1(C6-C10)                                                         | <0.10            |            | 0.10      | mg/L                                   |           | 10-DEC-19 | R4938070                                  |
| F1-BTEX                                                            | <0.10            |            | 0.10      | mg/L                                   |           | 10-DEC-19 | R4938070                                  |
| Surrogate: 3,4-Dichlorotoluene                                     | 89.2             |            | 70-130    | %                                      |           | 10-DEC-19 | R4938070                                  |
| Miscellaneous Parameters                                           |                  |            |           |                                        |           |           |                                           |
| AOX                                                                | ND U             |            | 10        | mg/L                                   |           | 12-DEC-19 | R4949027                                  |
| Ammonia, Total (as N)                                              | 7.0              | DLHC       | 2.5       | mg/L                                   |           | 16-DEC-19 | R4943991                                  |
| Dissolved Organic Carbon                                           | 11.4             |            | 1.0       | mg/L                                   |           | 13-DEC-19 | R4943327                                  |
| Xylenes                                                            | <0.00071         |            | 0.00071   | mg/L                                   |           | 16-DEC-19 |                                           |
| Total Kjeldahl Nitrogen                                            | 8.2              | DLHC       | 1.0       | mg/L                                   |           | 12-DEC-19 | R4943090                                  |
| Phosphorus (P)-Total                                               | 0.273            | DLHC       | 0.025     | mg/L                                   |           | 13-DEC-19 | R4943276                                  |
| Volatile fatty/carboxylic acids                                    |                  |            |           | 5                                      |           |           |                                           |
| Formic Acid                                                        | <50              | DLM        | 50        | mg/L                                   |           | 13-DEC-19 | R4943956                                  |
| Acetic Acid                                                        | <10              |            | 10        | mg/L                                   |           | 13-DEC-19 | R4943956                                  |
| Propionic Acid                                                     | <5.0             |            | 5.0       | mg/L                                   |           | 13-DEC-19 | R4943956                                  |
| Butyric Acid                                                       | <1.0             |            | 1.0       | mg/L                                   |           | 13-DEC-19 | R4943956                                  |
| Isobutyric Acid                                                    | <1.0             |            | 1.0       | mg/L                                   |           | 13-DEC-19 | R4943956                                  |
| Valeric Acid                                                       | <1.0             |            | 1.0       | mg/L                                   |           | 13-DEC-19 | R4943956                                  |
| Isovaleric Acid                                                    | <1.0             |            | 1.0       | mg/L                                   |           | 13-DEC-19 | R4943956                                  |
| Caproic (Hexanoic) Acid                                            | <1.0             |            | 1.0       | mg/L                                   |           | 13-DEC-19 | R4943956                                  |
| Major Ions & Trace Dissolved Metals                                |                  |            |           |                                        |           |           |                                           |
| Chloride in Water by IC                                            |                  | DI UO      |           |                                        |           |           | <b>D</b> / <b>D</b> / <b>D</b> / <b>D</b> |
|                                                                    | 49.6             | DLHC       | 2.5       | mg/L                                   |           | 07-DEC-19 | R4942649                                  |
| Dissolved Mercury in Water by CVAAS                                | -0.0000050       |            | 0 0000050 | ma/l                                   |           | 12 DEC 10 | D4042014                                  |
| Dissolved Mercury Filtration Location                              |                  |            | 0.0000050 | iiig/∟                                 |           | 13-DEC-19 | R4943011                                  |
| Dissolved Metals in Water by CBC ICPMS                             |                  |            |           |                                        |           | 13-020-19 | 114942990                                 |
| Dissolved Metals Filtration Location                               | FIFI D           |            |           |                                        |           | 09-DEC-19 | R4938487                                  |
| Aluminum (AI)-Dissolved                                            | <0.0050          | DLDS       | 0.0050    | mg/L                                   |           | 09-DEC-19 | R4937828                                  |
| Antimony (Sb)-Dissolved                                            | <0.00050         | DLDS       | 0.00050   | mg/L                                   |           | 09-DEC-19 | R4937828                                  |
| Arsenic (As)-Dissolved                                             | 0.00137          | DLDS       | 0.00050   | mg/L                                   |           | 09-DEC-19 | R4937828                                  |
| Barium (Ba)-Dissolved                                              | 0.309            | DLDS       | 0.00050   | mg/L                                   |           | 09-DEC-19 | R4937828                                  |
| Boron (B)-Dissolved                                                | 0.875            | DLDS       | 0.050     | mg/L                                   |           | 09-DEC-19 | R4937828                                  |
| Cadmium (Cd)-Dissolved                                             | <0.000025        | DLDS       | 0.000025  | mg/L                                   |           | 09-DEC-19 | R4937828                                  |
| Calcium (Ca)-Dissolved                                             | 168              | DLDS       | 0.25      | mg/L                                   |           | 09-DEC-19 | R4937828                                  |
| Chromium (Cr)-Dissolved                                            | <0.00050         | DLDS       | 0.00050   | mg/L                                   |           | 09-DEC-19 | R4937828                                  |
| Copper (Cu)-Dissolved                                              | 0.0052           | DLDS       | 0.0010    | mg/L                                   |           | 09-DEC-19 | R4937828                                  |
| Iron (Fe)-Dissolved                                                | 0.123            | DLDS       | 0.050     | mg/L                                   |           | 09-DEC-19 | R4937828                                  |
| Lead (Pb)-Dissolved                                                | <0.00025         | DLDS       | 0.00025   | mg/L                                   |           | 09-DEC-19 | R4937828                                  |
| Magnesium (Mg)-Dissolved                                           | 55.0             | DLDS       | 0.025     | mg/L                                   |           | 09-DEC-19 | R4937828                                  |
| Manganese (Mn)-Dissolved                                           | 1.02             |            | 0.00050   | mg/L                                   |           | 09-DEC-19 | R4937828                                  |
| NICKEI (NI)-DISSOIVED                                              | 0.01/1           |            | 0.0025    | mg/L                                   |           | 09-DEC-19 | K4937828                                  |
| Fotassium (N)-Dissolved                                            | 9.68             |            | 0.25      | mg/L                                   |           | 09-DEC-19 | R493/828                                  |
| Selemium (Se)-Dissolved                                            |                  |            | 0.00025   | mg/L                                   |           | 09-DEC-19 | R493/828                                  |
| Sadium (Na)-Dissolved                                              | <0.000050<br>474 |            | 0.000050  | mg/L                                   |           | 09-DEC-19 | R4931828                                  |
| Uranium (U)-Dissolved                                              | 0.00242          |            | 0.20      | mg/L                                   |           | 09-DEC-19 | R4331020                                  |
| Zinc (Zn)-Dissolved                                                | 0.00242          | DLDS       | 0.000000  | ma/l                                   |           | 09-DEC-19 | R4937828                                  |
|                                                                    | 0.0247           |            | 0.0000    |                                        |           | 55 BEO-19 | 117001020                                 |

| Sample Details/Parameters                | Result   | Qualifier* | D.L.    | Units        | Extracted | Analyzed  | Batch     |
|------------------------------------------|----------|------------|---------|--------------|-----------|-----------|-----------|
| 1 2202 410 2 MW 02                       |          |            |         |              |           |           |           |
| 22393410-5 MW-05                         |          |            |         |              |           |           |           |
| Sampled By. RM OII 04-DEC-19 @ 08.55     |          |            |         |              |           |           |           |
| Matrix: WATER                            |          |            |         |              |           |           |           |
| Fluoride in Water by IC<br>Fluoride (F)  | <0.10    | DLHC       | 0.10    | mg/L         |           | 07-DEC-19 | R4942649  |
| Ion Balance Calculation                  |          |            |         |              |           |           |           |
| Ion Balance                              | 98.6     |            |         | %            |           | 16-DEC-19 |           |
| TDS (Calculated)                         | 1090     |            |         | mg/L         |           | 16-DEC-19 |           |
| Hardness (as CaCO3)                      | 646      |            |         | mg/L         |           | 16-DEC-19 |           |
| Nitrate in Water by IC<br>Nitrate (as N) | <0.10    | DLHC       | 0.10    | mg/L         |           | 07-DEC-19 | R4942649  |
| Nitrate+Nitrite                          |          |            |         |              |           |           |           |
| Nitrate and Nitrite (as N)               | <0.11    |            | 0.11    | mg/L         |           | 13-DEC-19 |           |
| Nitrite in Water by IC                   |          |            |         |              |           |           |           |
| Nitrite (as N)                           | <0.050   | DLHC       | 0.050   | mg/L         |           | 07-DEC-19 | R4942649  |
| Sulfate in Water by IC<br>Sulfate (SO4)  | 69.5     | DLHC       | 1.5     | mg/L         |           | 07-DEC-19 | R4942649  |
| pH, Conductivity and Total Alkalinity    |          |            |         | -            |           |           |           |
| рН                                       | 7.77     |            | 0.10    | рН           |           | 14-DEC-19 | R4943994  |
| Conductivity (EC)                        | 1680     |            | 2.0     | uS/cm        |           | 14-DEC-19 | R4943994  |
| Bicarbonate (HCO3)                       | 1140     |            | 5.0     | mg/L         |           | 14-DEC-19 | R4943994  |
| Carbonate (CO3)                          | <5.0     |            | 5.0     | mg/L         |           | 14-DEC-19 | R4943994  |
| Hydroxide (OH)                           | <5.0     |            | 5.0     | mg/L         |           | 14-DEC-19 | R4943994  |
| Alkalinity, Total (as CaCO3)             | 934      |            | 2.0     | mg/L         |           | 14-DEC-19 | R4943994  |
| EPA 8260 Volatile Organics               |          |            |         |              |           |           |           |
| VOCs in Water                            |          |            |         |              |           |           | 5 (00-000 |
| 1,1,1,2- I etrachloroethane              | < 0.0010 |            | 0.0010  | mg/L         | 10-DEC-19 | 10-DEC-19 | R4937909  |
| 1,1,1-I richloroethane                   | <0.00050 |            | 0.00050 | mg/L         | 10-DEC-19 | 10-DEC-19 | R4937909  |
| 1,1,2,2- I etrachioroethane              | <0.00050 |            | 0.00050 | mg/L         | 10-DEC-19 | 10-DEC-19 | R4937909  |
| 1,1,2-1 hchloroethane                    | <0.00050 |            | 0.00050 | mg/∟<br>∞α/l | 10-DEC-19 | 10-DEC-19 | R4937909  |
| 1,1-Dichloroethane                       | <0.00050 |            | 0.00050 | mg/L         | 10-DEC-19 | 10-DEC-19 | R4937909  |
| 1,1-Dichloropropene                      | <0.00050 |            | 0.00050 | mg/L         | 10-DEC-19 | 10-DEC-19 | R4937909  |
| 1,1-Dichloropene                         | <0.0010  |            | 0.0010  | mg/L         | 10-DEC-19 | 10-DEC-19 | R4937909  |
| 1 2 3-Trichloropropane                   |          |            | 0.0010  | mg/L         | 10-DEC-19 | 10-DEC-19 | R4937909  |
| 1,2,4-Trichlorobenzene                   | <0.00000 |            | 0.00000 | ma/l         | 10-DEC-19 | 10-DEC-19 | R4937909  |
| 1.2.4-Trimethylbenzene                   | <0.0010  |            | 0.0010  | ma/L         | 10-DEC-19 | 10-DEC-19 | R4937909  |
| 1.2-Dibromo-3-chloropropane              | <0.0010  |            | 0.0010  | ma/L         | 10-DEC-19 | 10-DEC-19 | R4937909  |
| 1,2-Dichlorobenzene                      | <0.00050 |            | 0.00050 | mg/L         | 10-DEC-19 | 10-DEC-19 | R4937909  |
| 1,2-Dichloroethane                       | <0.0010  |            | 0.0010  | mg/L         | 10-DEC-19 | 10-DEC-19 | R4937909  |
| 1,2-Dichloropropane                      | <0.00050 |            | 0.00050 | mg/L         | 10-DEC-19 | 10-DEC-19 | R4937909  |
| 1,3,5-Trimethylbenzene                   | <0.0010  |            | 0.0010  | mg/L         | 10-DEC-19 | 10-DEC-19 | R4937909  |
| 1,3-Dichlorobenzene                      | <0.00050 |            | 0.00050 | mg/L         | 10-DEC-19 | 10-DEC-19 | R4937909  |
| 1,3-Dichloropropane                      | <0.0010  |            | 0.0010  | mg/L         | 10-DEC-19 | 10-DEC-19 | R4937909  |
| 1,4-Dichlorobenzene                      | <0.00050 |            | 0.00050 | mg/L         | 10-DEC-19 | 10-DEC-19 | R4937909  |
| 2,2-Dichloropropane                      | <0.0010  |            | 0.0010  | mg/L         | 10-DEC-19 | 10-DEC-19 | R4937909  |
| 2-Chlorotoluene                          | <0.0010  |            | 0.0010  | mg/L         | 10-DEC-19 | 10-DEC-19 | R4937909  |
| 4-Chlorotoluene                          | <0.0010  |            | 0.0010  | mg/L         | 10-DEC-19 | 10-DEC-19 | R4937909  |
| p-Isopropyltoluene                       | <0.0010  |            | 0.0010  | mg/L         | 10-DEC-19 | 10-DEC-19 | R4937909  |
| Benzene                                  | <0.00050 |            | 0.00050 | mg/L         | 10-DEC-19 | 10-DEC-19 | R4937909  |
| Bromobenzene                             | <0.0010  |            | 0.0010  | mg/L         | 10-DEC-19 | 10-DEC-19 | R4937909  |
| Bromochloromethane                       | <0.0010  |            | 0.0010  | mg/L         | 10-DEC-19 | 10-DEC-19 | R4937909  |
| Bromodichloromethane                     | <0.00050 |            | 0.00050 | mg/L         | 10-DEC-19 | 10-DEC-19 | R4937909  |
| Bromotorm                                | <0.00050 |            | 0.00050 | mg/L         | 10-DEC-19 | 10-DEC-19 | R4937909  |
| Bromomethane                             | < 0.0010 |            | 0.0010  | mg/L         | 10-DEC-19 | 10-DEC-19 | R4937909  |
| Carbon tetrachloride                     | <0.00050 |            | 0.00050 | mg/L         | 10-DEC-19 | 10-DEC-19 | R4937909  |

| Sample Details/Parameters           | Result    | Qualifier* | D.L.    | Units | Extracted | Analyzed  | Batch    |
|-------------------------------------|-----------|------------|---------|-------|-----------|-----------|----------|
| L2393410-3 MW-03                    |           |            |         |       |           |           |          |
| Sampled By: RM on 04-DEC-19 @ 08:55 |           |            |         |       |           |           |          |
| Matrix: WATER                       |           |            |         |       |           |           |          |
| VOCs in Water                       |           |            |         |       |           |           |          |
| Chlorobenzene                       | <0.00050  |            | 0.00050 | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909 |
| Chloroethane                        | <0.0010   |            | 0.0010  | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909 |
| Chloroform                          | <0.00050  |            | 0.00050 | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909 |
| Chloromethane                       | <0.0010   |            | 0.0010  | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909 |
| cis-1,2-Dichloroethene              | 0.0036    |            | 0.0010  | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909 |
| cis-1,3-Dichloropropene             | <0.00050  |            | 0.00050 | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909 |
| Dibromochloromethane                | <0.00050  |            | 0.00050 | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909 |
| Dibromomethane                      | <0.00050  |            | 0.00050 | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909 |
| Dichlorodifluoromethane             | <0.00050  |            | 0.00050 | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909 |
| Ethylbenzene                        | <0.00050  |            | 0.00050 | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909 |
| Ethylene dibromide                  | <0.00050  |            | 0.00050 | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909 |
| Hexachlorobutadiene                 | <0.0010   |            | 0.0010  | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909 |
|                                     | < 0.0010  |            | 0.0010  | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909 |
| m+p-Aylenes                         | <0.00050  |            | 0.00050 | mg/∟  | 10-DEC-19 | 10-DEC-19 | R4937909 |
| n-Butylenzene                       | <0.0010   |            | 0.0010  | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909 |
| n-Propylbenzene                     | <0.0010   |            | 0.0010  | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909 |
| o-Xvlene                            | <0.0010   |            | 0.0010  | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909 |
| sec-Butylbenzene                    | <0.00000  |            | 0.00000 | ma/l  | 10-DEC-19 | 10-DEC-19 | R4937909 |
| Styrene                             | <0.00050  |            | 0.00050 | ma/L  | 10-DEC-19 | 10-DEC-19 | R4937909 |
| tert-Butylbenzene                   | < 0.0010  |            | 0.0010  | ma/L  | 10-DEC-19 | 10-DEC-19 | R4937909 |
| Tetrachloroethylene                 | < 0.00050 |            | 0.00050 | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909 |
| Toluene                             | <0.00050  |            | 0.00050 | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909 |
| trans-1,2-Dichloroethene            | <0.00050  |            | 0.00050 | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909 |
| trans-1,3-Dichloropropene           | <0.0010   |            | 0.0010  | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909 |
| Trichloroethene                     | <0.00050  |            | 0.00050 | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909 |
| Trichlorofluoromethane              | <0.0010   |            | 0.0010  | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909 |
| Vinyl chloride                      | 0.00070   |            | 0.00050 | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909 |
| Surrogate: 1,4-Difluorobenzene      | 99.4      |            | 70-130  | %     | 10-DEC-19 | 10-DEC-19 | R4937909 |
| Surrogate: 4-Bromofluorobenzene     | 78.4      |            | 70-130  | %     | 10-DEC-19 | 10-DEC-19 | R4937909 |
|                                     |           |            |         |       |           |           |          |

| Sample Details/Parameters              | Result       | Qualifier* | D.L.      | Units  | Extracted | Analyzed  | Batch       |
|----------------------------------------|--------------|------------|-----------|--------|-----------|-----------|-------------|
| 1 2202410 4 MW 04                      |              |            |           |        |           |           |             |
| Sampled By: $PM on 04$ -DEC-19 @ 08:35 |              |            |           |        |           |           |             |
|                                        |              |            |           |        |           |           |             |
| Matrix: WATER                          |              |            |           |        |           |           |             |
|                                        |              |            |           |        |           |           |             |
| E2: (C10-C16)                          | ~0.10        |            | 0.10      | ma/l   | 16-DEC-19 | 16-DEC-19 | R4943576    |
| Surrogate: 2-Bromobenzotrifluoride     | 61 7         |            | 60-140    | %      | 16-DEC-19 | 16-DEC-19 | R4943576    |
| F1 (C6-C10)                            | 0            |            | 00.10     |        |           |           |             |
| F1(C6-C10)                             | <0.10        |            | 0.10      | mg/L   |           | 10-DEC-19 | R4938070    |
| F1-BTEX                                | <0.10        |            | 0.10      | mg/L   |           | 10-DEC-19 | R4938070    |
| Surrogate: 3,4-Dichlorotoluene         | 102.0        |            | 70-130    | %      |           | 10-DEC-19 | R4938070    |
| Miscellaneous Parameters               |              |            |           |        |           |           |             |
| AOX                                    | ND U         |            | 10        | mg/L   |           | 12-DEC-19 | R4949027    |
| Ammonia, Total (as N)                  | 10.4         | DLHC       | 2.5       | mg/L   |           | 16-DEC-19 | R4943991    |
| Dissolved Organic Carbon               | 20.7         |            | 1.0       | mg/L   |           | 13-DEC-19 | R4943327    |
| Xylenes                                | <0.00071     |            | 0.00071   | mg/L   |           | 16-DEC-19 |             |
| Total Kjeldahl Nitrogen                | 13.3         | DLHC       | 1.0       | mg/L   |           | 12-DEC-19 | R4943090    |
| Phosphorus (P)-Total                   | 0.568        | DLHC       | 0.050     | mg/L   |           | 13-DEC-19 | R4943276    |
| Volatile fatty/carboxylic acids        |              |            |           | 5      |           | -         |             |
| Formic Acid                            | <50          | DLM        | 50        | mg/L   |           | 13-DEC-19 | R4943956    |
| Acetic Acid                            | <10          |            | 10        | mg/L   |           | 13-DEC-19 | R4943956    |
| Propionic Acid                         | <5.0         |            | 5.0       | mg/L   |           | 13-DEC-19 | R4943956    |
| Butyric Acid                           | <1.0         |            | 1.0       | mg/L   |           | 13-DEC-19 | R4943956    |
| Isobutyric Acid                        | <1.0         |            | 1.0       | mg/L   |           | 13-DEC-19 | R4943956    |
| Valeric Acid                           | <1.0         |            | 1.0       | mg/L   |           | 13-DEC-19 | R4943956    |
| Isovaleric Acid                        | <1.0         |            | 1.0       | mg/L   |           | 13-DEC-19 | R4943956    |
| Caproic (Hexanoic) Acid                | <1.0         |            | 1.0       | mg/L   |           | 13-DEC-19 | R4943956    |
| Major Ions & Trace Dissolved Metals    |              |            |           |        |           |           |             |
| Chloride in Water by IC                | 40.0         |            | 0.5       | ~~~~/l |           |           | D 40 400 40 |
| Chionde (Ci)                           | 42.9         | DLHC       | 2.5       | mg/∟   |           | 07-DEC-19 | R4942649    |
| Mercury (Hg)-Dissolved                 | ~0.000050    |            | 0 0000050 | ma/l   |           | 13-DEC-19 | R4943011    |
| Dissolved Mercury Filtration Location  | FIFI D       |            | 0.0000000 | ing/∟  |           | 13-DEC-19 | R4942998    |
| Dissolved Metals in Water by CRC ICPMS |              |            |           |        |           | 10 220 10 | 114042000   |
| Dissolved Metals Filtration Location   | FIELD        |            |           |        |           | 09-DEC-19 | R4938487    |
| Aluminum (AI)-Dissolved                | 0.0348       | DLDS       | 0.0050    | mg/L   |           | 09-DEC-19 | R4937828    |
| Antimony (Sb)-Dissolved                | <0.00050     | DLDS       | 0.00050   | mg/L   |           | 09-DEC-19 | R4937828    |
| Arsenic (As)-Dissolved                 | 0.00440      | DLDS       | 0.00050   | mg/L   |           | 09-DEC-19 | R4937828    |
| Barium (Ba)-Dissolved                  | 0.253        | DLDS       | 0.00050   | mg/L   |           | 09-DEC-19 | R4937828    |
| Boron (B)-Dissolved                    | 0.977        | DLDS       | 0.050     | mg/L   |           | 09-DEC-19 | R4937828    |
| Cadmium (Cd)-Dissolved                 | 0.000083     | DLDS       | 0.000025  | mg/L   |           | 09-DEC-19 | R4937828    |
| Calcium (Ca)-Dissolved                 | 168          | DLDS       | 0.25      | mg/L   |           | 09-DEC-19 | R4937828    |
| Chromium (Cr)-Dissolved                | <0.00050     | DLDS       | 0.00050   | mg/L   |           | 09-DEC-19 | R4937828    |
| Copper (Cu)-Dissolved                  | <0.0010      | DLDS       | 0.0010    | mg/L   |           | 09-DEC-19 | R4937828    |
| Iron (Fe)-Dissolved                    | 3.85         | DLDS       | 0.050     | mg/L   |           | 09-DEC-19 | R4937828    |
| Lead (Pb)-Dissolved                    | <0.00025     | DLDS       | 0.00025   | mg/L   |           | 09-DEC-19 | R4937828    |
| Magnesium (Mg)-Dissolved               | 59.3         | DLDS       | 0.025     | mg/L   |           | 09-DEC-19 | R4937828    |
| Nickel (Ni)-Dissolved                  | 1.10         |            | 0.00050   | mg/L   |           | 09-DEC-19 | R493/828    |
| Potassium (K)-Dissolved                | 20.7         |            | 0.0025    | mg/L   |           | 09-DEC-19 | R4937828    |
| Selenium (Se)-Dissolved                | 20.7<br>20.7 | DIDS       | 0.20      | ma/l   |           | 09-DEC-19 | R4937020    |
| Silver (Ag)-Dissolved                  |              | DLDS       | 0.00025   | ma/l   |           | 09-DEC-19 | R4937828    |
| Sodium (Na)-Dissolved                  | 96 6         | DLDS       | 0.25      | ma/l   |           | 09-DEC-19 | R4937828    |
| Uranium (U)-Dissolved                  | 0.00297      | DLDS       | 0.000050  | ma/l   |           | 09-DEC-19 | R4937828    |
| Zinc (Zn)-Dissolved                    | 0.0097       | DLDS       | 0.0050    | mg/L   |           | 09-DEC-19 | R4937828    |
|                                        | 5.0001       | -          |           | ·      |           |           |             |

| Sample Details/Parameters                            | Result    | Qualifier* | D.L.    | Units | Extracted | Analyzed  | Batch    |
|------------------------------------------------------|-----------|------------|---------|-------|-----------|-----------|----------|
| 2202440.4 MW 04                                      |           |            |         |       |           |           |          |
| L2393410-4 MW-04                                     |           |            |         |       |           |           |          |
| Sampled By: RM on 04-DEC-19 @ 08:35                  |           |            |         |       |           |           |          |
| Matrix: WATER                                        |           |            |         |       |           |           |          |
| Fluoride in Water by IC<br>Fluoride (F)              | <0.10     | DLHC       | 0.10    | mg/L  |           | 07-DEC-19 | R4942649 |
| Ion Balance Calculation                              |           |            |         |       |           |           |          |
| Ion Balance                                          | 91.1      |            |         | %     |           | 16-DEC-19 |          |
| TDS (Calculated)                                     | 1010      |            |         | mg/L  |           | 16-DEC-19 |          |
| Hardness (as CaCO3)                                  | 664       |            |         | mg/L  |           | 16-DEC-19 |          |
| Nitrate in Water by IC<br>Nitrate (as N)             | 0.17      | DLHC       | 0.10    | mg/L  |           | 07-DEC-19 | R4942649 |
| Nitrate+Nitrite                                      |           |            |         |       |           |           |          |
| Nitrate and Nitrite (as N)                           | 0.17      |            | 0.11    | mg/L  |           | 13-DEC-19 |          |
| Nitrite in Water by IC                               |           |            |         |       |           |           |          |
| Nitrite (as N)                                       | <0.050    | DLHC       | 0.050   | mg/L  |           | 07-DEC-19 | R4942649 |
| Sulfate in Water by IC<br>Sulfate (SO4)              | 94.7      | DLHC       | 1.5     | mg/L  |           | 07-DEC-19 | R4942649 |
| pH, Conductivity and Total Alkalinity                |           |            |         |       |           |           |          |
| pH                                                   | 7.53      |            | 0.10    | pН    |           | 14-DEC-19 | R4943994 |
| Conductivity (EC)                                    | 1660      |            | 2.0     | uS/cm |           | 14-DEC-19 | R4943994 |
| Bicarbonate (HCO3)                                   | 1060      |            | 5.0     | mg/L  |           | 14-DEC-19 | R4943994 |
| Carbonate (CO3)                                      | <5.0      |            | 5.0     | mg/L  |           | 14-DEC-19 | R4943994 |
| Hydroxide (OH)                                       | <5.0      |            | 5.0     | mg/L  |           | 14-DEC-19 | R4943994 |
| Alkalinity, Total (as CaCO3)                         | 872       |            | 2.0     | mg/L  |           | 14-DEC-19 | R4943994 |
| EPA 8260 Volatile Organics                           |           |            |         |       |           |           |          |
| VOCs in Water                                        |           |            |         |       |           |           |          |
| 1,1,1,2-Tetrachloroethane                            | <0.0010   |            | 0.0010  | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909 |
| 1,1,1-Trichloroethane                                | <0.00050  |            | 0.00050 | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909 |
| 1,1,2,2- I etrachloroethane                          | <0.00050  |            | 0.00050 | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909 |
| 1,1,2- I richloroethane                              | <0.00050  |            | 0.00050 | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909 |
| 1,1-Dichloroethane                                   | <0.00050  |            | 0.00050 | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909 |
| 1,1-Dichloroethene                                   | <0.00050  |            | 0.00050 | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909 |
| 1,1-Dichloropropene                                  | <0.0010   |            | 0.0010  | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909 |
| 1,2,3-Thenloropena                                   | <0.0010   |            | 0.0010  | mg/∟  | 10-DEC-19 | 10-DEC-19 | R4937909 |
| 1,2,3- Inchlorophopane                               | <0.00050  |            | 0.00050 | mg/∟  | 10-DEC-19 | 10-DEC-19 | R4937909 |
|                                                      | <0.0010   |            | 0.0010  | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909 |
| 1,2,4- millenybenzene<br>1,2-Dibromo-3-chloropropape | <0.0010   |            | 0.0010  | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909 |
| 1.2-Dichlorobenzene                                  |           |            | 0.0010  | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909 |
| 1 2-Dichloroethane                                   | <0.00030  |            | 0.00000 | ma/l  | 10-DEC-19 | 10-DEC-19 | R4937909 |
| 1.2-Dichloropropane                                  | <0.0010   |            | 0.00050 | ma/l  | 10-DEC-19 | 10-DEC-19 | R4937909 |
| 1.3.5-Trimethylbenzene                               | <0.0010   |            | 0.0010  | ma/L  | 10-DEC-19 | 10-DEC-19 | R4937909 |
| 1.3-Dichlorobenzene                                  | < 0.00050 |            | 0.00050 | ma/L  | 10-DEC-19 | 10-DEC-19 | R4937909 |
| 1.3-Dichloropropane                                  | <0.0010   |            | 0.0010  | ma/L  | 10-DEC-19 | 10-DEC-19 | R4937909 |
| 1.4-Dichlorobenzene                                  | <0.00050  |            | 0.00050 | ma/L  | 10-DEC-19 | 10-DEC-19 | R4937909 |
| 2.2-Dichloropropane                                  | < 0.0010  |            | 0.0010  | ma/L  | 10-DEC-19 | 10-DEC-19 | R4937909 |
| 2-Chlorotoluene                                      | < 0.0010  |            | 0.0010  | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909 |
| 4-Chlorotoluene                                      | < 0.0010  |            | 0.0010  | ma/L  | 10-DEC-19 | 10-DEC-19 | R4937909 |
| p-Isopropyltoluene                                   | <0.0010   |            | 0.0010  | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909 |
| Benzene                                              | <0.00050  |            | 0.00050 | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909 |
| Bromobenzene                                         | <0.0010   |            | 0.0010  | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909 |
| Bromochloromethane                                   | <0.0010   |            | 0.0010  | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909 |
| Bromodichloromethane                                 | <0.00050  |            | 0.00050 | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909 |
| Bromoform                                            | <0.00050  |            | 0.00050 | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909 |
| Bromomethane                                         | <0.0010   |            | 0.0010  | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909 |
| Carbon tetrachloride                                 | <0.00050  |            | 0.00050 | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909 |

| Sample Details/ | Parameters              | Result    | Qualifier* | D.L.    | Units                                  | Extracted | Analyzed  | Batch     |
|-----------------|-------------------------|-----------|------------|---------|----------------------------------------|-----------|-----------|-----------|
| L2393410-4      | MW-04                   |           |            |         |                                        |           |           |           |
| Sampled Bv:     | RM on 04-DEC-19 @ 08:35 |           |            |         |                                        |           |           |           |
| Matrix.         | WATER                   |           |            |         |                                        |           |           |           |
| VOCs in Wat     | ter                     |           |            |         |                                        |           |           |           |
| Chlorobenzer    | ne                      | <0.00050  |            | 0.00050 | ma/L                                   | 10-DEC-19 | 10-DEC-19 | R4937909  |
| Chloroethane    |                         | < 0.0010  |            | 0.0010  | mg/L                                   | 10-DEC-19 | 10-DEC-19 | R4937909  |
| Chloroform      |                         | < 0.00050 |            | 0.00050 | mg/L                                   | 10-DEC-19 | 10-DEC-19 | R4937909  |
| Chlorometha     | ne                      | <0.0010   |            | 0.0010  | mg/L                                   | 10-DEC-19 | 10-DEC-19 | R4937909  |
| cis-1,2-Dichlo  | proethene               | 0.0083    |            | 0.0010  | mg/L                                   | 10-DEC-19 | 10-DEC-19 | R4937909  |
| cis-1,3-Dichlo  | propropene              | <0.00050  |            | 0.00050 | mg/L                                   | 10-DEC-19 | 10-DEC-19 | R4937909  |
| Dibromochlor    | romethane               | <0.00050  |            | 0.00050 | mg/L                                   | 10-DEC-19 | 10-DEC-19 | R4937909  |
| Dibromometh     | nane                    | <0.00050  |            | 0.00050 | mg/L                                   | 10-DEC-19 | 10-DEC-19 | R4937909  |
| Dichlorodifluc  | promethane              | <0.00050  |            | 0.00050 | mg/L                                   | 10-DEC-19 | 10-DEC-19 | R4937909  |
| Ethylbenzene    | 9                       | <0.00050  |            | 0.00050 | mg/L                                   | 10-DEC-19 | 10-DEC-19 | R4937909  |
| Ethylene dibr   | romide                  | <0.00050  |            | 0.00050 | mg/L                                   | 10-DEC-19 | 10-DEC-19 | R4937909  |
| Hexachlorobu    | utadiene                | <0.0010   |            | 0.0010  | mg/L                                   | 10-DEC-19 | 10-DEC-19 | R4937909  |
| Isopropylbenz   | zene                    | <0.0010   |            | 0.0010  | mg/L                                   | 10-DEC-19 | 10-DEC-19 | R4937909  |
| m+p-Xylenes     |                         | <0.00050  |            | 0.00050 | mg/L                                   | 10-DEC-19 | 10-DEC-19 | R4937909  |
| Methylene ch    | loride                  | <0.0010   |            | 0.0010  | mg/L                                   | 10-DEC-19 | 10-DEC-19 | R4937909  |
| n-Butylbenze    | ne                      | <0.0010   |            | 0.0010  | mg/L                                   | 10-DEC-19 | 10-DEC-19 | R4937909  |
| n-Propylbenz    | ene                     | <0.0010   |            | 0.0010  | mg/L                                   | 10-DEC-19 | 10-DEC-19 | R4937909  |
| o-Xylene        |                         | <0.00050  |            | 0.00050 | mg/L                                   | 10-DEC-19 | 10-DEC-19 | R4937909  |
| sec-Butylben    | zene                    | <0.0010   |            | 0.0010  | mg/L                                   | 10-DEC-19 | 10-DEC-19 | R4937909  |
| Styrene         |                         | <0.00050  |            | 0.00050 | mg/L                                   | 10-DEC-19 | 10-DEC-19 | R4937909  |
| tert-Butyibenz  | zene                    | < 0.0010  |            | 0.0010  | mg/L                                   | 10-DEC-19 | 10-DEC-19 | R4937909  |
| Tetrachioroet   | inyiene                 | <0.00050  |            | 0.00050 | mg/L                                   | 10-DEC-19 | 10-DEC-19 | R4937909  |
| trana 1.2 Dial  | blaraathana             | <0.00050  |            | 0.00050 | mg/L                                   | 10-DEC-19 | 10-DEC-19 | R4937909  |
| trans-1,2-Dici  | hloropropopo            | <0.00050  |            | 0.00050 | mg/∟                                   | 10-DEC-19 | 10-DEC-19 | R4937909  |
| Trichloroethe   | noopiopene              | <0.0010   |            | 0.0010  | mg/L                                   | 10-DEC-19 | 10-DEC-19 | R4937909  |
| Trichlorofluor  | romethane               | <0.00050  |            | 0.00050 | mg/L                                   | 10-DEC-19 | 10-DEC-19 | R4937909  |
| Vinvl chloride  | à                       | 0.00643   |            | 0.0010  | mg/L                                   | 10-DEC-19 | 10-DEC-19 | R4937909  |
| Surrogate: 1.4  | 4-Difluorobenzene       | 99.4      |            | 70-130  | ////////////////////////////////////// | 10 DEC 19 | 10-DEC-19 | R4937909  |
| Surrogate: 4-   | Bromofluorobenzene      | 80.7      |            | 70-130  | %                                      | 10 DEC 19 | 10-DEC-19 | R4937909  |
| - Currogato: 4  |                         | 00.7      |            | 70-150  | 70                                     | 10 020 13 | 10 020 13 | 1(4957909 |
|                 |                         |           |            |         |                                        |           |           |           |
|                 |                         |           |            |         |                                        |           |           |           |
|                 |                         |           |            |         |                                        |           |           |           |
|                 |                         |           |            |         |                                        |           |           |           |
|                 |                         |           |            |         |                                        |           |           |           |
|                 |                         |           |            |         |                                        |           |           |           |
|                 |                         |           |            |         |                                        |           |           |           |
|                 |                         |           |            |         |                                        |           |           |           |
|                 |                         |           |            |         |                                        |           |           |           |
|                 |                         |           |            |         |                                        |           |           |           |
|                 |                         |           |            |         |                                        |           |           |           |
|                 |                         |           |            |         |                                        |           |           |           |
|                 |                         |           |            |         |                                        |           |           |           |
|                 |                         |           |            |         |                                        |           |           |           |
|                 |                         |           |            |         |                                        |           |           |           |
|                 |                         |           |            |         |                                        |           |           |           |
|                 |                         |           |            |         |                                        |           |           |           |
|                 |                         |           |            |         |                                        |           |           |           |
|                 |                         |           |            |         |                                        |           |           |           |
|                 |                         |           |            |         |                                        |           |           |           |
|                 |                         |           |            |         |                                        |           |           | I         |

| Sample Details/Parameters               | Result     | Qualifier* | D.L.      | Units                                  | Extracted | Analyzed  | Batch       |
|-----------------------------------------|------------|------------|-----------|----------------------------------------|-----------|-----------|-------------|
| 1 2202410 F MW202                       |            |            |           |                                        |           |           |             |
| L2393410-5 MW203                        |            |            |           |                                        |           |           |             |
|                                         |            |            |           |                                        |           |           |             |
| Matrix: WATER                           |            |            |           |                                        |           |           |             |
|                                         |            |            |           |                                        |           |           |             |
| ECME F2-4 Hydrocarbons<br>F2' (C10-C16) | <0.10      |            | 0.10      | ma/l                                   | 16-DEC-19 | 16-DEC-19 | R4943576    |
| Surrogate: 2-Bromobenzotrifluoride      | 65.2       |            | 60-140    | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 16-DEC-19 | 16-DEC-19 | R4943576    |
| F1 (C6-C10)                             | 00.2       |            |           |                                        |           |           |             |
| F1(C6-C10)                              | <0.10      |            | 0.10      | mg/L                                   |           | 10-DEC-19 | R4938070    |
| F1-BTEX                                 | <0.10      |            | 0.10      | mg/L                                   |           | 10-DEC-19 | R4938070    |
| Surrogate: 3,4-Dichlorotoluene          | 105.9      |            | 70-130    | %                                      |           | 10-DEC-19 | R4938070    |
| Miscellaneous Parameters                |            |            |           |                                        |           |           |             |
| AOX                                     | ND U       |            | 10        | mg/L                                   |           | 12-DEC-19 | R4949027    |
| Ammonia, Total (as N)                   | 13.3       | DLHC       | 2.5       | mg/L                                   |           | 16-DEC-19 | R4943991    |
| Dissolved Organic Carbon                | 9.5        |            | 1.0       | mg/L                                   |           | 13-DEC-19 | R4943327    |
| Xylenes                                 | <0.00071   |            | 0.00071   | mg/L                                   |           | 16-DEC-19 |             |
| Total Kjeldahl Nitrogen                 | 15.0       | DLHC       | 1.0       | mg/L                                   |           | 12-DEC-19 | R4943090    |
| Phosphorus (P)-Total                    | 0.350      | DLHC       | 0.050     | mg/L                                   |           | 13-DEC-19 | R4943276    |
| Volatile fatty/carboxylic acids         |            |            |           | 0                                      |           |           |             |
| Formic Acid                             | <50        | DLM        | 50        | mg/L                                   |           | 14-DEC-19 | R4943956    |
| Acetic Acid                             | <10        |            | 10        | mg/L                                   |           | 14-DEC-19 | R4943956    |
| Propionic Acid                          | <5.0       |            | 5.0       | mg/L                                   |           | 14-DEC-19 | R4943956    |
| Butyric Acid                            | <1.0       |            | 1.0       | mg/L                                   |           | 14-DEC-19 | R4943956    |
| Isobutyric Acid                         | <1.0       |            | 1.0       | mg/L                                   |           | 14-DEC-19 | R4943956    |
| Valeric Acid                            | <1.0       |            | 1.0       | mg/L                                   |           | 14-DEC-19 | R4943956    |
| Isovaleric Acid                         | <1.0       |            | 1.0       | mg/L                                   |           | 14-DEC-19 | R4943956    |
| Caproic (Hexanoic) Acid                 | <1.0       |            | 1.0       | mg/L                                   |           | 14-DEC-19 | R4943956    |
| Major Ions & Trace Dissolved Metals     |            |            |           |                                        |           |           |             |
| Chloride in Water by IC                 | 10.5       | DUUC       | 0.5       |                                        |           | 07 050 40 | D 40 400 40 |
|                                         | 19.5       | DLHC       | 2.5       | mg/∟                                   |           | 07-DEC-19 | R4942649    |
| Dissolved Mercury in water by CVAAS     | <0.000050  |            | 0.000050  | ma/l                                   |           | 13-DEC-10 | P4042011    |
| Dissolved Mercury Filtration Location   | <0.0000030 |            | 0.0000030 | iiig/∟                                 |           | 13-DEC-19 | R4943011    |
| Dissolved Metals in Water by CRC ICPMS  |            |            |           |                                        |           | IO DEO IO | 1(4342330   |
| Dissolved Metals Filtration Location    | FIELD      |            |           |                                        |           | 09-DEC-19 | R4938487    |
| Aluminum (AI)-Dissolved                 | 0.0035     |            | 0.0010    | mg/L                                   |           | 09-DEC-19 | R4937828    |
| Antimony (Sb)-Dissolved                 | <0.00010   |            | 0.00010   | mg/L                                   |           | 09-DEC-19 | R4937828    |
| Arsenic (As)-Dissolved                  | 0.00796    |            | 0.00010   | mg/L                                   |           | 09-DEC-19 | R4937828    |
| Barium (Ba)-Dissolved                   | 0.188      |            | 0.00010   | mg/L                                   |           | 09-DEC-19 | R4937828    |
| Boron (B)-Dissolved                     | 0.494      |            | 0.010     | mg/L                                   |           | 09-DEC-19 | R4937828    |
| Cadmium (Cd)-Dissolved                  | 0.0000408  |            | 0.0000050 | mg/L                                   |           | 09-DEC-19 | R4937828    |
| Calcium (Ca)-Dissolved                  | 119        |            | 0.050     | mg/L                                   |           | 09-DEC-19 | R4937828    |
| Chromium (Cr)-Dissolved                 | 0.00015    |            | 0.00010   | mg/L                                   |           | 09-DEC-19 | R4937828    |
| Copper (Cu)-Dissolved                   | <0.00020   |            | 0.00020   | mg/L                                   |           | 09-DEC-19 | R4937828    |
| Iron (Fe)-Dissolved                     | 2.23       |            | 0.010     | mg/L                                   |           | 09-DEC-19 | R4937828    |
| Lead (Pb)-Dissolved                     | <0.000050  |            | 0.000050  | mg/L                                   |           | 09-DEC-19 | R4937828    |
| Magnesium (Mg)-Dissolved                | 33.9       |            | 0.0050    | mg/L                                   |           | 09-DEC-19 | R4937828    |
| Wanganese (WIN)-Dissolved               | 0.303      |            | 0.00010   | mg/L                                   |           | 09-DEC-19 | R493/828    |
| Nickel (III)-Dissolved                  | 0.00054    |            | 0.00050   | mg/L                                   |           | 09-DEC-19 | R493/828    |
| salanium (Sa)-Dissolved                 | 0.000242   |            |           | mg/L                                   |           | 09-DEC-19 | R1037020    |
| Silver (Ag)-Dissolved                   |            |            |           | mg/L                                   |           | 09-DEC-19 | R4037870    |
| Sodium (Na)-Dissolved                   | Δ7 1       |            | 0.000010  | ma/l                                   |           | 09-DEC-19 | R4937828    |
| Uranium (U)-Dissolved                   | 0.000590   |            | 0.000010  | ma/l                                   |           | 09-DEC-19 | R4937828    |
| Zinc (Zn)-Dissolved                     | 0.0011     |            | 0.0010    | ma/L                                   |           | 09-DEC-19 | R4937828    |
| (,                                      | 0.0011     |            | 0.0010    | <del>g</del> , <b>_</b>                |           |           |             |

| Sample Details/Parameters                | Result    | Qualifier* | D.L.    | Units | Extracted  | Analyzed   | Batch     |
|------------------------------------------|-----------|------------|---------|-------|------------|------------|-----------|
| 1 2202 440 5 MW/202                      |           |            |         |       |            |            |           |
| L2393410-5 NIV 203                       |           |            |         |       |            |            |           |
| Sampled By: RM on 05-DEC-19 @ 08:15      |           |            |         |       |            |            |           |
| Matrix: WATER                            |           |            |         |       |            |            |           |
| Fluoride in Water by IC<br>Fluoride (F)  | <0.10     | DLHC       | 0.10    | mg/L  |            | 07-DEC-19  | R4942649  |
| Ion Balance Calculation                  |           |            |         |       |            |            |           |
| Ion Balance                              | 95.2      |            |         | %     |            | 16-DEC-19  |           |
| TDS (Calculated)                         | 633       |            |         | mg/L  |            | 16-DEC-19  |           |
| Hardness (as CaCO3)                      | 437       |            |         | mg/L  |            | 16-DEC-19  |           |
| Nitrate in Water by IC<br>Nitrate (as N) | <0.10     | DLHC       | 0.10    | mg/L  |            | 07-DEC-19  | R4942649  |
| Nitrate+Nitrite                          |           |            |         |       |            |            |           |
| Nitrate and Nitrite (as N)               | <0.11     |            | 0.11    | mg/L  |            | 13-DEC-19  |           |
| Nitrite in Water by IC                   |           | DUUG       |         |       |            |            |           |
| Nitrite (as N)                           | <0.050    | DLHC       | 0.050   | mg/L  |            | 07-DEC-19  | R4942649  |
| Sulfate in Water by IC<br>Sulfate (SO4)  | 93.2      | DLHC       | 1.5     | mg/L  |            | 07-DEC-19  | R4942649  |
| pH, Conductivity and Total Alkalinity    |           |            |         |       |            |            |           |
| pH                                       | 8.03      |            | 0.10    | рН    |            | 14-DEC-19  | R4943994  |
| Conductivity (EC)                        | 1030      |            | 2.0     | uS/cm |            | 14-DEC-19  | R4943994  |
| Bicarbonate (HCO3)                       | 622       |            | 5.0     | mg/L  |            | 14-DEC-19  | R4943994  |
| Carbonate (CO3)                          | <5.0      |            | 5.0     | mg/L  |            | 14-DEC-19  | R4943994  |
| Hydroxide (OH)                           | <5.0      |            | 5.0     | mg/L  |            | 14-DEC-19  | R4943994  |
| Alkalinity, Total (as CaCO3)             | 510       |            | 2.0     | mg/L  |            | 14-DEC-19  | R4943994  |
| EPA 8260 Volatile Organics               |           |            |         |       |            |            |           |
| VOCs in Water                            | 0.0010    |            | 0.0040  |       | 40 050 40  |            | D 4007000 |
| 1, 1, 1, 2-1 etrachioroethane            | <0.0010   |            | 0.0010  | mg/∟  | 10-DEC-19  | 10-DEC-19  | R4937909  |
| 1,1,1-Inchloroethane                     | <0.00050  |            | 0.00050 | mg/∟  | 10-DEC-19  | 10-DEC-19  | R4937909  |
| 1,1,2,2-Tetrachioroethane                | <0.00050  |            | 0.00050 | mg/L  | 10-DEC-19  | 10-DEC-19  | R4937909  |
| 1 1-Dichloroethane                       | <0.00050  |            | 0.00050 | mg/L  | 10-DEC-19  | 10-DEC-19  | R4937909  |
| 1 1-Dichloroethene                       | <0.00050  |            | 0.00050 | mg/L  | 10-DEC-19  | 10-DEC-19  | R4937909  |
| 1,1-Dichloropropene                      | <0.00000  |            | 0.00000 | ma/l  | 10-DEC-19  | 10-DEC-19  | R4937909  |
| 1.2.3-Trichlorobenzene                   | <0.0010   |            | 0.0010  | ma/L  | 10-DEC-19  | 10-DEC-19  | R4937909  |
| 1.2.3-Trichloropropane                   | < 0.00050 |            | 0.00050 | ma/L  | 10-DEC-19  | 10-DEC-19  | R4937909  |
| 1,2,4-Trichlorobenzene                   | < 0.0010  |            | 0.0010  | mg/L  | 10-DEC-19  | 10-DEC-19  | R4937909  |
| 1,2,4-Trimethylbenzene                   | <0.0010   |            | 0.0010  | mg/L  | 10-DEC-19  | 10-DEC-19  | R4937909  |
| 1,2-Dibromo-3-chloropropane              | <0.0010   |            | 0.0010  | mg/L  | 10-DEC-19  | 10-DEC-19  | R4937909  |
| 1,2-Dichlorobenzene                      | <0.00050  |            | 0.00050 | mg/L  | 10-DEC-19  | 10-DEC-19  | R4937909  |
| 1,2-Dichloroethane                       | <0.0010   |            | 0.0010  | mg/L  | 10-DEC-19  | 10-DEC-19  | R4937909  |
| 1,2-Dichloropropane                      | <0.00050  |            | 0.00050 | mg/L  | 10-DEC-19  | 10-DEC-19  | R4937909  |
| 1,3,5-Trimethylbenzene                   | <0.0010   |            | 0.0010  | mg/L  | 10-DEC-19  | 10-DEC-19  | R4937909  |
| 1,3-Dichlorobenzene                      | <0.00050  |            | 0.00050 | mg/L  | 10-DEC-19  | 10-DEC-19  | R4937909  |
| 1,3-Dichloropropane                      | <0.0010   |            | 0.0010  | mg/L  | 10-DEC-19  | 10-DEC-19  | R4937909  |
| 1,4-Dichlorobenzene                      | <0.00050  |            | 0.00050 | mg/L  | 10-DEC-19  | 10-DEC-19  | R4937909  |
| 2,2-Dichloropropane                      | <0.0010   |            | 0.0010  | mg/L  | 10-DEC-19  | 10-DEC-19  | R4937909  |
| 2-Chlorotoluene                          | <0.0010   |            | 0.0010  | mg/L  | 10-DEC-19  | 10-DEC-19  | R4937909  |
| 4-Chlorotoluene                          | <0.0010   |            | 0.0010  | mg/L  | 10-DEC-19  | 10-DEC-19  | R4937909  |
| p-isopropyltoluene                       | < 0.0010  |            | 0.0010  | mg/L  | 10-DEC-19  | 10-DEC-19  | R4937909  |
| Benzene                                  | 0.00053   |            | 0.00050 | mg/L  | 10-DEC-19  | 10-DEC-19  | K4937909  |
| Bromobleromethere                        | <0.0010   |            | 0.0010  | mg/L  | 10-DEC-19  | 10-DEC-19  | R4937909  |
| Bromodichloromothene                     | <0.0010   |            | 0.0010  | mg/L  | 10-DEC-19  | 10-DEC-19  | R4937909  |
| Bromoform                                |           |            |         | mg/L  | 10-DEC-19  | 10-DEC-19  | R493/909  |
| Bromomethane                             |           |            |         | ma/L  | 10-DEC-19  | 10-DEC-19  | R4937909  |
| Carbon tetrachloride                     |           |            | 0.00050 | ma/l  | 10-DFC-19  | 10-DEC-19  | R4937909  |
|                                          | ~0.00000  |            | 5.00000 |       | 10 0 20 10 | 10 0 20 10 | 1.4001000 |

| Sample Details/Parameters           | Result   | Qualifier* | D.L.    | Units | Extracted | Analyzed  | Batch    |
|-------------------------------------|----------|------------|---------|-------|-----------|-----------|----------|
| L2393410-5 MW203                    |          |            |         |       |           |           |          |
| Sampled By: RM on 05-DEC-19 @ 08:15 |          |            |         |       |           |           |          |
| Matrix: WATER                       |          |            |         |       |           |           |          |
| VOCs in Water                       |          |            |         |       |           |           |          |
| Chlorobenzene                       | <0.00050 |            | 0.00050 | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909 |
| Chloroethane                        | <0.0010  |            | 0.0010  | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909 |
| Chloroform                          | <0.00050 |            | 0.00050 | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909 |
| Chloromethane                       | <0.0010  |            | 0.0010  | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909 |
| cis-1,2-Dichloroethene              | 0.0083   |            | 0.0010  | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909 |
| cis-1,3-Dichloropropene             | <0.00050 |            | 0.00050 | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909 |
| Dibromochloromethane                | <0.00050 |            | 0.00050 | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909 |
| Dibromomethane                      | <0.00050 |            | 0.00050 | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909 |
| Dichlorodifluoromethane             | <0.00050 |            | 0.00050 | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909 |
| Ethylbenzene                        | <0.00050 |            | 0.00050 | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909 |
| Etriyiene albromiae                 | <0.00050 |            | 0.00050 | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909 |
|                                     | <0.0010  |            | 0.0010  | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909 |
|                                     | <0.0010  |            | 0.0010  | mg/L  | 10-DEC-19 | 10-DEC-19 | K4937909 |
| Methylene chloride                  | <0.00050 |            | 0.00050 | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909 |
| n-Butylenzene                       | <0.0010  |            | 0.0010  | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909 |
| n-Propylbenzene                     | <0.0010  |            | 0.0010  | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909 |
| o-Xvlene                            | <0.0010  |            | 0.0010  | ma/l  | 10-DEC-19 | 10-DEC-19 | R4937909 |
| sec-Butylbenzene                    | <0.0010  |            | 0.0010  | ma/L  | 10-DEC-19 | 10-DEC-19 | R4937909 |
| Styrene                             | <0.00050 |            | 0.00050 | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909 |
| tert-Butylbenzene                   | <0.0010  |            | 0.0010  | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909 |
| Tetrachloroethylene                 | <0.00050 |            | 0.00050 | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909 |
| Toluene                             | <0.00050 |            | 0.00050 | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909 |
| trans-1,2-Dichloroethene            | <0.00050 |            | 0.00050 | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909 |
| trans-1,3-Dichloropropene           | <0.0010  |            | 0.0010  | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909 |
| Trichloroethene                     | <0.00050 |            | 0.00050 | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909 |
| Trichlorofluoromethane              | <0.0010  |            | 0.0010  | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909 |
| Vinyl chloride                      | 0.00289  |            | 0.00050 | mg/L  | 10-DEC-19 | 10-DEC-19 | R4937909 |
| Surrogate: 1,4-Difluorobenzene      | 99.1     |            | 70-130  | %     | 10-DEC-19 | 10-DEC-19 | R4937909 |
| Surrogate: 4-Bromofluorobenzene     | 78.0     |            | 70-130  | %     | 10-DEC-19 | 10-DEC-19 | R4937909 |
|                                     |          |            |         |       |           |           |          |

Qualifier

### **Reference Information**

#### Sample Parameter Qualifier Key:

Description

| DLDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Detection Limit Raised: Dilution required due to high Dissolved Solids / Electrical Conductivity. |                                                                                                  |                                                                                                                                        |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| DLHC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Detection Limit Raised: Dilution required due to high concentration of test analyte(s).           |                                                                                                  |                                                                                                                                        |  |  |  |  |  |  |
| DLM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Detection Limit Adjus                                                                             | ted due to sample matrix effects (e.g. chemica                                                   | l interference, colour, turbidity).                                                                                                    |  |  |  |  |  |  |
| MS-B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Matrix Spike recovery                                                                             | could not be accurately calculated due to high                                                   | analyte background in sample.                                                                                                          |  |  |  |  |  |  |
| Test Method R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | eferences:                                                                                        |                                                                                                  |                                                                                                                                        |  |  |  |  |  |  |
| ALS Test Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Matrix                                                                                            | Test Description                                                                                 | Method Reference**                                                                                                                     |  |  |  |  |  |  |
| AOX-MISA-KL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Water                                                                                             | Adsorbable Organic Halides                                                                       | EPA 1650                                                                                                                               |  |  |  |  |  |  |
| BTXS-HS-MS-CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Water                                                                                             | BTEX and Styrene                                                                                 | EPA 8260C/5021A                                                                                                                        |  |  |  |  |  |  |
| The water samp<br>BTEX Target co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | le, with added reagents mpound concentrations                                                     | s, is heated in a sealed vial to equilibrium. The sare measured using mass spectrometry deter    | headspace from the vial is transferred into a gas chromatograph.<br>ction.                                                             |  |  |  |  |  |  |
| C-DIS-ORG-CL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Water                                                                                             | Dissolved Organic Carbon                                                                         | APHA 5310 B-Instrumental                                                                                                               |  |  |  |  |  |  |
| Filtered (0.45 un<br>oxidized to CO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>n) sample is acidified a<br/>which is then transport</li> </ul>                          | nd purged to remove inorganic carbon, then inj<br>ed in the carrier gas stream and measured via  | ected into a heated reaction chamber where organic carbon is a non-dispersive infrared analyzer.                                       |  |  |  |  |  |  |
| CL-IC-N-CL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Water                                                                                             | Chloride in Water by IC                                                                          | EPA 300.1 (mod)                                                                                                                        |  |  |  |  |  |  |
| Inorganic anions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | are analyzed by Ion C                                                                             | hromatography with conductivity and/or UV de                                                     | tection.                                                                                                                               |  |  |  |  |  |  |
| F-IC-N-CL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Water                                                                                             | Fluoride in Water by IC                                                                          | EPA 300.1 (mod)                                                                                                                        |  |  |  |  |  |  |
| Inorganic anions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | are analyzed by Ion C                                                                             | hromatography with conductivity and/or UV de                                                     | tection.                                                                                                                               |  |  |  |  |  |  |
| F1-HS-FID-CL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Water                                                                                             | F1 (C6-C10)                                                                                      | EPA 5021A / CWS PHC Tier 1                                                                                                             |  |  |  |  |  |  |
| This analysis is based on the "Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil - Tier 1 Method, Canadian Council of Ministers of the Environment, December 2001." For F1 (C6-C10) analysis, the water sample, with added reagents, is heated in a sealed vial to equilibrium. The headspace from the vial is transferred into a GC-FID for analysis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                   |                                                                                                  |                                                                                                                                        |  |  |  |  |  |  |
| F2-4-ME-FID-CL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Water                                                                                             | CCME F2-4 Hydrocarbons                                                                           | EPA 3511/ CCME PHC CWS GC-FID                                                                                                          |  |  |  |  |  |  |
| Water samples a<br>Instrumental ana<br>CCME, Decemb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | are spiked with 2-BBTF<br>alysis is by GC-FID, as<br>er 2001.                                     | surrogate, and extracted by reciprocal action a per the Reference Method for the Canada-Wic      | shaker for 30 minutes using a single micro-extraction with hexane.<br>le Standard for Petroleum Hydrocarbons in Soil, Tier 1 Method,   |  |  |  |  |  |  |
| HG-D-CVAA-CL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Water                                                                                             | Dissolved Mercury in Water by CVAAS                                                              | APHA 3030B/EPA 1631E (mod)                                                                                                             |  |  |  |  |  |  |
| Water samples a with stannous ch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | are filtered (0.45 um), p<br>nloride, and analyzed by                                             | reserved with hydrochloric acid, then undergo y CVAAS.                                           | a cold-oxidation using bromine monochloride prior to reduction                                                                         |  |  |  |  |  |  |
| IONBALANCE-C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | L Water                                                                                           | Ion Balance Calculation                                                                          | APHA 1030E                                                                                                                             |  |  |  |  |  |  |
| MET-D-CCMS-C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | L Water                                                                                           | Dissolved Metals in Water by CRC ICPMS                                                           | APHA 3030B/6020A (mod)                                                                                                                 |  |  |  |  |  |  |
| Water samples a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | are filtered (0.45 um), p                                                                         | reserved with nitric acid, and analyzed by CRC                                                   | CICPMS.                                                                                                                                |  |  |  |  |  |  |
| Method Limitatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n (re: Sulfur): Sulfide a                                                                         | nd volatile sulfur species may not be recovered                                                  | d by this method.                                                                                                                      |  |  |  |  |  |  |
| N2N3-CALC-CL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Water                                                                                             | Nitrate+Nitrite                                                                                  | CALCULATION                                                                                                                            |  |  |  |  |  |  |
| NH3-F-CL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Water                                                                                             | Ammonia by Fluorescence                                                                          | J. ENVIRON. MONIT., 2005, 7, 37-42, RSC                                                                                                |  |  |  |  |  |  |
| This analysis is of of Chemistry, "Fallenges of the second | carried out, on sulfuric a low-injection analysis w                                               | acid preserved samples, using procedures mo-<br>vith fluorescence detection for the determinatio | dified from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society<br>n of trace levels of ammonium in seawater", Roslyn J. Waston et |  |  |  |  |  |  |
| NO2-IC-N-CL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Water                                                                                             | Nitrite in Water by IC                                                                           | EPA 300.1 (mod)                                                                                                                        |  |  |  |  |  |  |
| Inorganic anions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | are analyzed by Ion C                                                                             | hromatography with conductivity and/or UV de                                                     | tection.                                                                                                                               |  |  |  |  |  |  |
| NO3-IC-N-CL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Water                                                                                             | Nitrate in Water by IC                                                                           | EPA 300.1 (mod)                                                                                                                        |  |  |  |  |  |  |
| Inorganic anions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | are analyzed by Ion C                                                                             | hromatography with conductivity and/or UV de                                                     | tection.                                                                                                                               |  |  |  |  |  |  |
| P-T-COL-CL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Water                                                                                             | Total P in Water by Colour                                                                       | APHA 4500-P PHOSPHORUS                                                                                                                 |  |  |  |  |  |  |
| This analysis is opersulphate dige                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | carried out using proce<br>stion of the sample.                                                   | dures adapted from APHA Method 4500-P "Ph                                                        | osphorus". Total Phosphorus is determined colourimetrically after                                                                      |  |  |  |  |  |  |
| PH/EC/ALK-CL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Water                                                                                             | pH, Conductivity and Total Alkalinity                                                            | APHA 4500H,2510,2320                                                                                                                   |  |  |  |  |  |  |

All samples analyzed by this method for pH will have exceeded the 15 minute recommended hold time from time of sampling (field analysis is recommended for pH where highly accurate results are needed)

### **Reference Information**

| ALS Test Code                                                                               | Matrix                                          | Test Description                                                                                                                                      | Method Reference**                                                                                                                     |
|---------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| pH measurement is detern<br>Alkalinity measurement is<br>Conductivity measuremen            | nined from the<br>based on the<br>t is based or | he activity of the hydrogen ions using a hydrog<br>e sample's capacity to neutralize acid<br>n the sample's capacity to convey an electric co         | en electrode and a reference electrode.<br>urrent                                                                                      |
| SO4-IC-N-CL                                                                                 | Water                                           | Sulfate in Water by IC                                                                                                                                | EPA 300.1 (mod)                                                                                                                        |
| Inorganic anions are analy                                                                  | zed by Ion C                                    | Chromatography with conductivity and/or UV de                                                                                                         | etection.                                                                                                                              |
| TKN-F-CL                                                                                    | Water                                           | Total Kjeldahl Nitrogen by Fluorescence                                                                                                               | APHA 4500-NORG (TKN)                                                                                                                   |
| This analysis is carried ou<br>Nitrogen is determined usi                                   | t using proce<br>ng block dig                   | edures adapted from APHA Method 4500-Norg<br>estion followed by Flow-injection analysis with                                                          | D. "Block Digestion and Flow Injection Analysis". Total Kjeldahl fluorescence detection.                                               |
| VFA-WP                                                                                      | Water                                           | Volatile fatty/carboxylic acids                                                                                                                       | ASTM D2908-91                                                                                                                          |
| In the field, water and soil<br>autosampler vial for analys<br>injection. Analysis is perfo | samples are<br>sis. Soil san<br>ormed by GC     | collected in certified clean glass jars. In the language are extracted with water and an aliquot o<br>C/MS in the selected ion monitoring (SIM) model | aboratory, water samples are filtered and transferred to an f water is filtered. All extracts have internal standard added prior to e. |
| VOC-HS-MS-CL                                                                                | Water                                           | VOCs in Water                                                                                                                                         | EPA 8260C/5021A                                                                                                                        |
| The water sample, with ad<br>VOC Target compound co                                         | ded reagent<br>ncentrations                     | s, is heated in a sealed vial to equilibrium. The are measured using mass spectrometry detection                                                      | headspace from the vial is transferred into a gas chromatograph. ction.                                                                |
| XYLENES-CALC-CL                                                                             | Water                                           | Sum of Xylene Isomer Concentrations                                                                                                                   | CALCULATION                                                                                                                            |
| Calculation of Total Xylene                                                                 | es                                              |                                                                                                                                                       |                                                                                                                                        |
| Total Xylenes is the sum o                                                                  | of the concer                                   | ntrations of the ortho, meta, and para Xylene is                                                                                                      | omers. Results below detection limit (DL) are treated as zero. Th                                                                      |

\*\* ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

| Laboratory Definition Code | Laboratory Location                            |
|----------------------------|------------------------------------------------|
| WP                         | ALS ENVIRONMENTAL - WINNIPEG, MANITOBA, CANADA |
| KL                         | ALS ENVIRONMENTAL - KELSO, WASHINGTON, USA     |
| CL                         | ALS ENVIRONMENTAL - CALGARY, ALBERTA, CANADA   |

#### Chain of Custody Numbers:

MCKENZIE TRAILS

#### GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

# ALS Routine Water Chemistry Report

L2393410

| Lab ID Sample ID                                            |               |            |       |          | Lab ID Sample                                               | ID             |            |       |       |
|-------------------------------------------------------------|---------------|------------|-------|----------|-------------------------------------------------------------|----------------|------------|-------|-------|
| L2393410-1 MW-01<br>Sample Date: 04-DEC-19<br>Matrix: WATER |               |            |       |          | L2393410-2 MW-02<br>Sample Date: 04-DEC-19<br>Matrix: WATER |                |            |       |       |
| Ion Balance                                                 | Result<br>102 | UNITS<br>% | MEQ/L | MEQ %    | Ion Balance                                                 | Result<br>94.0 | UNITS<br>% | MEQ/L | MEQ % |
| Routine Anions<br>Bicarbonate                               | 411           | mg/L       | 6.74  | 44       | Routine Anions<br>Bicarbonate                               | 311            | mg/L       | 5.10  | 40    |
| Carbonate                                                   | <5.0          | mg/L       | 0     | 0        | Carbonate                                                   | <5.0           | mg/L       | 0     | 0     |
| Hydroxide                                                   | <5.0          | mg/L       | 0     | 0        | Hydroxide                                                   | <5.0           | mg/L       | 0     | 0     |
| Chloride                                                    | 17.0          | mg/L       | 0.48  | 3        | Chloride                                                    | 7.67           | mg/L       | 0.22  | 2     |
| Sulfate                                                     | 16.0          | mg/L       | 0.33  | 2        | Sulfate                                                     | 59.6           | mg/L       | 1.24  | 10    |
| Nitrate+Nitrite-N                                           |               | mg/L       | 0     | 0        | Nitrate+Nitrite-N                                           |                | mg/L       | 0     | 0     |
| Anion Sum                                                   |               |            | 7.55  | 50       | Anion Sum                                                   |                |            | 6.56  | 52    |
| Routine Cations<br>Calcium                                  | 71.7          | mg/L       | 3.58  | 24       | Routine Cations<br>Calcium                                  | 72.2           | mg/L       | 3.60  | 28    |
| Magnesium                                                   | 26.8          | mg/L       | 2.21  | 14       | Magnesium                                                   | 21.6           | mg/L       | 1.78  | 14    |
| Sodium                                                      | 40.1          | mg/L       | 1.74  | 11       | Sodium                                                      | 16.4           | mg/L       | 0.71  | 6     |
| Potassium                                                   | 4.27          | mg/L       | 0.11  | 1        | Potassium                                                   | 2.70           | mg/L       | 0.07  | 1     |
| Ammonium                                                    | 0.477         | mg/L       | 0.03  | 0        | Ammonium                                                    | <0.050         | mg/L       | 0     | 0     |
| Cation Sum                                                  |               | 0          | 7.67  | 50       | Cation Sur                                                  |                |            | 6.16  | 48    |
| L2393410-3 MW-03                                            |               |            |       |          | L2393410-4 MW-04                                            |                |            |       |       |
| Sample Date: 04-DEC-19                                      |               |            |       |          | Sample Date: 04-DEC-19                                      |                |            |       |       |
| Matrix: WATER                                               | Desself       |            | MEON  |          | Matrix: WATER                                               | Desself        |            | MEO/  |       |
| Ion Balance                                                 | 98.6          | %          | MEQ/L | MEQ %    | Ion Balance                                                 | 91.1           | %          | MEQ/L | MEQ % |
| Routine Anions<br>Bicarbonate                               | 1140          | mg/L       | 18.68 | 44       | Routine Anions<br>Bicarbonate                               | 1060           | mg/L       | 17.37 | 44    |
| Carbonate                                                   | <5.0          | mg/L       | 0     | 0        | Carbonate                                                   | <5.0           | mg/L       | 0     | 0     |
| Hydroxide                                                   | <5.0          | mg/L       | 0     | 0        | Hydroxide                                                   | <5.0           | mg/L       | 0     | 0     |
| Chloride                                                    | 49.6          | mg/L       | 1.40  | 3        | Chloride                                                    | 42.9           | mg/L       | 1.21  | 3     |
| Sulfate                                                     | 69.5          | mg/L       | 1.45  | 3        | Sulfate                                                     | 94.7           | mg/L       | 1.97  | 5     |
| Nitrate+Nitrite-N                                           |               | mg/L       | 0     | 0        | Nitrate+Nitrite-N                                           |                | mg/L       | 0.01  | 0     |
| Anion Sum                                                   |               |            | 21.53 | 50       | Anion Sum                                                   |                |            | 20.57 | 52    |
| Routine Cations<br>Calcium                                  | 168           | mg/L       | 8.38  | 20       | Routine Cations<br>Calcium                                  | 168            | mg/L       | 8.38  | 21    |
| Magnesium                                                   | 55.0          | mg/L       | 4.53  | 11       | Magnesium                                                   | 59.3           | mg/L       | 4.88  | 12    |
| Sodium                                                      | 174           | mg/L       | 7.57  | 18       | Sodium                                                      | 96.6           | mg/L       | 4.20  | 11    |
| Potassium                                                   | 9.68          | mg/L       | 0.25  | 1        | Potassium                                                   | 20.7           | mg/L       | 0.53  | 1     |
| Ammonium                                                    | 7.0           | mg/L       | 0.50  | 1        | Ammonium                                                    | 10.4           | mg/L       | 0.74  | 2     |
| Cation Sum                                                  |               | _          | 21.23 | 50       | Cation Sur                                                  |                |            | 18.74 | 48    |
|                                                             |               |            |       | <u> </u> |                                                             |                |            |       |       |
|                                                             |               |            |       |          |                                                             |                |            |       |       |
|                                                             |               |            |       |          |                                                             |                |            |       |       |
|                                                             |               | 1          | 1     | 1        |                                                             |                | 1          | 1     | 1     |

# ALS Routine Water Chemistry Report

L2393410

| Lab ID Sample ID                                            |      |            | 1     | 1     | Lab ID | Sample ID | <br> |  |
|-------------------------------------------------------------|------|------------|-------|-------|--------|-----------|------|--|
| L2393410-5 MW203<br>Sample Date: 05-DEC-19<br>Matrix: WATER | _    |            |       |       |        |           |      |  |
| Ion Balance                                                 | 95.2 | UNITS<br>% | MEQ/L | MEQ % |        |           |      |  |
| Routine Anions<br>Bicarbonate                               | 622  | mg/L       | 10.19 | 41    |        |           |      |  |
| Carbonate                                                   | <5.0 | mg/L       | 0     | 0     |        |           |      |  |
| Hydroxide                                                   | <5.0 | mg/L       | 0     | 0     |        |           |      |  |
| Chloride                                                    | 19.5 | mg/L       | 0.55  | 2     |        |           |      |  |
| Sulfate                                                     | 93.2 | mg/L       | 1.94  | 8     |        |           |      |  |
| Nitrate+Nitrite-N                                           |      | mg/L       | 0     | 0     |        |           |      |  |
| Anion Sum                                                   |      |            | 12.68 | 51    |        |           |      |  |
| Routine Cations<br>Calcium                                  | 119  | mg/L       | 5.94  | 24    |        |           |      |  |
| Magnesium                                                   | 33.9 | mg/L       | 2.79  | 11    |        |           |      |  |
| Sodium                                                      | 47.1 | mg/L       | 2.05  | 8     |        |           |      |  |
| Potassium                                                   | 13.8 | mg/L       | 0.35  | 1     |        |           |      |  |
| Ammonium                                                    | 13.3 | mg/L       | 0.95  | 4     |        |           |      |  |
| Cation Sur                                                  |      |            | 12.08 | 49    |        |           |      |  |
|                                                             |      |            |       |       |        |           |      |  |
|                                                             |      |            |       |       |        |           |      |  |

# ALS LABORATORY GROUP SOIL SALINITY CONVERSION

L2393410

| Lab ID         | Sample ID         |                   |                        |         | Lab ID Sample ID |  |  |  |  |  |
|----------------|-------------------|-------------------|------------------------|---------|------------------|--|--|--|--|--|
|                |                   |                   |                        |         |                  |  |  |  |  |  |
|                |                   |                   |                        |         |                  |  |  |  |  |  |
|                |                   |                   |                        |         |                  |  |  |  |  |  |
|                |                   |                   |                        |         |                  |  |  |  |  |  |
|                |                   |                   |                        |         |                  |  |  |  |  |  |
|                |                   |                   |                        |         |                  |  |  |  |  |  |
|                |                   |                   |                        |         |                  |  |  |  |  |  |
|                |                   |                   |                        |         |                  |  |  |  |  |  |
|                |                   |                   |                        |         |                  |  |  |  |  |  |
|                |                   |                   |                        |         |                  |  |  |  |  |  |
|                |                   |                   |                        |         |                  |  |  |  |  |  |
|                |                   |                   |                        |         |                  |  |  |  |  |  |
|                |                   |                   |                        |         |                  |  |  |  |  |  |
|                |                   |                   |                        |         |                  |  |  |  |  |  |
|                |                   |                   |                        |         |                  |  |  |  |  |  |
|                |                   |                   |                        |         |                  |  |  |  |  |  |
|                |                   |                   |                        |         |                  |  |  |  |  |  |
|                |                   |                   |                        |         |                  |  |  |  |  |  |
|                |                   |                   |                        |         |                  |  |  |  |  |  |
|                |                   |                   |                        |         |                  |  |  |  |  |  |
|                |                   |                   |                        |         |                  |  |  |  |  |  |
|                |                   |                   |                        |         |                  |  |  |  |  |  |
|                |                   |                   |                        |         |                  |  |  |  |  |  |
|                |                   |                   |                        |         |                  |  |  |  |  |  |
|                |                   |                   |                        |         |                  |  |  |  |  |  |
|                |                   |                   |                        |         |                  |  |  |  |  |  |
|                |                   |                   |                        |         |                  |  |  |  |  |  |
|                |                   |                   |                        |         |                  |  |  |  |  |  |
|                |                   |                   |                        |         |                  |  |  |  |  |  |
|                |                   |                   |                        |         |                  |  |  |  |  |  |
|                |                   |                   |                        |         |                  |  |  |  |  |  |
|                |                   |                   |                        |         |                  |  |  |  |  |  |
|                |                   |                   |                        |         |                  |  |  |  |  |  |
|                |                   |                   |                        |         |                  |  |  |  |  |  |
|                |                   |                   |                        |         |                  |  |  |  |  |  |
|                |                   |                   |                        |         |                  |  |  |  |  |  |
|                |                   |                   |                        |         |                  |  |  |  |  |  |
|                |                   |                   |                        |         |                  |  |  |  |  |  |
|                |                   |                   |                        |         |                  |  |  |  |  |  |
|                |                   |                   |                        |         |                  |  |  |  |  |  |
|                |                   |                   |                        |         |                  |  |  |  |  |  |
|                |                   |                   |                        |         |                  |  |  |  |  |  |
|                |                   |                   |                        |         |                  |  |  |  |  |  |
| "Calculations  | are as            | per:              |                        |         |                  |  |  |  |  |  |
| Methods of A   | nalysis           | tor So            | lis, Plants            | and Wat | ers              |  |  |  |  |  |
| Liniversity of | apman<br>Californ | anu Pa<br>nia Riv | arsida O               | I       |                  |  |  |  |  |  |
| August. 1961   | ."                | na, 111V          | 51510 <del>6</del> , 0 |         |                  |  |  |  |  |  |
|                |                   |                   |                        |         |                  |  |  |  |  |  |



|                                       |                                      |                                                 | Workorder:                  | L239341 | J G       | Report Date: 2 | 20-DEC-19 |        | Page 1 of 19 |
|---------------------------------------|--------------------------------------|-------------------------------------------------|-----------------------------|---------|-----------|----------------|-----------|--------|--------------|
| Client:                               | TETRA TE<br>110, 140 Q<br>Calgary AE | CH CANADA ING<br>uarry Park Blvd S<br>3 T2C 3G3 | C.<br>Ge                    |         |           |                |           |        |              |
| Contact:                              | Darby Mada                           | alena                                           |                             |         |           |                |           |        |              |
| Test                                  |                                      | Matrix                                          | Reference                   | Result  | Qualifier | Units          | RPD       | Limit  | Analyzed     |
| C-DIS-ORG-CL                          |                                      | Water                                           |                             |         |           |                |           |        |              |
| Batch<br>WG3242690-2<br>Dissolved Ore | R4943327<br>2 LCS<br>ganic Carbor    | ì                                               |                             | 106.1   |           | %              |           | 80-120 | 13-DFC-19    |
| WG3242690-1<br>Dissolved Or           | I MB<br>ganic Carbor                 | ı                                               |                             | <1.0    |           | mg/L           |           | 1      | 13-DEC-19    |
| CL-IC-N-CL                            |                                      | Water                                           |                             |         |           |                |           |        |              |
| Batch                                 | R4942649                             |                                                 |                             |         |           |                |           |        |              |
| WG3241458-3                           | 3 DUP                                |                                                 | L2392914-1                  | 17.0    |           | ma/l           | 0.4       | 20     | 07 DEO 40    |
|                                       |                                      |                                                 | 17.2                        | 17.3    |           | mg/∟           | 0.4       | 20     | 07-DEC-19    |
| Chloride (Cl)                         | DUP                                  |                                                 | <0.50                       | <0.50   | RPD-NA    | mg/L           | N/A       | 20     | 07-DEC-19    |
| WG3241458-2<br>Chloride (Cl)          | 2 LCS                                |                                                 |                             | 102.8   |           | %              |           | 90-110 | 07-DEC-19    |
| WG3241458-6<br>Chloride (Cl)          | 6 LCS                                |                                                 |                             | 103.3   |           | %              |           | 90-110 | 07-DEC-19    |
| WG3241458-1<br>Chloride (Cl)          | I MB                                 |                                                 |                             | <0.50   |           | mg/L           |           | 0.5    | 07-DEC-19    |
| WG3241458-5<br>Chloride (Cl)          | 5 MB                                 |                                                 |                             | <0.50   |           | mg/L           |           | 0.5    | 07-DEC-19    |
| WG3241458-4<br>Chloride (Cl)          | 4 MS                                 |                                                 | L2392914-1                  | 101.3   |           | %              |           | 75-125 | 07-DEC-19    |
| WG3241458-8<br>Chloride (Cl)          | B MS                                 |                                                 | L2393392-1                  | 108.4   |           | %              |           | 75-125 | 07-DEC-19    |
| F-IC-N-CL                             |                                      | Water                                           |                             |         |           |                |           |        |              |
| Batch                                 | R4942649                             |                                                 |                             |         |           |                |           |        |              |
| WG3241458-3<br>Fluoride (F)           | 3 DUP                                |                                                 | <b>L2392914-1</b><br>0.216  | 0.222   |           | mg/L           | 2.7       | 20     | 07-DEC-19    |
| WG3241458-7<br>Fluoride (F)           | 7 DUP                                |                                                 | <b>L2393392-1</b><br><0.020 | <0.020  | RPD-NA    | mg/L           | N/A       | 20     | 07-DEC-19    |
| WG3241458-2<br>Fluoride (F)           | 2 LCS                                |                                                 |                             | 104.9   |           | %              |           | 90-110 | 07-DEC-19    |
| <b>WG3241458-6</b><br>Fluoride (F)    | 6 LCS                                |                                                 |                             | 105.9   |           | %              |           | 90-110 | 07-DEC-19    |
| WG3241458-1<br>Fluoride (F)           | I MB                                 |                                                 |                             | <0.020  |           | mg/L           |           | 0.02   | 07-DEC-19    |
| <b>WG3241458-5</b><br>Fluoride (F)    | 5 MB                                 |                                                 |                             | <0.020  |           | mg/L           |           | 0.02   | 07-DEC-19    |
| WG3241458-4<br>Fluoride (F)           | 4 MS                                 |                                                 | L2392914-1                  | 91.4    |           | %              |           | 75-125 | 07-DEC-19    |



|                                       |                                                                | Workorder:                 | L2393410   | F         | Report Date: 2 | 0-DEC-19 |          | Page 2 of 19 |
|---------------------------------------|----------------------------------------------------------------|----------------------------|------------|-----------|----------------|----------|----------|--------------|
| Client: TE                            | ETRA TECH CANADA<br>10, 140 Quarry Park B<br>algary AB T2C 3G3 | A INC.<br>Ivd SE           |            |           |                |          |          |              |
| Contact: Da                           | arby Madalena                                                  |                            |            |           |                |          |          |              |
| Test                                  | Matrix                                                         | Reference                  | Result     | Qualifier | Units          | RPD      | Limit    | Analyzed     |
| F-IC-N-CL                             | Water                                                          |                            |            |           |                |          |          |              |
| Batch R49                             | 942649                                                         |                            |            |           |                |          |          |              |
| WG3241458-8<br>Fluoride (F)           | MS                                                             | L2393392-1                 | 99.97      |           | %              |          | 75-125   | 07-DEC-19    |
| F1-HS-FID-CL                          | Water                                                          |                            |            |           |                |          |          |              |
| Batch R49                             | 938070                                                         |                            |            |           |                |          |          |              |
| WG3238489-3<br>F1(C6-C10)             | DUP                                                            | <b>L2393363-1</b><br><0.10 | <0.10      |           | ma/l           | N/A      | 30       | 09-DEC-19    |
| WG3238480-2                           | 105                                                            | \$0.10                     | \$0.10     |           | <u>9</u> ,     | N/75     | 50       | 09-020-19    |
| F1(C6-C10)                            | 200                                                            |                            | 72.1       |           | %              |          | 70-130   | 10-DEC-19    |
| WG3238489-1                           | MB                                                             |                            |            |           |                |          |          |              |
| F1(C6-C10)                            |                                                                |                            | <0.10      |           | mg/L           |          | 0.1      | 09-DEC-19    |
| Surrogate: 3,4-D                      | ichlorotoluene                                                 |                            | 119.7      |           | %              |          | 70-130   | 09-DEC-19    |
| F2-4-ME-FID-CL                        | Water                                                          |                            |            |           |                |          |          |              |
| Batch R49                             | 943576                                                         |                            |            |           |                |          |          |              |
| <b>WG3243132-4</b><br>F2: (C10-C16)   | LCS                                                            |                            | 89.0       |           | %              |          | 70-130   | 16-DEC-19    |
| WG3243132-3                           | МВ                                                             |                            |            |           |                |          |          |              |
| F2: (C10-C16)                         |                                                                |                            | <0.10      |           | mg/L           |          | 0.1      | 16-DEC-19    |
| Surrogate: 2-Bro                      | mobenzotrifluoride                                             |                            | 77.1       |           | %              |          | 60-140   | 16-DEC-19    |
| HG-D-CVAA-CL                          | Water                                                          |                            |            |           |                |          |          |              |
| Batch R49                             | 943011                                                         |                            |            |           |                |          |          |              |
| Mercury (Hg)-Dis                      | ssolved                                                        | <0.0000050                 | <0.0000050 | RPD-NA    | mg/L           | N/A      | 20       | 13-DEC-19    |
| WG3242289-2                           | LCS                                                            |                            |            |           |                |          |          |              |
| Mercury (Hg)-Dis                      | ssolved                                                        |                            | 112.0      |           | %              |          | 80-120   | 13-DEC-19    |
| WG3242289-1                           | MB                                                             |                            | -0.0000050 |           |                |          | 0.000005 |              |
| Mercury (Hg)-Dis                      | ssolved                                                        | 1 0000 400 4               | <0.0000050 |           | mg/∟           |          | 0.000005 | 13-DEC-19    |
| Mercury (Hg)-Dis                      | MS<br>ssolved                                                  | L2393429-4                 | 106.0      |           | %              |          | 70-130   | 13-DEC-19    |
| MET-D-CCMS-CL                         | Water                                                          |                            |            |           |                |          |          |              |
| Batch R49                             | 937828                                                         |                            |            |           |                |          |          |              |
| <b>WG3238594-3</b><br>Aluminum (Al)-D | DUP<br>vissolved                                               | L2393336-4<br>0.0013       | 0.0014     |           | mg/L           | 9.7      | 20       | 13-DEC-19    |
| Antimony (Sb)-D                       | vissolved                                                      | 0.00028                    | 0.00031    |           | mg/L           | 7.8      | 20       | 13-DEC-19    |
| Arsenic (As)-Dis                      | solved                                                         | 0.00029                    | 0.00031    |           | mg/L           | 4.7      | 20       | 13-DEC-19    |
| Barium (Ba)-Dis                       | solved                                                         | 0.115                      | 0.122      |           | mg/L           | 5.6      | 20       | 13-DEC-19    |



Selenium (Se)-Dissolved

0.000088

0.000068

J

mg/L

0.000020

0.0001

13-DEC-19

### **Quality Control Report**

Workorder: L2393410 Report Date: 20-DEC-19 Page 3 of 19 TETRA TECH CANADA INC. Client: 110, 140 Quarry Park Blvd SE Calgary AB T2C 3G3 Contact: Darby Madalena Test Matrix Reference Result Qualifier Units RPD Limit Analyzed MET-D-CCMS-CL Water R4937828 Batch WG3238594-3 DUP L2393336-4 Boron (B)-Dissolved 0.014 0.015 mg/L 5.2 20 13-DEC-19 Cadmium (Cd)-Dissolved 0.0000544 0.0000652 mg/L 18 20 13-DEC-19 267 Calcium (Ca)-Dissolved 260 mg/L 2.7 20 13-DEC-19 < 0.00010 Chromium (Cr)-Dissolved < 0.00010 **RPD-NA** mg/L N/A 20 13-DEC-19 Copper (Cu)-Dissolved 0.00053 0.00061 mg/L 14 20 13-DEC-19 Iron (Fe)-Dissolved 0.388 0.412 mg/L 6.0 20 13-DEC-19 Lead (Pb)-Dissolved < 0.000050 < 0.000050 **RPD-NA** mg/L N/A 20 13-DEC-19 Magnesium (Mg)-Dissolved 118 125 mg/L 6.1 20 13-DEC-19 Manganese (Mn)-Dissolved 0.317 0.321 mg/L 1.3 20 13-DEC-19 Nickel (Ni)-Dissolved 0.00663 0.00670 mg/L 1.2 20 13-DEC-19 Potassium (K)-Dissolved 3.10 3.10 mg/L 0.1 20 13-DEC-19 Selenium (Se)-Dissolved 0.183 0.163 mg/L 11 20 13-DEC-19 Silver (Ag)-Dissolved < 0.000010 < 0.000010 mg/L N/A **RPD-NA** 20 13-DEC-19 Sodium (Na)-Dissolved 5.55 6.29 mg/L 12 20 13-DEC-19 Uranium (U)-Dissolved 0.00751 0.00784 mg/L 20 4.3 13-DEC-19 Zinc (Zn)-Dissolved 0.0069 0.0074 mg/L 13-DEC-19 66 20 WG3238594-7 DUP L2393428-4 0.0040 Aluminum (AI)-Dissolved 0.0040 mg/L 0.9 20 13-DEC-19 Antimony (Sb)-Dissolved < 0.00010 < 0.00010 **RPD-NA** mg/L 20 N/A 13-DEC-19 Arsenic (As)-Dissolved 0.00046 0.00042 mg/L 20 9.4 13-DEC-19 0.272 0.288 Barium (Ba)-Dissolved mg/L 5.6 20 13-DEC-19 Boron (B)-Dissolved 0.070 0.088 mg/L 0.018 J 0.02 13-DEC-19 Cadmium (Cd)-Dissolved 0.0000707 0.0000799 mg/L 12 20 13-DEC-19 Calcium (Ca)-Dissolved 157 168 mg/L 20 6.4 13-DEC-19 Chromium (Cr)-Dissolved < 0.00010 mg/L < 0.00010 **RPD-NA** N/A 20 13-DEC-19 Copper (Cu)-Dissolved 0.00055 0.00061 mg/L 9.8 20 13-DEC-19 Iron (Fe)-Dissolved 0.106 0.118 mg/L 11 20 13-DEC-19 Lead (Pb)-Dissolved < 0.000050 < 0.000050 mg/L **RPD-NA** 20 N/A 13-DEC-19 Magnesium (Mg)-Dissolved 64.7 72.3 mg/L 11 20 13-DEC-19 Manganese (Mn)-Dissolved 1.03 1.12 mg/L 8.4 20 13-DEC-19 Nickel (Ni)-Dissolved 0.00519 0.00553 mg/L 6.3 20 13-DEC-19 Potassium (K)-Dissolved 10.1 9.80 mg/L 3.5 20 13-DEC-19



Workorder: L2393410 Report Date: 20-DEC-19 Page 4 of 19 TETRA TECH CANADA INC. Client: 110, 140 Quarry Park Blvd SE Calgary AB T2C 3G3 Contact: Darby Madalena Test Matrix Reference Result Qualifier Units RPD Limit Analyzed MET-D-CCMS-CL Water R4937828 Batch WG3238594-7 DUP L2393428-4 Silver (Ag)-Dissolved < 0.000010 < 0.000010 **RPD-NA** mg/L N/A 20 13-DEC-19 Sodium (Na)-Dissolved 57.5 67.8 mg/L 16 20 13-DEC-19 0.00551 0.00604 Uranium (U)-Dissolved mg/L 9.2 20 13-DEC-19 0.0015 0.0015 Zinc (Zn)-Dissolved mg/L 2.8 20 13-DEC-19 WG3238594-2 LCS Aluminum (AI)-Dissolved 104.5 % 80-120 13-DEC-19 Antimony (Sb)-Dissolved 105.4 % 80-120 13-DEC-19 Arsenic (As)-Dissolved 101.8 % 80-120 13-DEC-19 Barium (Ba)-Dissolved 104.0 % 80-120 13-DEC-19 Boron (B)-Dissolved 100.6 % 80-120 13-DEC-19 Cadmium (Cd)-Dissolved 101.9 % 80-120 13-DEC-19 Calcium (Ca)-Dissolved 103.6 % 13-DEC-19 80-120 Chromium (Cr)-Dissolved % 102.3 80-120 13-DEC-19 Copper (Cu)-Dissolved % 98.4 80-120 13-DEC-19 Iron (Fe)-Dissolved % 106.8 80-120 13-DEC-19 Lead (Pb)-Dissolved 104.9 % 80-120 13-DEC-19 Magnesium (Mg)-Dissolved 107.5 % 80-120 13-DEC-19 Manganese (Mn)-Dissolved 101.3 % 80-120 13-DEC-19 Nickel (Ni)-Dissolved 99.1 % 80-120 13-DEC-19 Potassium (K)-Dissolved % 103.8 80-120 13-DEC-19 Selenium (Se)-Dissolved 98.5 % 80-120 13-DEC-19 Silver (Ag)-Dissolved 105.9 % 80-120 13-DEC-19 Sodium (Na)-Dissolved 103.3 % 80-120 13-DEC-19 Uranium (U)-Dissolved 104.2 % 80-120 13-DEC-19 Zinc (Zn)-Dissolved 99.1 % 80-120 13-DEC-19 WG3238594-6 LCS Aluminum (AI)-Dissolved 98.2 % 80-120 09-DEC-19 Antimony (Sb)-Dissolved 92.9 % 80-120 09-DEC-19 Arsenic (As)-Dissolved 94.2 % 80-120 09-DEC-19 Barium (Ba)-Dissolved 90.9 % 80-120 09-DEC-19 Boron (B)-Dissolved 93.0 % 80-120 09-DEC-19 Cadmium (Cd)-Dissolved 92.2 % 80-120 09-DEC-19 Calcium (Ca)-Dissolved 106.7 % 80-120 09-DEC-19 Chromium (Cr)-Dissolved 93.7 % 80-120 09-DEC-19



Client:

Contact:

# **Quality Control Report**

 Workorder:
 L2393410
 Report Date:
 20-DEC-19
 Page
 5
 of
 19

 TETRA TECH CANADA INC.
 110, 140 Quarry Park Blvd SE
 Calgary AB
 T2C 3G3
 Darby Madalena
 Date:
 Date:

| Test                  | Matrix | Reference | Result    | Qualifier | Units | RPD | Limit    | Analyzed  |
|-----------------------|--------|-----------|-----------|-----------|-------|-----|----------|-----------|
| MET-D-CCMS-CL         | Water  |           |           |           |       |     |          |           |
| Batch R49378          | 28     |           |           |           |       |     |          |           |
| WG3238594-6 LC        | S      |           |           |           |       |     |          |           |
| Copper (Cu)-Dissolve  | ed     |           | 93.4      |           | %     |     | 80-120   | 09-DEC-19 |
| Iron (Fe)-Dissolved   |        |           | 97.2      |           | %     |     | 80-120   | 09-DEC-19 |
| Lead (Pb)-Dissolved   |        |           | 93.4      |           | %     |     | 80-120   | 09-DEC-19 |
| Magnesium (Mg)-Dis    | solved |           | 91.2      |           | %     |     | 80-120   | 09-DEC-19 |
| Manganese (Mn)-Dis    | solved |           | 95.8      |           | %     |     | 80-120   | 09-DEC-19 |
| Nickel (Ni)-Dissolved |        |           | 92.9      |           | %     |     | 80-120   | 09-DEC-19 |
| Potassium (K)-Disso   | lved   |           | 94.9      |           | %     |     | 80-120   | 09-DEC-19 |
| Selenium (Se)-Disso   | lved   |           | 111.2     |           | %     |     | 80-120   | 09-DEC-19 |
| Silver (Ag)-Dissolved | l      |           | 103.0     |           | %     |     | 80-120   | 09-DEC-19 |
| Sodium (Na)-Dissolv   | ed     |           | 86.0      |           | %     |     | 80-120   | 09-DEC-19 |
| Uranium (U)-Dissolve  | ed     |           | 103.0     |           | %     |     | 80-120   | 09-DEC-19 |
| Zinc (Zn)-Dissolved   |        |           | 93.6      |           | %     |     | 80-120   | 09-DEC-19 |
| WG3238594-1 MB        |        |           |           |           |       |     |          |           |
| Aluminum (Al)-Disso   | lved   |           | <0.0010   |           | mg/L  |     | 0.001    | 09-DEC-19 |
| Antimony (Sb)-Disso   | lved   |           | <0.00010  |           | mg/L  |     | 0.0001   | 09-DEC-19 |
| Arsenic (As)-Dissolve | ed     |           | <0.00010  |           | mg/L  |     | 0.0001   | 09-DEC-19 |
| Barium (Ba)-Dissolve  | ed     |           | <0.00010  |           | mg/L  |     | 0.0001   | 09-DEC-19 |
| Boron (B)-Dissolved   |        |           | <0.010    |           | mg/L  |     | 0.01     | 09-DEC-19 |
| Cadmium (Cd)-Disso    | lved   |           | <0.00005  | 6C        | mg/L  |     | 0.000005 | 09-DEC-19 |
| Calcium (Ca)-Dissolv  | ved    |           | <0.050    |           | mg/L  |     | 0.05     | 09-DEC-19 |
| Chromium (Cr)-Disso   | olved  |           | <0.00010  |           | mg/L  |     | 0.0001   | 09-DEC-19 |
| Copper (Cu)-Dissolve  | ed     |           | <0.00020  |           | mg/L  |     | 0.0002   | 09-DEC-19 |
| Iron (Fe)-Dissolved   |        |           | <0.010    |           | mg/L  |     | 0.01     | 09-DEC-19 |
| Lead (Pb)-Dissolved   |        |           | <0.000050 | )         | mg/L  |     | 0.00005  | 09-DEC-19 |
| Magnesium (Mg)-Dis    | solved |           | <0.0050   |           | mg/L  |     | 0.005    | 09-DEC-19 |
| Manganese (Mn)-Dis    | solved |           | <0.00010  |           | mg/L  |     | 0.0001   | 09-DEC-19 |
| Nickel (Ni)-Dissolved |        |           | <0.00050  |           | mg/L  |     | 0.0005   | 09-DEC-19 |
| Potassium (K)-Disso   | lved   |           | <0.050    |           | mg/L  |     | 0.05     | 09-DEC-19 |
| Selenium (Se)-Disso   | lved   |           | <0.000050 | )         | mg/L  |     | 0.00005  | 09-DEC-19 |
| Silver (Ag)-Dissolved | l      |           | <0.000010 | )         | mg/L  |     | 0.00001  | 09-DEC-19 |
| Sodium (Na)-Dissolv   | ed     |           | <0.050    |           | mg/L  |     | 0.05     | 09-DEC-19 |
| Uranium (U)-Dissolve  | ed     |           | <0.000010 | )         | mg/L  |     | 0.00001  | 09-DEC-19 |
| Zinc (Zn)-Dissolved   |        |           | <0.0010   |           | mg/L  |     | 0.001    | 09-DEC-19 |
| WG3238594-5 MB        |        |           |           |           |       |     |          |           |



|                          |                                                                  | Workorder:        | L239341  | 0         | Report Date: 2 | 0-DEC-19 |          | Page 6 of 19 |
|--------------------------|------------------------------------------------------------------|-------------------|----------|-----------|----------------|----------|----------|--------------|
| Client:                  | TETRA TECH CANAD<br>110, 140 Quarry Park E<br>Calgary AB_T2C 3G3 | A INC.<br>Blvd SE |          |           |                |          |          |              |
| Contact:                 | Darby Madalena                                                   |                   |          |           |                |          |          |              |
| Test                     | Matrix                                                           | Reference         | Result   | Qualifier | Units          | RPD      | Limit    | Analyzed     |
| MET-D-CCMS-0             | CL Water                                                         |                   |          |           |                |          |          |              |
| Batch                    | R4937828                                                         |                   |          |           |                |          |          |              |
| WG3238594                | -5 MB                                                            |                   |          |           |                |          |          |              |
| Aluminum (/              | AI)-Dissolved                                                    |                   | <0.0010  |           | mg/L           |          | 0.001    | 09-DEC-19    |
| Antimony (S              | b)-Dissolved                                                     |                   | <0.00010 | )         | mg/L           |          | 0.0001   | 09-DEC-19    |
| Arsenic (As)             | -Dissolved                                                       |                   | <0.00010 | )         | mg/L           |          | 0.0001   | 09-DEC-19    |
| Barium (Ba)              | -Dissolved                                                       |                   | <0.00010 | )         | mg/L           |          | 0.0001   | 09-DEC-19    |
| Boron (B)-D              | issolved                                                         |                   | <0.010   |           | mg/L           |          | 0.01     | 09-DEC-19    |
| Cadmium (C               | Cd)-Dissolved                                                    |                   | <0.00000 | )5C       | mg/L           |          | 0.000005 | 09-DEC-19    |
| Calcium (Ca              | a)-Dissolved                                                     |                   | <0.050   |           | mg/L           |          | 0.05     | 09-DEC-19    |
| Chromium (               | Cr)-Dissolved                                                    |                   | <0.00010 | )         | mg/L           |          | 0.0001   | 09-DEC-19    |
| Copper (Cu)              | )-Dissolved                                                      |                   | <0.00020 | )         | mg/L           |          | 0.0002   | 09-DEC-19    |
| Iron (Fe)-Dis            | ssolved                                                          |                   | <0.010   |           | mg/L           |          | 0.01     | 09-DEC-19    |
| Lead (Pb)-D              | Dissolved                                                        |                   | <0.00005 | 50        | mg/L           |          | 0.00005  | 09-DEC-19    |
| Magnesium                | (Mg)-Dissolved                                                   |                   | <0.0050  |           | mg/L           |          | 0.005    | 09-DEC-19    |
| Manganese                | (Mn)-Dissolved                                                   |                   | <0.00010 | )         | mg/L           |          | 0.0001   | 09-DEC-19    |
| Nickel (Ni)-E            | Dissolved                                                        |                   | <0.00050 | )         | mg/L           |          | 0.0005   | 09-DEC-19    |
| Potassium (              | K)-Dissolved                                                     |                   | <0.050   |           | mg/L           |          | 0.05     | 09-DEC-19    |
| Selenium (S              | e)-Dissolved                                                     |                   | <0.00005 | 50        | mg/L           |          | 0.00005  | 09-DEC-19    |
| Silver (Ag)-[            | Dissolved                                                        |                   | <0.00001 | 0         | mg/L           |          | 0.00001  | 09-DEC-19    |
| Sodium (Na               | )-Dissolved                                                      |                   | <0.050   |           | mg/L           |          | 0.05     | 09-DEC-19    |
| Uranium (U)              | )-Dissolved                                                      |                   | <0.00001 | 0         | mg/L           |          | 0.00001  | 09-DEC-19    |
| Zinc (Zn)-Di             | ssolved                                                          |                   | <0.0010  |           | mg/L           |          | 0.001    | 09-DEC-19    |
| WG3238594<br>Aluminum (/ | -4 MS<br>AI)-Dissolved                                           | L2393336-4        | 115.7    |           | %              |          | 70-130   | 14-DEC-19    |
| Antimony (S              | b)-Dissolved                                                     |                   | 107.3    |           | %              |          | 70-130   | 14-DEC-19    |
| Arsenic (As)             | -Dissolved                                                       |                   | 120.1    |           | %              |          | 70-130   | 14-DEC-19    |
| Barium (Ba)              | -Dissolved                                                       |                   | 128.0    |           | %              |          | 70-130   | 14-DEC-19    |
| Boron (B)-D              | issolved                                                         |                   | 103.6    |           | %              |          | 70-130   | 14-DEC-19    |
| Cadmium (C               | Cd)-Dissolved                                                    |                   | 117.9    |           | %              |          | 70-130   | 14-DEC-19    |
| Calcium (Ca              | a)-Dissolved                                                     |                   | N/A      | MS-B      | %              |          | -        | 14-DEC-19    |
| Chromium (               | Cr)-Dissolved                                                    |                   | 115.3    |           | %              |          | 70-130   | 14-DEC-19    |
| Copper (Cu)              | )-Dissolved                                                      |                   | 117.4    |           | %              |          | 70-130   | 14-DEC-19    |
| Iron (Fe)-Dis            | ssolved                                                          |                   | 103.7    |           | %              |          | 70-130   | 14-DEC-19    |
| Lead (Pb)-D              | Dissolved                                                        |                   | 113.0    |           | %              |          | 70-130   | 14-DEC-19    |
| Magnesium                | (Mg)-Dissolved                                                   |                   | N/A      | MS-B      | %              |          | -        | 14-DEC-19    |
| Manganese                | (Mn)-Dissolved                                                   |                   | N/A      | MS-B      | %              |          | -        | 14-DEC-19    |



Uranium (U)-Dissolved

Zinc (Zn)-Dissolved

# **Quality Control Report**

Report Date: 20-DEC-19

Page 7 of 19

Workorder: L2393410

| Client:        | TETRA TECH CANADA<br>110, 140 Quarry Park E | A INC.<br>Blvd SE |        |           |          |     |        | -         |
|----------------|---------------------------------------------|-------------------|--------|-----------|----------|-----|--------|-----------|
| Contact:       | Darby Madalena                              |                   |        |           |          |     |        |           |
| Test           | Matrix                                      | Reference         | Result | Qualifier | Units    | RPD | Limit  | Analyzed  |
| MET-D-CCMS-CL  | Water                                       |                   |        |           |          |     |        |           |
| Batch F        | R4937828                                    |                   |        |           |          |     |        |           |
| WG3238594-4    | MS                                          | L2393336-4        | 110.4  |           | 0/       |     |        |           |
|                | Ssolved                                     |                   | 119.4  |           | %        |     | 70-130 | 14-DEC-19 |
| Potassium (K   | )-Dissolved                                 |                   | 124.0  |           | %        |     | 70-130 | 14-DEC-19 |
| Selenium (Se   | )-Dissolved                                 |                   | 99.0   |           | %        |     | 70-130 | 14-DEC-19 |
| Silver (Ag)-Di | ssolved                                     |                   | 104.2  |           | %        |     | 70-130 | 14-DEC-19 |
| Sodium (Na)-   | Dissolved                                   |                   | 116.9  |           | %        |     | 70-130 | 14-DEC-19 |
| Uranium (U)-I  | Dissolved                                   |                   | 115.2  |           | %        |     | 70-130 | 14-DEC-19 |
| Zinc (Zn)-Dise | solved                                      |                   | 116.5  |           | %        |     | 70-130 | 14-DEC-19 |
| WG3238594-8    | B MS                                        | L2393428-4        | 100.9  |           | 0/       |     | 70.400 |           |
|                | )-Dissolved                                 |                   | 120.0  |           | 70<br>0/ |     | 70-130 | 14-DEC-19 |
| Antimony (Sb   | )-Dissolved                                 |                   | 103.0  |           | 76<br>97 |     | 70-130 | 14-DEC-19 |
| Arsenic (As)-i |                                             |                   | 120.0  | 140 D     | 70       |     | 70-130 | 14-DEC-19 |
| Barran (D) Dia |                                             |                   | N/A    | M2-R      | %        |     | -      | 14-DEC-19 |
| Boron (B)-Dis  |                                             |                   | 111.5  |           | %        |     | 70-130 | 14-DEC-19 |
|                | a)-Dissolved                                |                   | 121.0  |           | %        |     | 70-130 | 14-DEC-19 |
|                | -Dissolved                                  |                   | N/A    | MS-B      | %        |     | -      | 14-DEC-19 |
| Chromium (C    | r)-Dissolved                                |                   | 117.2  |           | %        |     | 70-130 | 14-DEC-19 |
| Copper (Cu)-I  | Dissolved                                   |                   | 117.4  |           | %        |     | 70-130 | 14-DEC-19 |
| Iron (Fe)-Diss | solved                                      |                   | 103.6  |           | %        |     | 70-130 | 14-DEC-19 |
| Lead (Pb)-Dis  | solved                                      |                   | 108.0  |           | %        |     | 70-130 | 14-DEC-19 |
| Magnesium (I   | Mg)-Dissolved                               |                   | N/A    | MS-B      | %        |     | -      | 14-DEC-19 |
| Manganese (I   | Mn)-Dissolved                               |                   | N/A    | MS-B      | %        |     | -      | 14-DEC-19 |
| Nickel (Ni)-Di | ssolved                                     |                   | 119.6  |           | %        |     | 70-130 | 14-DEC-19 |
| Potassium (K   | )-Dissolved                                 |                   | 127.0  |           | %        |     | 70-130 | 14-DEC-19 |
| Selenium (Se   | )-Dissolved                                 |                   | 110.4  |           | %        |     | 70-130 | 14-DEC-19 |
| Silver (Ag)-Di | ssolved                                     |                   | 92.2   |           | %        |     | 70-130 | 14-DEC-19 |
| Sodium (Na)-   | Dissolved                                   |                   | N/A    | MS-B      | %        |     | -      | 14-DEC-19 |

NH3-F-CL Water Batch R4943991 WG3242302-14 LCS Ammonia, Total (as N) 94.7 % 85-115 16-DEC-19 WG3242302-13 MB < 0.050 Ammonia, Total (as N) mg/L 0.05 16-DEC-19

%

%

70-130

70-130

14-DEC-19

14-DEC-19

110.8

117.1



|                               |                                              |                                                        | Workorder:                  | L239341 | 0 R       | eport Date: 2 | 20-DEC-19 |        | Page 8 of 19 |
|-------------------------------|----------------------------------------------|--------------------------------------------------------|-----------------------------|---------|-----------|---------------|-----------|--------|--------------|
| Client:<br>Contact:           | TETRA T<br>110, 140<br>Calgary J<br>Darby Ma | ECH CANADA<br>Quarry Park Blv<br>AB T2C 3G3<br>adalena | INC.<br>/d SE               |         |           |               |           |        |              |
| Test                          |                                              | Matrix                                                 | Reference                   | Result  | Qualifier | Units         | RPD       | Limit  | Analyzed     |
| NO2-IC-N-CL                   |                                              | Water                                                  |                             |         |           |               |           |        |              |
| Batch F                       | R4942649                                     |                                                        |                             |         |           |               |           |        |              |
| WG3241458-3<br>Nitrite (as N) | B DUP                                        |                                                        | <b>L2392914-1</b><br><0.010 | <0.010  | RPD-NA    | mg/L          | N/A       | 20     | 07-DEC-19    |
| WG3241458-2<br>Nitrite (as N) | LCS                                          |                                                        |                             | 105.5   |           | %             |           | 90-110 | 07-DEC-19    |
| WG3241458-6<br>Nitrite (as N) | 6 LCS                                        |                                                        |                             | 106.1   |           | %             |           | 90-110 | 07-DEC-19    |
| WG3241458-1<br>Nitrite (as N) | MB                                           |                                                        |                             | <0.010  |           | mg/L          |           | 0.01   | 07-DEC-19    |
| WG3241458-5<br>Nitrite (as N) | 6 MB                                         |                                                        |                             | <0.010  |           | mg/L          |           | 0.01   | 07-DEC-19    |
| WG3241458-4<br>Nitrite (as N) | MS                                           |                                                        | L2392914-1                  | 104.0   |           | %             |           | 75-125 | 07-DEC-19    |
| NO3-IC-N-CL                   |                                              | Water                                                  |                             |         |           |               |           |        |              |
| Batch F                       | R4942649                                     |                                                        |                             |         |           |               |           |        |              |
| WG3241458-3<br>Nitrate (as N) | B DUP                                        |                                                        | <b>L2392914-1</b><br>1.48   | 1.46    |           | mg/L          | 0.8       | 20     | 07-DEC-19    |
| WG3241458-2<br>Nitrate (as N) | LCS                                          |                                                        |                             | 103.2   |           | %             |           | 90-110 | 07-DEC-19    |
| WG3241458-6<br>Nitrate (as N) | 5 LCS                                        |                                                        |                             | 104.0   |           | %             |           | 90-110 | 07-DEC-19    |
| WG3241458-1<br>Nitrate (as N) | MB                                           |                                                        |                             | <0.020  |           | mg/L          |           | 0.02   | 07-DEC-19    |
| WG3241458-5<br>Nitrate (as N) | 5 MB                                         |                                                        |                             | <0.020  |           | mg/L          |           | 0.02   | 07-DEC-19    |
| WG3241458-4<br>Nitrate (as N) | MS                                           |                                                        | L2392914-1                  | 99.6    |           | %             |           | 75-125 | 07-DEC-19    |
| P-T-COL-CL                    |                                              | Water                                                  |                             |         |           |               |           |        |              |
| Batch F                       | R4943276                                     |                                                        |                             |         |           |               |           |        |              |
| Phosphorus (                  | P)-Total                                     |                                                        |                             | 91.3    |           | %             |           | 80-120 | 13-DEC-19    |
| WG3242072-5<br>Phosphorus (   | P)-Total                                     |                                                        |                             | <0.0050 |           | mg/L          |           | 0.005  | 13-DEC-19    |
| PH/EC/ALK-CL                  |                                              | Water                                                  |                             |         |           |               |           |        |              |
| Batch F                       | R4943994                                     |                                                        |                             |         |           |               |           |        |              |
| WG3243425-8<br>Conductivity ( | EC)                                          |                                                        |                             | 98.6    |           | %             |           | 90-110 | 14-DEC-19    |
| Alkalinity, Tot               | al (as CaC                                   | 03)                                                    |                             | 104.1   |           | %             |           | 85-115 | 14-DEC-19    |



|                                    |                                            |                                                       | Workorder:                 | L239341 | 0         | Report Date: 20 | )-DEC-19 |        | Page 9 of 19 |
|------------------------------------|--------------------------------------------|-------------------------------------------------------|----------------------------|---------|-----------|-----------------|----------|--------|--------------|
| Client:<br>Contact:                | TETRA T<br>110, 140<br>Calgary<br>Darby Ma | ECH CANADA<br>Quarry Park Bl<br>AB T2C 3G3<br>adalena | INC.<br>vd SE              |         |           |                 |          |        |              |
| Test                               |                                            | Matrix                                                | Reference                  | Result  | Qualifier | Units           | RPD      | Limit  | Analyzed     |
| PH/EC/ALK-CL                       |                                            | Water                                                 |                            |         |           |                 |          |        |              |
| Batch<br>WG3243425<br>Conductivity | <b>R4943994</b><br>5-7 MB<br>y (EC)        |                                                       |                            | <2.0    |           | uS/cm           |          | 2      | 14-DEC-19    |
| Bicarbonate                        | e (HCO3)                                   |                                                       |                            | <5.0    |           | mg/L            |          | 5      | 14-DEC-19    |
| Carbonate (                        | (CO3)                                      |                                                       |                            | <5.0    |           | mg/L            |          | 5      | 14-DEC-19    |
| Hydroxide (                        | OH)                                        |                                                       |                            | <5.0    |           | mg/L            |          | 5      | 14-DEC-19    |
| Alkalinity, T                      | otal (as CaC                               | CO3)                                                  |                            | <2.0    |           | mg/L            |          | 2      | 14-DEC-19    |
| SO4-IC-N-CL                        |                                            | Water                                                 |                            |         |           |                 |          |        |              |
| Batch                              | R4942649                                   |                                                       |                            |         |           |                 |          |        |              |
| WG3241458<br>Sulfate (SO           | <b>-3 DUP</b><br>(4)                       |                                                       | <b>L2392914-1</b><br>14.5  | 14.5    |           | mg/L            | 0.1      | 20     | 07-DEC-19    |
| WG3241458<br>Sulfate (SO           | <b>5-7 DUP</b><br>(4)                      |                                                       | <b>L2393392-1</b><br><0.30 | 0.40    | RPD-NA    | mg/L            | N/A      | 20     | 07-DEC-19    |
| WG3241458<br>Sulfate (SO           | <b>-2 LCS</b><br>4)                        |                                                       |                            | 99.5    |           | %               |          | 90-110 | 07-DEC-19    |
| <b>WG3241458</b><br>Sulfate (SO    | <b>-6 LCS</b><br>4)                        |                                                       |                            | 100.3   |           | %               |          | 90-110 | 07-DEC-19    |
| <b>WG3241458</b><br>Sulfate (SO    | <b>-1 MB</b><br>4)                         |                                                       |                            | <0.30   |           | mg/L            |          | 0.3    | 07-DEC-19    |
| WG3241458<br>Sulfate (SO           | <b>5 MB</b><br>4)                          |                                                       |                            | <0.30   |           | mg/L            |          | 0.3    | 07-DEC-19    |
| WG3241458<br>Sulfate (SO           | <b>-4 MS</b><br>4)                         |                                                       | L2392914-1                 | 96.5    |           | %               |          | 75-125 | 07-DEC-19    |
| WG3241458<br>Sulfate (SO           | <b>-8 MS</b><br>4)                         |                                                       | L2393392-1                 | 105.6   |           | %               |          | 75-125 | 07-DEC-19    |
| TKN-F-CL                           |                                            | Water                                                 |                            |         |           |                 |          |        |              |
| Batch                              | R4943090                                   |                                                       |                            |         |           |                 |          |        |              |
| WG3242367<br>Total Kjelda          | -15 DUP<br>ahl Nitrogen                    |                                                       | <b>L2393430-1</b><br>0.69  | 0.64    |           | mg/L            | 8.0      | 20     | 12-DEC-19    |
| WG3242367<br>Total Kjelda          | <b>7-17 DUP</b><br>ahl Nitrogen            |                                                       | <b>L2393876-2</b><br>18    | 17      |           | mg/L            | 0.5      | 20     | 12-DEC-19    |
| WG3242367<br>Total Kjelda          | <b>7-18 DUP</b><br>ahl Nitrogen            |                                                       | <b>L2393879-1</b><br>74    | 71      |           | mg/L            | 4.4      | 20     | 12-DEC-19    |
| WG3242367<br>Total Kjelda          | <b>7-3 DUP</b><br>ahl Nitrogen             |                                                       | <b>L2394735-1</b><br>3.93  | 3.82    |           | mg/L            | 2.8      | 20     | 12-DEC-19    |
| WG3242367<br>Total Kjelda          | <b>7-10 LCS</b><br>ahl Nitrogen            |                                                       |                            | 102.0   |           | %               |          | 75-125 | 12-DEC-19    |
| WG3242367                          | -14 LCS                                    |                                                       |                            |         |           |                 |          |        |              |



|                                  |                                       |                                            | Workorder:    | L239341 | 0 R       | eport Date: | 20-DEC-19 |        | Page 10 of 19 |
|----------------------------------|---------------------------------------|--------------------------------------------|---------------|---------|-----------|-------------|-----------|--------|---------------|
| Client:                          | TETRA T<br>110, 140<br>Calgary        | ECH CANADA<br>Quarry Park Bh<br>AB T2C 3G3 | INC.<br>vd SE |         |           |             |           |        |               |
| Contact:                         | Darby Ma                              | adalena                                    |               |         |           |             |           |        |               |
| Test                             |                                       | Matrix                                     | Reference     | Result  | Qualifier | Units       | RPD       | Limit  | Analyzed      |
| TKN-F-CL                         |                                       | Water                                      |               |         |           |             |           |        |               |
| Batch<br>WG324236<br>Total Kjeld | R4943090<br>7-14 LCS<br>lahl Nitrogen |                                            |               | 102.0   |           | %           |           | 75-125 | 12-DEC-19     |
| WG324236<br>Total Kjeld          | <b>7-2 LCS</b><br>Iahl Nitrogen       |                                            |               | 98.4    |           | %           |           | 75-125 | 12-DEC-19     |
| WG324236<br>Total Kjeld          | 7-6 LCS<br>Iahl Nitrogen              |                                            |               | 100.2   |           | %           |           | 75-125 | 12-DEC-19     |
| WG324236<br>Total Kjeld          | ahl Nitrogen                          |                                            |               | <0.20   |           | mg/L        |           | 0.2    | 12-DEC-19     |
| WG324236<br>Total Kjeld          | ahl Nitrogen                          |                                            |               | <0.20   |           | mg/L        |           | 0.2    | 12-DEC-19     |
| Total Kjeld                      | lahl Nitrogen                         |                                            |               | <0.20   |           | mg/L        |           | 0.2    | 12-DEC-19     |
| Total Kjeld                      | lahl Nitrogen                         |                                            | 1 0000 400 4  | <0.20   |           | mg/L        |           | 0.2    | 12-DEC-19     |
| Total Kjeld                      | lahl Nitrogen                         |                                            | L2393430-1    | 99.9    |           | %           |           | 70-130 | 12-DEC-19     |
| WG324236<br>Total Kjeld          | ahl Nitrogen                          |                                            | L2394735-1    | 107.0   |           | %           |           | 70-130 | 12-DEC-19     |
| VFA-WP                           |                                       | Water                                      |               |         |           |             |           |        |               |
| Batch<br>WG324315                | R4943956<br>0-3 DUP                   |                                            | L2393425-3    |         |           |             |           |        |               |
| Formic Ac                        | id                                    |                                            | <50           | <50     | RPD-NA    | mg/L        | N/A       | 30     | 14-DEC-19     |
| Acetic Acid                      | d                                     |                                            | <10           | <10     | RPD-NA    | mg/L        | N/A       | 30     | 14-DEC-19     |
| Propionic /                      | Acid                                  |                                            | <5.0          | <5.0    | RPD-NA    | mg/L        | N/A       | 30     | 14-DEC-19     |
| Butyric Aci                      | id                                    |                                            | <1.0          | <1.0    | RPD-NA    | mg/L        | N/A       | 30     | 14-DEC-19     |
| Isobutyric .                     | Acid                                  |                                            | <1.0          | <1.0    | RPD-NA    | mg/L        | N/A       | 30     | 14-DEC-19     |
| Valeric Aci                      | id                                    |                                            | <1.0          | <1.0    | RPD-NA    | mg/L        | N/A       | 30     | 14-DEC-19     |
| Isovaleric .                     | Acid                                  |                                            | <1.0          | <1.0    | RPD-NA    | mg/L        | N/A       | 30     | 14-DEC-19     |
| Caproic (H                       | lexanoic) Acio                        | k                                          | <1.0          | <1.0    | RPD-NA    | mg/L        | N/A       | 30     | 14-DEC-19     |
| WG324315<br>Formic Ac            | <b>i0-2 LCS</b><br>id                 |                                            |               | 126.9   |           | %           |           | 70-130 | 16-DEC-19     |
| Acetic Acid                      | d                                     |                                            |               | 79.8    |           | %           |           | 70-130 | 16-DEC-19     |
| Propionic /                      | Acid                                  |                                            |               | 82.0    |           | %           |           | 70-130 | 16-DEC-19     |
| Butyric Aci                      | id                                    |                                            |               | 72.2    |           | %           |           | 70-130 | 16-DEC-19     |
| Isobutyric                       | Acid                                  |                                            |               | 78.9    |           | %           |           | 70-130 | 16-DEC-19     |
| Valeric Aci                      | id                                    |                                            |               | 73.7    |           | %           |           | 70-130 | 16-DEC-19     |



|                                    |                                           |                                                 | Workorder:  | L2393410 | 0         | Report Date: 2 | 0-DEC-19 |        | Page 11 of 19 |
|------------------------------------|-------------------------------------------|-------------------------------------------------|-------------|----------|-----------|----------------|----------|--------|---------------|
| Client:                            | TETRA T<br>110, 140 (<br>Calgary <i>A</i> | ECH CANADA II<br>Quarry Park Blvo<br>AB T2C 3G3 | NC.<br>d SE |          |           |                |          |        |               |
| Contact:                           | Darby Ma                                  | Idalena                                         |             |          |           |                |          |        |               |
| Test                               |                                           | Matrix                                          | Reference   | Result   | Qualifier | Units          | RPD      | Limit  | Analyzed      |
| VFA-WP                             |                                           | Water                                           |             |          |           |                |          |        |               |
| Batch<br>WG3243150<br>Isovaleric A | R4943956<br>-2 LCS<br>cid                 |                                                 |             | 70.0     |           | %              |          | 70-130 | 16-DEC-19     |
| Caproic (He                        | exanoic) Acid                             | 1                                               |             | 82.3     |           | %              |          | 70-130 | 16-DEC-19     |
| WG3243150<br>Formic Acid           | -1 MB                                     |                                                 |             | <30      |           | mg/L           |          | 30     | 13-DEC-19     |
| Acetic Acid                        |                                           |                                                 |             | <10      |           | mg/L           |          | 10     | 13-DEC-19     |
| Propionic A                        | cid                                       |                                                 |             | <5.0     |           | mg/L           |          | 5      | 13-DEC-19     |
| Butyric Acid                       |                                           |                                                 |             | <1.0     |           | mg/L           |          | 1      | 13-DEC-19     |
| Isobutyric A                       | cid                                       |                                                 |             | <1.0     |           | mg/L           |          | 1      | 13-DEC-19     |
| Valeric Acid                       |                                           |                                                 |             | <1.0     |           | mg/L           |          | 1      | 13-DEC-19     |
| Isovaleric A                       | cid                                       |                                                 |             | <1.0     |           | mg/L           |          | 1      | 13-DEC-19     |
| Caproic (He                        | exanoic) Acid                             | I                                               |             | <1.0     |           | mg/L           |          | 1      | 13-DEC-19     |
| WG3243150<br>Formic Acid           | -4 MS                                     |                                                 | L2393410-5  | 89.8     |           | %              |          | 70-130 | 13-DEC-19     |
| Acetic Acid                        |                                           |                                                 |             | 82.9     |           | %              |          | 70-130 | 13-DEC-19     |
| Propionic A                        | cid                                       |                                                 |             | 79.8     |           | %              |          | 70-130 | 13-DEC-19     |
| Butyric Acid                       |                                           |                                                 |             | 79.4     |           | %              |          | 70-130 | 13-DEC-19     |
| Isobutyric A                       | cid                                       |                                                 |             | 80.4     |           | %              |          | 70-130 | 13-DEC-19     |
| Valeric Acid                       |                                           |                                                 |             | 85.5     |           | %              |          | 70-130 | 13-DEC-19     |
| Isovaleric A                       | cid                                       |                                                 |             | 75.3     |           | %              |          | 70-130 | 13-DEC-19     |
| Caproic (He                        | exanoic) Acid                             | 1                                               |             | 97.3     |           | %              |          | 70-130 | 13-DEC-19     |
| VOC-HS-MS-CI                       | L                                         | Water                                           |             |          |           |                |          |        |               |
| Batch                              | R4937909                                  |                                                 |             |          |           |                |          |        |               |
| WG3238459                          | -5 DUP<br>achloroethar                    | he                                              | L2393231-1  | ~0.0010  |           | ma/l           | NI/A     | 20     | 10 DEC 10     |
| 1 1 1-Trichle                      | oroethane                                 |                                                 |             | <0.0010  |           | mg/L           | N/A      | 30     | 10-DEC-19     |
| 1 1 2 2-Tetr                       | achloroethar                              | he                                              | <0.00050    | <0.00050 |           | mg/L           | N/A      | 30     | 10-DEC-19     |
| 1,1,2,2 Tichle                     | oroethane                                 |                                                 | <0.00050    | <0.00050 |           | mg/L           | N/A      | 30     | 10-DEC-19     |
| 1.1-Dichloro                       | oethane                                   |                                                 | <0.00050    | <0.00050 |           | mg/L           | N/A      | 30     | 10-DEC-19     |
| 1.1-Dichloro                       | oethene                                   |                                                 | <0.00050    | <0.00050 |           | mg/L           | N/A      | 30     | 10-DEC-19     |
| 1.1-Dichloro                       | propene                                   |                                                 | <0.0010     | <0.0010  |           | mg/L           | N/A      | 30     | 10-DEC-19     |
| 1.2.3-Trichle                      | orobenzene                                |                                                 | <0.0010     | < 0.0010 |           | ma/L           | N/A      | 30     | 10-DEC-19     |
| 1,2.3-Trichle                      |                                           |                                                 | <0.00050    | <0.00050 |           | mg/L           | N/A      | 30     | 10-DEC-19     |
| 1,2.4-Trichle                      | orobenzene                                |                                                 | <0.0010     | <0.0010  |           | mg/L           | N/A      | 30     | 10-DEC-19     |
| 1,2.4-Trime                        | thylbenzene                               |                                                 | <0.0010     | <0.0010  | RPD-NA    | mg/L           | N/A      | 30     | 10-DEC-19     |



Workorder: L2393410

Report Date: 20-DEC-19

Page 12 of 19

Client: TETRA TECH CANADA INC. 110, 140 Quarry Park Blvd SE

Calgary AB T2C 3G3

Contact: Darby Madalena

| Test                               | Matrix                    | Reference                    | Result   | Qualifier | Units | RPD | Limit | Analyzed  |
|------------------------------------|---------------------------|------------------------------|----------|-----------|-------|-----|-------|-----------|
| VOC-HS-MS-CL                       | Water                     |                              |          |           |       |     |       |           |
| Batch R493                         | 37909                     |                              |          |           |       |     |       |           |
| WG3238459-5 I<br>1,2-Dibromo-3-chl | <b>DUP</b><br>loropropane | <b>L2393231-1</b><br><0.0010 | <0.0010  | RPD-NA    | mg/L  | N/A | 30    | 10-DEC-19 |
| 1,2-Dichlorobenze                  | ene                       | <0.00050                     | <0.00050 | RPD-NA    | mg/L  | N/A | 30    | 10-DEC-19 |
| 1,2-Dichloroethan                  | e                         | <0.0010                      | <0.0010  | RPD-NA    | mg/L  | N/A | 30    | 10-DEC-19 |
| 1,2-Dichloropropa                  | ne                        | <0.00050                     | <0.00050 | RPD-NA    | mg/L  | N/A | 30    | 10-DEC-19 |
| 1,3,5-Trimethylber                 | nzene                     | <0.0010                      | <0.0010  | RPD-NA    | mg/L  | N/A | 30    | 10-DEC-19 |
| 1,3-Dichlorobenze                  | ene                       | <0.00050                     | <0.00050 | RPD-NA    | mg/L  | N/A | 30    | 10-DEC-19 |
| 1,3-Dichloropropa                  | ne                        | <0.0010                      | <0.0010  | RPD-NA    | mg/L  | N/A | 30    | 10-DEC-19 |
| 1,4-Dichlorobenze                  | ene                       | <0.00050                     | <0.00050 | RPD-NA    | mg/L  | N/A | 30    | 10-DEC-19 |
| 2,2-Dichloropropa                  | ne                        | <0.0010                      | <0.0010  | RPD-NA    | mg/L  | N/A | 30    | 10-DEC-19 |
| 2-Chlorotoluene                    |                           | <0.0010                      | <0.0010  | RPD-NA    | mg/L  | N/A | 30    | 10-DEC-19 |
| 4-Chlorotoluene                    |                           | <0.0010                      | <0.0010  | RPD-NA    | mg/L  | N/A | 30    | 10-DEC-19 |
| p-Isopropyltoluene                 | e                         | <0.0010                      | <0.0010  | RPD-NA    | mg/L  | N/A | 50    | 10-DEC-19 |
| Benzene                            |                           | <0.00050                     | <0.00050 | RPD-NA    | mg/L  | N/A | 30    | 10-DEC-19 |
| Bromobenzene                       |                           | <0.0010                      | <0.0010  | RPD-NA    | mg/L  | N/A | 30    | 10-DEC-19 |
| Bromochlorometh                    | ane                       | <0.0010                      | <0.0010  | RPD-NA    | mg/L  | N/A | 30    | 10-DEC-19 |
| Bromodichlorome                    | thane                     | <0.00050                     | <0.00050 | RPD-NA    | mg/L  | N/A | 30    | 10-DEC-19 |
| Bromoform                          |                           | <0.00050                     | <0.00050 | RPD-NA    | mg/L  | N/A | 30    | 10-DEC-19 |
| Bromomethane                       |                           | <0.0010                      | <0.0010  | RPD-NA    | mg/L  | N/A | 30    | 10-DEC-19 |
| Carbon tetrachlori                 | de                        | <0.00050                     | <0.00050 | RPD-NA    | mg/L  | N/A | 30    | 10-DEC-19 |
| Chlorobenzene                      |                           | <0.00050                     | <0.00050 | RPD-NA    | mg/L  | N/A | 30    | 10-DEC-19 |
| Chloroethane                       |                           | <0.0010                      | <0.0010  | RPD-NA    | mg/L  | N/A | 30    | 10-DEC-19 |
| Chloroform                         |                           | 0.00166                      | 0.00171  |           | mg/L  | 3.0 | 30    | 10-DEC-19 |
| Chloromethane                      |                           | <0.0010                      | <0.0010  | RPD-NA    | mg/L  | N/A | 30    | 10-DEC-19 |
| cis-1,2-Dichloroetl                | hene                      | <0.0010                      | <0.0010  | RPD-NA    | mg/L  | N/A | 30    | 10-DEC-19 |
| cis-1,3-Dichloropro                | opene                     | <0.00050                     | <0.00050 | RPD-NA    | mg/L  | N/A | 30    | 10-DEC-19 |
| Dibromochlorome                    | thane                     | <0.00050                     | <0.00050 | RPD-NA    | mg/L  | N/A | 30    | 10-DEC-19 |
| Dibromomethane                     |                           | <0.00050                     | <0.00050 | RPD-NA    | mg/L  | N/A | 30    | 10-DEC-19 |
| Dichlorodifluorom                  | ethane                    | <0.00050                     | <0.00050 | RPD-NA    | mg/L  | N/A | 30    | 10-DEC-19 |
| Ethylbenzene                       |                           | <0.00050                     | <0.00050 | RPD-NA    | mg/L  | N/A | 30    | 10-DEC-19 |
| Ethylene dibromid                  | le                        | <0.00050                     | <0.00050 | RPD-NA    | mg/L  | N/A | 30    | 10-DEC-19 |
| Hexachlorobutadie                  | ene                       | <0.0010                      | <0.0010  | RPD-NA    | mg/L  | N/A | 30    | 10-DEC-19 |
| Isopropylbenzene                   |                           | <0.0010                      | <0.0010  | RPD-NA    | mg/L  | N/A | 30    | 10-DEC-19 |
| m+p-Xylenes                        |                           | <0.00050                     | <0.00050 |           | mg/L  |     |       | 10-DEC-19 |



Workorder: L2393410

Report Date: 20-DEC-19

Page 13 of 19

Report Date: 20 DEC

Client: TETRA TECH CANADA INC. 110, 140 Quarry Park Blvd SE

Calgary AB T2C 3G3

Contact: Darby Madalena

| Test                  | Matrix  | Reference  | Result   | Qualifier | Units | RPD | Limit  | Analyzed  |
|-----------------------|---------|------------|----------|-----------|-------|-----|--------|-----------|
| VOC-HS-MS-CL          | Water   |            |          |           |       |     |        |           |
| Batch R49379          | 09      |            |          |           |       |     |        |           |
| WG3238459-5 DU        | P       | L2393231-1 |          |           |       |     |        |           |
| m+p-Xylenes           |         | <0.00050   | <0.00050 | RPD-NA    | mg/L  | N/A | 30     | 10-DEC-19 |
| Methylene chloride    |         | <0.0010    | <0.0010  | RPD-NA    | mg/L  | N/A | 30     | 10-DEC-19 |
| n-Butylbenzene        |         | <0.0010    | <0.0010  | RPD-NA    | mg/L  | N/A | 30     | 10-DEC-19 |
| n-Propylbenzene       |         | <0.0010    | <0.0010  | RPD-NA    | mg/L  | N/A | 30     | 10-DEC-19 |
| o-Xylene              |         | <0.00050   | <0.00050 | RPD-NA    | mg/L  | N/A | 30     | 10-DEC-19 |
| sec-Butylbenzene      |         | <0.0010    | <0.0010  | RPD-NA    | mg/L  | N/A | 30     | 10-DEC-19 |
| Styrene               |         | <0.00050   | <0.00050 | RPD-NA    | mg/L  | N/A | 30     | 10-DEC-19 |
| tert-Butylbenzene     |         | <0.0010    | <0.0010  | RPD-NA    | mg/L  | N/A | 30     | 10-DEC-19 |
| Tetrachloroethylene   |         | <0.00050   | <0.00050 | RPD-NA    | mg/L  | N/A | 30     | 10-DEC-19 |
| Toluene               |         | <0.00050   | <0.00050 | RPD-NA    | mg/L  | N/A | 30     | 10-DEC-19 |
| trans-1,2-Dichloroeth | ene     | <0.00050   | <0.00050 | RPD-NA    | mg/L  | N/A | 30     | 10-DEC-19 |
| trans-1,3-Dichloropro | pene    | <0.0010    | <0.0010  | RPD-NA    | mg/L  | N/A | 30     | 10-DEC-19 |
| Trichloroethene       |         | <0.00050   | <0.00050 | RPD-NA    | mg/L  | N/A | 30     | 10-DEC-19 |
| Trichlorofluorometha  | ne      | <0.0010    | <0.0010  | RPD-NA    | mg/L  | N/A | 30     | 10-DEC-19 |
| Vinyl chloride        |         | <0.00050   | <0.00050 | RPD-NA    | mg/L  | N/A | 30     | 10-DEC-19 |
| WG3238459-2 LCS       | 5       |            |          |           |       |     |        |           |
| 1,1,1,2-Tetrachloroet | hane    |            | 104.2    |           | %     |     | 70-130 | 09-DEC-19 |
| 1,1,1-Trichloroethane | 9       |            | 96.0     |           | %     |     | 70-130 | 09-DEC-19 |
| 1,1,2,2-Tetrachloroet | hane    |            | 94.1     |           | %     |     | 70-130 | 09-DEC-19 |
| 1,1,2-Trichloroethane | 9       |            | 93.3     |           | %     |     | 70-130 | 09-DEC-19 |
| 1,1-Dichloroethane    |         |            | 100.0    |           | %     |     | 70-130 | 09-DEC-19 |
| 1,1-Dichloroethene    |         |            | 99.8     |           | %     |     | 70-130 | 09-DEC-19 |
| 1,1-Dichloropropene   |         |            | 87.0     |           | %     |     | 70-130 | 09-DEC-19 |
| 1,2,3-Trichlorobenzer | ne      |            | 95.0     |           | %     |     | 70-130 | 09-DEC-19 |
| 1,2,3-Trichloropropar | ne      |            | 98.2     |           | %     |     | 70-130 | 09-DEC-19 |
| 1,2,4-Trichlorobenzer | ne      |            | 96.7     |           | %     |     | 70-130 | 09-DEC-19 |
| 1,2,4-Trimethylbenze  | ne      |            | 100.5    |           | %     |     | 70-130 | 09-DEC-19 |
| 1,2-Dibromo-3-chloro  | propane |            | 88.1     |           | %     |     | 70-130 | 09-DEC-19 |
| 1,2-Dichlorobenzene   |         |            | 101.3    |           | %     |     | 70-130 | 09-DEC-19 |
| 1,2-Dichloroethane    |         |            | 93.1     |           | %     |     | 70-130 | 09-DEC-19 |
| 1,2-Dichloropropane   |         |            | 95.9     |           | %     |     | 70-130 | 09-DEC-19 |
| 1,3,5-Trimethylbenze  | ne      |            | 101.4    |           | %     |     | 70-130 | 09-DEC-19 |
| 1,3-Dichlorobenzene   |         |            | 100.6    |           | %     |     | 70-130 | 09-DEC-19 |



Workorder:L2393410Report Date:20-DEC-19Page14of19TETRA TECH CANADA INC.110,140 Quarry Park Blvd SE

Client: TETRA TECH CANADA INC. 110, 140 Quarry Park Blvd SE Calgary AB T2C 3G3

Contact: Darby Madalena

| Test                    | Matrix | Reference | Result | Qualifier | Units   | RPD | Limit  | Analyzed  |
|-------------------------|--------|-----------|--------|-----------|---------|-----|--------|-----------|
| VOC-HS-MS-CL            | Water  |           |        |           |         |     |        |           |
| Batch R4937909          |        |           |        |           |         |     |        |           |
| WG3238459-2 LCS         |        |           | 00.0   |           | 0/      |     | 70.400 |           |
| 1,3-Dichloropropane     |        |           | 92.3   |           | %<br>0/ |     | 70-130 | 09-DEC-19 |
| 1,4-Dichlorobenzene     |        |           | 106.6  |           | %       |     | 70-130 | 09-DEC-19 |
| 2,2-Dichloropropane     |        |           | 94.4   |           | %       |     | 70-130 | 09-DEC-19 |
| 2-Chiorotoluene         |        |           | 98.4   |           | %       |     | 70-130 | 09-DEC-19 |
| 4-Chiorotoluene         |        |           | 94.9   |           | %       |     | 70-130 | 09-DEC-19 |
| p-Isopropyltoluene      |        |           | 96.2   |           | %       |     | 50-150 | 09-DEC-19 |
| Benzene                 |        |           | 96.6   |           | %       |     | 70-130 | 09-DEC-19 |
| Bromobenzene            |        |           | 101.9  |           | %       |     | 70-130 | 09-DEC-19 |
| Bromochloromethane      |        |           | 92.5   |           | %       |     | 70-130 | 09-DEC-19 |
| Bromodichloromethane    |        |           | 98.0   |           | %       |     | 70-130 | 09-DEC-19 |
| Bromoform               |        |           | 96.4   |           | %       |     | 70-130 | 09-DEC-19 |
| Bromomethane            |        |           | 111.8  |           | %       |     | 60-140 | 09-DEC-19 |
| Carbon tetrachloride    |        |           | 94.1   |           | %       |     | 70-130 | 09-DEC-19 |
| Chlorobenzene           |        |           | 103.2  |           | %       |     | 70-130 | 09-DEC-19 |
| Chloroethane            |        |           | 126.5  |           | %       |     | 60-140 | 09-DEC-19 |
| Chloroform              |        |           | 96.6   |           | %       |     | 70-130 | 09-DEC-19 |
| Chloromethane           |        |           | 120.3  |           | %       |     | 60-140 | 09-DEC-19 |
| cis-1,2-Dichloroethene  |        |           | 92.9   |           | %       |     | 70-130 | 09-DEC-19 |
| cis-1,3-Dichloropropene | )      |           | 85.8   |           | %       |     | 70-130 | 09-DEC-19 |
| Dibromochloromethane    |        |           | 97.9   |           | %       |     | 70-130 | 09-DEC-19 |
| Dibromomethane          |        |           | 94.2   |           | %       |     | 70-130 | 09-DEC-19 |
| Dichlorodifluoromethan  | е      |           | 122.0  |           | %       |     | 60-140 | 09-DEC-19 |
| Ethylbenzene            |        |           | 97.2   |           | %       |     | 70-130 | 09-DEC-19 |
| Ethylene dibromide      |        |           | 88.4   |           | %       |     | 70-130 | 09-DEC-19 |
| Hexachlorobutadiene     |        |           | 102.7  |           | %       |     | 70-130 | 09-DEC-19 |
| Isopropylbenzene        |        |           | 98.0   |           | %       |     | 70-130 | 09-DEC-19 |
| m+p-Xylenes             |        |           | 104.8  |           | %       |     | 70-130 | 09-DEC-19 |
| Methylene chloride      |        |           | 92.5   |           | %       |     | 60-140 | 09-DEC-19 |
| n-Butylbenzene          |        |           | 98.5   |           | %       |     | 70-130 | 09-DEC-19 |
| n-Propylbenzene         |        |           | 92.2   |           | %       |     | 70-130 | 09-DEC-19 |
| o-Xylene                |        |           | 92.6   |           | %       |     | 70-130 | 09-DEC-19 |
| sec-Butylbenzene        |        |           | 103.6  |           | %       |     | 70-130 | 09-DEC-19 |
| Styrene                 |        |           | 87.5   |           | %       |     | 70-130 | 09-DEC-19 |



Client:

Contact:

# **Quality Control Report**

 Workorder:
 L2393410
 Report Date:
 20-DEC-19
 Page 15 of 19

 TETRA TECH CANADA INC.
 110, 140 Quarry Park Blvd SE
 Calgary AB T2C 3G3
 Calgary AB T2C 3G3
 Calgary AB T2C 3G3

 Darby Madalena
 Matrix
 Reference
 Result
 Qualifier
 Units
 RPD
 Limit
 Analyzed

| Test                 | Matrix    | Reference | Result   | Qualifier | Units | RPD | Limit  | Analyzed  |
|----------------------|-----------|-----------|----------|-----------|-------|-----|--------|-----------|
| VOC-HS-MS-CL         | Water     |           |          |           |       |     |        |           |
| Batch R4937          | 909       |           |          |           |       |     |        |           |
| WG3238459-2 LC       | CS        |           |          |           | 24    |     |        |           |
| tert-Butylbenzene    |           |           | 98.5     |           | %     |     | 70-130 | 09-DEC-19 |
|                      | 9         |           | 102.0    |           | %     |     | 70-130 | 09-DEC-19 |
| Toluene              |           |           | 89.9     |           | %     |     | 70-130 | 09-DEC-19 |
| trans-1,2-Dichloroet | thene     |           | 98.2     |           | %     |     | 70-130 | 09-DEC-19 |
| trans-1,3-Dichlorop  | ropene    |           | 91.6     |           | %     |     | 70-130 | 09-DEC-19 |
| Trichloroethene      |           |           | 98.1     |           | %     |     | 70-130 | 09-DEC-19 |
| Trichlorofluorometh  | ane       |           | 122.0    |           | %     |     | 60-140 | 09-DEC-19 |
| Vinyl chloride       |           |           | 117.5    |           | %     |     | 60-140 | 09-DEC-19 |
| WG3238459-1 MI       | B         |           |          |           |       |     |        |           |
| 1,1,1,2-Tetrachloroe | ethane    |           | <0.0010  |           | mg/L  |     | 0.001  | 09-DEC-19 |
| 1,1,1-Trichloroethar | ne        |           | <0.00050 |           | mg/L  |     | 0.0005 | 09-DEC-19 |
| 1,1,2,2-Tetrachloroe | ethane    |           | <0.00050 |           | mg/L  |     | 0.0005 | 09-DEC-19 |
| 1,1,2-Trichloroethar | ne        |           | <0.00050 |           | mg/L  |     | 0.0005 | 09-DEC-19 |
| 1,1-Dichloroethane   |           |           | <0.00050 |           | mg/L  |     | 0.0005 | 09-DEC-19 |
| 1,1-Dichloroethene   |           |           | <0.00050 |           | mg/L  |     | 0.0005 | 09-DEC-19 |
| 1,1-Dichloropropene  | e         |           | <0.0010  |           | mg/L  |     | 0.001  | 09-DEC-19 |
| 1,2,3-Trichlorobenzo | ene       |           | <0.0010  |           | mg/L  |     | 0.001  | 09-DEC-19 |
| 1,2,3-Trichloropropa | ane       |           | <0.00050 |           | mg/L  |     | 0.0005 | 09-DEC-19 |
| 1,2,4-Trichlorobenze | ene       |           | <0.0010  |           | mg/L  |     | 0.001  | 09-DEC-19 |
| 1,2,4-Trimethylbenz  | zene      |           | <0.0010  |           | mg/L  |     | 0.001  | 09-DEC-19 |
| 1,2-Dibromo-3-chlo   | ropropane |           | <0.0010  |           | mg/L  |     | 0.001  | 09-DEC-19 |
| 1,2-Dichlorobenzen   | e         |           | <0.00050 |           | mg/L  |     | 0.0005 | 09-DEC-19 |
| 1,2-Dichloroethane   |           |           | <0.0010  |           | mg/L  |     | 0.001  | 09-DEC-19 |
| 1,2-Dichloropropane  | e         |           | <0.00050 |           | mg/L  |     | 0.0005 | 09-DEC-19 |
| 1,3,5-Trimethylbenz  | zene      |           | <0.0010  |           | mg/L  |     | 0.001  | 09-DEC-19 |
| 1,3-Dichlorobenzen   | e         |           | <0.00050 |           | mg/L  |     | 0.0005 | 09-DEC-19 |
| 1,3-Dichloropropane  | 9         |           | <0.0010  |           | mg/L  |     | 0.001  | 09-DEC-19 |
| 1,4-Dichlorobenzen   | e         |           | <0.00050 |           | mg/L  |     | 0.0005 | 09-DEC-19 |
| 2,2-Dichloropropane  | e         |           | <0.0010  |           | mg/L  |     | 0.001  | 09-DEC-19 |
| 2-Chlorotoluene      |           |           | <0.0010  |           | mg/L  |     | 0.001  | 09-DEC-19 |
| 4-Chlorotoluene      |           |           | <0.0010  |           | mg/L  |     | 0.001  | 09-DEC-19 |
| p-Isopropyltoluene   |           |           | <0.0010  |           | mg/L  |     | 0.001  | 09-DEC-19 |
| Benzene              |           |           | <0.00050 |           | mg/L  |     | 0.0005 | 09-DEC-19 |
| Bromobenzene         |           |           | <0.0010  |           | mg/L  |     | 0.001  | 09-DEC-19 |
|                      |           |           |          |           |       |     |        |           |



Workorder: L2393410 Report Date: 20-DEC-19 Page 16 of 19 TETRA TECH CANADA INC. Client: 110, 140 Quarry Park Blvd SE Calgary AB T2C 3G3 Contact: Darby Madalena Test Matrix Reference Result Qualifier Units RPD Limit Analyzed VOC-HS-MS-CL Water R4937909 Batch WG3238459-1 MB Bromochloromethane < 0.0010 mg/L 0.001 09-DEC-19 Bromodichloromethane 0.0005 < 0.00050 mg/L 09-DEC-19 < 0.00050 0.0005 Bromoform mg/L 09-DEC-19 Bromomethane < 0.0010 mg/L 0.001 09-DEC-19 0.0005 Carbon tetrachloride < 0.00050 mg/L 09-DEC-19 Chlorobenzene < 0.00050 mg/L 0.0005 09-DEC-19 Chloroethane 0.001 < 0.0010 mg/L 09-DEC-19 Chloroform < 0.00050 mg/L 0.0005 09-DEC-19 Chloromethane < 0.0010 mg/L 0.001 09-DEC-19 cis-1.2-Dichloroethene < 0.0010 mg/L 0.001 09-DEC-19 cis-1,3-Dichloropropene < 0.00050 mg/L 0.0005 09-DEC-19 0.0005 Dibromochloromethane < 0.00050 mg/L 09-DEC-19 Dibromomethane < 0.00050 mg/L 0.0005 09-DEC-19 Dichlorodifluoromethane < 0.00050 0.0005 mg/L 09-DEC-19 Ethylbenzene < 0.00050 mg/L 0.0005 09-DEC-19 Ethylene dibromide 0.0005 < 0.00050 mg/L 09-DEC-19 Hexachlorobutadiene 0.001 < 0.0010 mg/L 09-DEC-19 Isopropylbenzene <0.0010 mg/L 0.001 09-DEC-19 < 0.00050 m+p-Xylenes mg/L 0.0005 09-DEC-19 Methylene chloride <0.0010 0.001 mg/L 09-DEC-19 n-Butylbenzene <0.0010 0.001 mg/L 09-DEC-19 n-Propylbenzene < 0.0010 mg/L 0.001 09-DEC-19 o-Xylene < 0.00050 mg/L 0.0005 09-DEC-19 < 0.0010 0.001 sec-Butylbenzene mg/L 09-DEC-19 Styrene < 0.00050 mg/L 0.0005 09-DEC-19 0.001 tert-Butylbenzene < 0.0010 mg/L 09-DEC-19 Tetrachloroethylene < 0.00050 mg/L 0.0005 09-DEC-19 0.0005 Toluene < 0.00050 mg/L 09-DEC-19 trans-1,2-Dichloroethene 0.0005 < 0.00050 mg/L 09-DEC-19 trans-1,3-Dichloropropene <0.0010 0.001 mg/L 09-DEC-19 Trichloroethene < 0.00050 0.0005 mg/L 09-DEC-19 Trichlorofluoromethane 0.001 < 0.0010 mg/L 09-DEC-19 Vinyl chloride <0.00050 mg/L 0.0005 09-DEC-19



Workorder: L2393410 Report Date: 20-DEC-19 Page 17 of 19 TETRA TECH CANADA INC. Client: 110, 140 Quarry Park Blvd SE Calgary AB T2C 3G3 Contact: Darby Madalena Test Matrix Reference Result Qualifier Units RPD Limit Analyzed VOC-HS-MS-CL Water R4937909 Batch WG3238459-1 MB Surrogate: 1,4-Difluorobenzene 100.6 % 70-130 09-DEC-19 Surrogate: 4-Bromofluorobenzene 80.9 % 70-130 09-DEC-19 WG3238459-6 MS L2393231-2 1,1,1,2-Tetrachloroethane 99.0 % 50-140 09-DEC-19 1,1,1-Trichloroethane 99.0 % 50-140 09-DEC-19 1,1,2,2-Tetrachloroethane 87.1 % 50-140 09-DEC-19 88.5 % 1,1,2-Trichloroethane 50-140 09-DEC-19 1,1-Dichloroethane % 101.6 50-140 09-DEC-19 1,1-Dichloroethene 102.3 % 50-140 09-DEC-19 1,1-Dichloropropene 94.7 % 50-140 09-DEC-19 1,2,3-Trichlorobenzene 109.6 % 50-140 09-DEC-19 1,2,3-Trichloropropane 89.8 % 09-DEC-19 70-130 1,2,4-Trichlorobenzene 106.1 % 50-140 09-DEC-19 1,2,4-Trimethylbenzene 102.6 % 50-140 09-DEC-19 1,2-Dibromo-3-chloropropane 92.5 % 09-DEC-19 50-140 100.5 1,2-Dichlorobenzene % 50-140 09-DEC-19 1.2-Dichloroethane 89.2 % 50-140 09-DEC-19 1,2-Dichloropropane 96.1 % 50-140 09-DEC-19 1,3,5-Trimethylbenzene % 103.0 50-140 09-DEC-19 1,3-Dichlorobenzene 98.8 % 50-140 09-DEC-19 1,3-Dichloropropane 88.8 % 50-140 09-DEC-19 1,4-Dichlorobenzene 104.7 % 50-140 09-DEC-19 2,2-Dichloropropane 98.2 % 50-140 09-DEC-19 2-Chlorotoluene 99.5 % 50-140 09-DEC-19 4-Chlorotoluene 95.2 % 50-140 09-DEC-19 p-Isopropyltoluene 101.3 % 50-140 09-DEC-19 Benzene 98.9 % 50-140 09-DEC-19 Bromobenzene 98.7 % 50-140 09-DEC-19 Bromochloromethane 90.1 % 50-140 09-DEC-19 Bromodichloromethane 95.6 % 50-140 09-DEC-19 Bromoform % 89.3 50-140 09-DEC-19 Bromomethane 113.0 % 50-140 09-DEC-19 Carbon tetrachloride 96.1 % 50-140 09-DEC-19 Chlorobenzene 100.3 % 50-140 09-DEC-19



Workorder:L2393410Report Date:20-DEC-19Page18of19TETRA TECH CANADA INC.110, 140 Quarry Park Blvd SE

110, 140 Quarry Park Blvd Sl Calgary AB T2C 3G3

Contact: Darby Madalena

Client:

| Test                     | Matrix | Reference  | Result | Qualifier | Units | RPD | Limit  | Analyzed  |
|--------------------------|--------|------------|--------|-----------|-------|-----|--------|-----------|
| VOC-HS-MS-CL             | Water  |            |        |           |       |     |        |           |
| Batch R4937909           |        |            |        |           |       |     |        |           |
| WG3238459-6 MS           |        | L2393231-2 |        |           |       |     |        |           |
| Chloroethane             |        |            | 127.7  |           | %     |     | 50-140 | 09-DEC-19 |
| Chloroform               |        |            | 96.5   |           | %     |     | 50-140 | 09-DEC-19 |
| Chloromethane            |        |            | 120.4  |           | %     |     | 50-140 | 09-DEC-19 |
| cis-1,2-Dichloroethene   |        |            | 95.9   |           | %     |     | 50-140 | 09-DEC-19 |
| cis-1,3-Dichloropropene  |        |            | 89.3   |           | %     |     | 50-140 | 09-DEC-19 |
| Dibromochloromethane     |        |            | 95.2   |           | %     |     | 50-140 | 09-DEC-19 |
| Dibromomethane           |        |            | 89.7   |           | %     |     | 50-140 | 09-DEC-19 |
| Dichlorodifluoromethane  | 1      |            | 122.6  |           | %     |     | 50-140 | 09-DEC-19 |
| Ethylbenzene             |        |            | 101.7  |           | %     |     | 50-140 | 09-DEC-19 |
| Ethylene dibromide       |        |            | 84.8   |           | %     |     | 50-140 | 09-DEC-19 |
| Hexachlorobutadiene      |        |            | 104.6  |           | %     |     | 50-140 | 09-DEC-19 |
| Isopropylbenzene         |        |            | 100.7  |           | %     |     | 50-140 | 09-DEC-19 |
| m+p-Xylenes              |        |            | 102.3  |           | %     |     | 50-140 | 09-DEC-19 |
| Methylene chloride       |        |            | 91.4   |           | %     |     | 50-140 | 09-DEC-19 |
| n-Butylbenzene           |        |            | 100.9  |           | %     |     | 50-140 | 09-DEC-19 |
| n-Propylbenzene          |        |            | 98.8   |           | %     |     | 50-140 | 09-DEC-19 |
| o-Xylene                 |        |            | 97.8   |           | %     |     | 50-140 | 09-DEC-19 |
| sec-Butylbenzene         |        |            | 103.9  |           | %     |     | 50-140 | 09-DEC-19 |
| Styrene                  |        |            | 92.3   |           | %     |     | 50-140 | 09-DEC-19 |
| tert-Butylbenzene        |        |            | 101.5  |           | %     |     | 50-140 | 09-DEC-19 |
| Tetrachloroethylene      |        |            | 102.1  |           | %     |     | 50-140 | 09-DEC-19 |
| Toluene                  |        |            | 95.8   |           | %     |     | 50-140 | 09-DEC-19 |
| trans-1,2-Dichloroethene | )      |            | 99.0   |           | %     |     | 50-140 | 09-DEC-19 |
| trans-1,3-Dichloroproper | ne     |            | 92.1   |           | %     |     | 50-140 | 09-DEC-19 |
| Trichloroethene          |        |            | 101.5  |           | %     |     | 50-140 | 09-DEC-19 |
| Trichlorofluoromethane   |        |            | 110.9  |           | %     |     | 50-140 | 09-DEC-19 |
| Vinyl chloride           |        |            | 122.7  |           | %     |     | 50-140 | 09-DEC-19 |

Workorder: L2393410

Report Date: 20-DEC-19

| Client:  | TETRA TECH CANADA INC.       |
|----------|------------------------------|
|          | 110, 140 Quarry Park Blvd SE |
|          | Calgary AB T2C 3G3           |
| Contact: | Darby Madalena               |

#### Legend:

| Limit | ALS Control Limit (Data Quality Objectives) |
|-------|---------------------------------------------|
| DUP   | Duplicate                                   |
| RPD   | Relative Percent Difference                 |
| N/A   | Not Available                               |
| LCS   | Laboratory Control Sample                   |
| SRM   | Standard Reference Material                 |
| MS    | Matrix Spike                                |
| MSD   | Matrix Spike Duplicate                      |
| ADE   | Average Desorption Efficiency               |
| MB    | Method Blank                                |
| IRM   | Internal Reference Material                 |
| CRM   | Certified Reference Material                |
| CCV   | Continuing Calibration Verification         |
| CVS   | Calibration Verification Standard           |
| LCSD  | Laboratory Control Sample Duplicate         |

#### Sample Parameter Qualifier Definitions:

| Qualifier | Description                                                                                            |
|-----------|--------------------------------------------------------------------------------------------------------|
| DLM       | Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference, colour, turbidity). |
| J         | Duplicate results and limits are expressed in terms of absolute difference.                            |
| MS-B      | Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.     |
| RPD-NA    | Relative Percent Difference Not Available due to result(s) being less than detection limit.            |

#### Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.
Service Request No:K1911628



Inayat Dhaliwal ALS Environmental - Canada 2559 29 Street NE Calgary, AB T1Y 7B5

## Laboratory Results for: L2393410

Dear Inayat,

Enclosed are the results of the sample(s) submitted to our laboratory December 12, 2019 For your reference, these analyses have been assigned our service request number **K1911628**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3293. You may also contact me via email at Elizabeth.Harris@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Elizabeth Harris Project Manager

ADDRESS 1317 S. 13th Avenue, Kelso, WA 98626 PHONE +1 360 577 7222 | FAX +1 360 636 1068 ALS Group USA, Corp. dba ALS Environmental



# Narrative Documents

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 2 of 24



Client: ALS Environmental - Canada

Project: L2393410 Sample Matrix: Water Service Request: K1911628 Date Received: 12/12/2019

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples for the Tier II level requested by the client.

#### Sample Receipt:

Five water samples were received for analysis at ALS Environmental on 12/12/2019. Any discrepancies upon initial sample inspection are annotated on the sample receipt and preservation form included within this report. The samples were stored at minimum in accordance with the analytical method requirements.

### **General Chemistry:**

No significant anomalies were noted with this analysis.

| Approved by | El Din | Date | 12/20/2019 |
|-------------|--------|------|------------|
|             |        | -    |            |



# Sample Receipt Information

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 4 of 24

### SAMPLE CROSS-REFERENCE

| <u>SAMPLE #</u> | CLIENT SAMPLE ID | DATE      | <u>TIME</u> |
|-----------------|------------------|-----------|-------------|
| K1911628-001    | L2393410-1       | 12/4/2019 |             |
| K1911628-002    | L2393410-2       | 12/4/2019 |             |
| K1911628-003    | L2393410-3       | 12/4/2019 |             |
| K1911628-004    | L2393410-4       | 12/4/2019 |             |
| K1911628-005    | L2393410-5       | 12/5/2019 |             |

K1411620



CALGARY

L2393410

## **Subcontract Request Form**

### Subcontract To:

#### ALS ENVIRONMENTAL - KELSO, WASHINGTON, USA

1317 S. 13TH AVE KELSO,WA 98626

SAMPLE

NOTES:Please reference on final report and invoice: PO#L2393410ALS requires QC data to be provided with your final results.

Please see enclosed <u>5</u> sample(s) in <u>5</u> Container(s)

| NUMBER                          | NALYTICAL REQUIRED               | DATE SAMPLED<br>DUE DATE       | Priority<br>Flag |
|---------------------------------|----------------------------------|--------------------------------|------------------|
| L2393410-1 MW-01                |                                  | 12/ 4/ 2019                    |                  |
| Ac                              | lsorbable Organic Halides (AOX-M | ISA-KL 1) 12/30/2019           |                  |
| L2393410-2 MW-02                |                                  | 12/ 4/ 2019                    |                  |
| Ad                              | Isorbable Organic Halides (AOX-M | ISA-KL 1) 12/30/2019           |                  |
| L2393410-3 MW-03                |                                  | 12/ 4/ 2019                    |                  |
| A                               | isorbable Organic Halides (AOX-M | ISA-KL 1) 12/30/2019           |                  |
| L2393410-4 MW-04                |                                  | 12/4/2019                      |                  |
| A                               | Isorbable Organic Halides (AOX-M | ISA-KL 1) 12/30/2019           |                  |
| L2393410-5 MW203                |                                  | 12/ 5/ 2019                    |                  |
| A                               | fsorbable Organic Halides (AOX-M | IISA-KL 1) 12/30/2019          |                  |
| Subcontract Info Contact:       | John Forbes (403) 29             | 91-9897                        |                  |
| Analysis and reporting info cor | tact: Inayat Dhaliwal            |                                |                  |
|                                 |                                  | F                              |                  |
|                                 | Phone: (403) 291-                | 9897 Email: inayat.dhaliwal@al | sglobal.com      |
| Please email confirmation o     | of receipt to: inaya             | t.dhaliwal@alsglobal.com       | U                |
| Shipped By:                     | Date                             | Shipped:                       |                  |
| Received By:                    | Date                             | Received: 12/12/19 1000        |                  |
| Verified By:                    | Date                             | Verified:                      |                  |
|                                 | Tem                              | perature:                      |                  |
| Sample Integrity Issues:        | ·                                |                                |                  |

| PC | £H |
|----|----|
|    |    |

| Cooler Receipt and Preservation Form                                                                                                                                             |                                        |         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------|
| Client ALS CANAPA Service Request K19/1628                                                                                                                                       |                                        |         |
| Received: 12/12/19 By: CG Unloaded: 12/12/19 E                                                                                                                                   | sy: CG                                 |         |
| <ol> <li>Samples were received via? USPS Fed Ex UPS DHL PDX Courier Hand Delivered</li> <li>Samples were received in: (circle) Cooler Box Envelope Other</li></ol>               | NA                                     |         |
| If present, were custody seals intact? Y N If present, were they signed and dated?                                                                                               | Y                                      | N       |
| Raw Corrected. Raw Corrected Corr. Thermometer Cooler/COC ID Tracking Nur<br>Cooler Temp Cooler Temp Blank Temp Blank Factor ID NA                                               | nber                                   | NAFiled |
| 0.1 0.4 +0.3 403 77720068                                                                                                                                                        | 8607                                   |         |
|                                                                                                                                                                                  |                                        |         |
|                                                                                                                                                                                  | ······································ |         |
|                                                                                                                                                                                  |                                        |         |
| <ul> <li>4. Packing material: Inserts Baggies Bubble Wrap Liel Packs Wet Ice Dry Ice Steeves</li> <li>5. Were custody papers properly filled out (ink, signed, etc.)?</li> </ul> | NA (Ŷ                                  | N       |
| 6. Were samples received in good condition (temperature, unbroken)? Indicate in the table below.                                                                                 | NA V                                   | N       |
| If applicable, tissue samples were received: <i>Frozen Partially Thawed Thawed</i><br>7. Were all sample labels complete (i.e. analysis, preservation, etc.)?                    |                                        | N       |
| 8. Did all sample labels and tags agree with custody papers? Indicate major discrepancies in the table on page 2.                                                                | NA (Y)                                 | N       |
| 9. Were appropriate bottles/containers and volumes received for the tests indicated?                                                                                             | NA 🕎                                   | N       |
| 10. Were the pH-preserved bottles (see SMO GEN SOP) received at the appropriate pH? Indicate in the table below                                                                  | NA Y                                   | N       |
| 11. Were VOA vials received without headspace? Indicate in the table below.                                                                                                      | NA) Y                                  | N       |
| 12. Was C12/Res negative?                                                                                                                                                        | NA Y                                   | N       |
| Sample ID on Bottle Sample ID on COC                                                                                                                                             |                                        |         |
|                                                                                                                                                                                  |                                        |         |
|                                                                                                                                                                                  |                                        |         |
|                                                                                                                                                                                  |                                        |         |

| Sample ID | Bottle Count<br>Bottle Type | Out of<br>Temp | Head-<br>space | Broke | pН | Reagent | Volume<br>added | Reagent Lot<br>Number | Initials | Time |
|-----------|-----------------------------|----------------|----------------|-------|----|---------|-----------------|-----------------------|----------|------|
|           |                             | <br>           |                |       |    |         |                 |                       |          |      |
|           |                             | <u> </u>       |                |       |    |         |                 |                       |          |      |
|           |                             |                |                |       |    |         |                 |                       |          |      |
|           |                             |                |                |       |    |         |                 |                       |          |      |
|           |                             |                |                |       |    |         |                 |                       |          |      |

## Notes, Discrepancies, & Resolutions:

Page\_\_\_\_of\_\_\_\_



# **Miscellaneous Forms**

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 8 of 24

#### **Inorganic Data Qualifiers**

- \* The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

#### **Metals Data Qualifiers**

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- $i \,$   $\,$  The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

#### **Organic Data Qualifiers**

- \* The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
   DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

#### Additional Petroleum Hydrocarbon Specific Qualifiers

- ${f F}$  The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

## ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

| Web Site                                                                                                                                                             | Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| http://dec.alaska.gov/eh/lab/cs/csapproval.htm                                                                                                                       | UST-040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| http://www.azdhs.gov/lab/license/env.htm                                                                                                                             | AZ0339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| http://www.adeq.state.ar.us/techsvs/labcert.htm                                                                                                                      | 88-0637                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx                                                                                                                  | 2795                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm                                                                                                       | L16-58-R4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm                                                                                                              | E87412                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| http://health.hawaii.gov/                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| http://www.pjlabs.com/                                                                                                                                               | L16-57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| http://www.deq.louisiana.gov/page/la-lab-accreditation                                                                                                               | 03016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| http://www.maine.gov/dhhs/                                                                                                                                           | WA01276                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| http://www.health.state.mn.us/accreditation                                                                                                                          | 053-999-457                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| http://ndep.nv.gov/bsdw/labservice.htm                                                                                                                               | WA01276                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| http://www.nj.gov/dep/enforcement/oqa.html                                                                                                                           | WA005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| https://www.wadsworth.org/regulatory/elap                                                                                                                            | 12060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| https://deq.nc.gov/about/divisions/water-resources/water-resources-<br>data/water-sciences-home-page/laboratory-certification-branch/non-field-lab-<br>certification | 605                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| http://www.deq.state.ok.us/CSDnew/labcert.htm                                                                                                                        | 9801                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaborator<br>yAccreditation/Pages/index.aspx                                                         | WA100010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| http://www.scdhec.gov/environment/EnvironmentalLabCertification/                                                                                                     | 61002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html                                                                                                        | T104704427                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html                                                                                                       | C544                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| https://www.epa.gov/region8-waterops/epa-region-8-certified-drinking-water-                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| www.alsglobal.com                                                                                                                                                    | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                      | Web Site           http://dec.alaska.gov/eh/lab/cs/csapproval.htm           http://www.azdhs.gov/lab/license/env.htm           http://www.adeq.state.ar.us/techsvs/labcert.htm           http://www.adeq.state.ar.us/techsvs/labcert.htm           http://www.depi.ca.gov/certlic/labs/Pages/ELAP.aspx           http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm           http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm           http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm           http://health.hawaii.gov/           http://www.pilabs.com/           http://www.maine.gov/dhks/           http://www.maine.gov/dhks/           http://www.health.state.mn.us/accreditation           http://www.ng.gov/dep/enforcement/oqa.html           http://www.ng.gov/dep/enforcement/oqa.html           http://www.adsworth.org/regulatory/elap           http://www.adsworth.org/regulatory/certification-branch/non-field-lab-certification           http://www.deq.state.ok.us/CSDnew/labcert.htm           http://www.deq.state.ok.us/CSDnew/labcert.htm           http://www.deq.state.ok.us/CSDnew/labcert.htm           http://www.deq.state.ok.us/csDnew/labcert.htm           http://www.scdhec.gov/environment/EnvironmentalLabCertification/           http://www.scdhec.gov/programs/eap/labs/lab-accreditation.html           http://www.keq.state.ow.us/programs/eap/labs/lab-accreditation. |

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

## Acronyms

| ASTM       | American Society for Testing and Materials                                                                                                              |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| A2LA       | American Association for Laboratory Accreditation                                                                                                       |
| CARB       | California Air Resources Board                                                                                                                          |
| CAS Number | Chemical Abstract Service registry Number                                                                                                               |
| CFC        | Chlorofluorocarbon                                                                                                                                      |
| CFU        | Colony-Forming Unit                                                                                                                                     |
| DEC        | Department of Environmental Conservation                                                                                                                |
| DEQ        | Department of Environmental Quality                                                                                                                     |
| DHS        | Department of Health Services                                                                                                                           |
| DOE        | Department of Ecology                                                                                                                                   |
| DOH        | Department of Health                                                                                                                                    |
| EPA        | U. S. Environmental Protection Agency                                                                                                                   |
| ELAP       | Environmental Laboratory Accreditation Program                                                                                                          |
| GC         | Gas Chromatography                                                                                                                                      |
| GC/MS      | Gas Chromatography/Mass Spectrometry                                                                                                                    |
| LOD        | Limit of Detection                                                                                                                                      |
| LOQ        | Limit of Quantitation                                                                                                                                   |
| LUFT       | Leaking Underground Fuel Tank                                                                                                                           |
| M<br>MCL   | Modified<br>Maximum Contaminant Level is the highest permissible concentration of a substance<br>allowed in drinking water as established by the USEPA. |
| MDL        | Method Detection Limit                                                                                                                                  |
| MPN        | Most Probable Number                                                                                                                                    |
| MRL        | Method Reporting Limit                                                                                                                                  |
| NA         | Not Applicable                                                                                                                                          |
| NC         | Not Calculated                                                                                                                                          |
| NCASI      | National Council of the Paper Industry for Air and Stream Improvement                                                                                   |
| ND         | Not Detected                                                                                                                                            |
| NIOSH      | National Institute for Occupational Safety and Health                                                                                                   |
| PQL        | Practical Quantitation Limit                                                                                                                            |
| RCRA       | Resource Conservation and Recovery Act                                                                                                                  |
| SIM        | Selected Ion Monitoring                                                                                                                                 |
| TPH<br>tr  | Total Petroleum Hydrocarbons<br>Trace level is the concentration of an analyte that is less than the PQL but greater than or<br>equal to the MDL.       |

Analyst Summary report

| Client:<br>Project:                         | ALS Environmental - Canada<br>L2393410/ |                       | Service Request: K1911628                                        |
|---------------------------------------------|-----------------------------------------|-----------------------|------------------------------------------------------------------|
| Sample Name:<br>Lab Code:<br>Sample Matrix: | L2393410-1<br>K1911628-001<br>Water     |                       | Date Collected: 12/4/19<br>Date Received: 12/12/19               |
| <b>Analysis Method</b><br>1650C             |                                         | Extracted/Digested By | Analyzed By<br>ESCHLOSS                                          |
| Sample Name:<br>Lab Code:<br>Sample Matrix: | L2393410-2<br>K1911628-002<br>Water     |                       | <b>Date Collected:</b> 12/4/19<br><b>Date Received:</b> 12/12/19 |
| Analysis Method<br>1650C                    |                                         | Extracted/Digested By | Analyzed By<br>ESCHLOSS                                          |
| Sample Name:<br>Lab Code:<br>Sample Matrix: | L2393410-3<br>K1911628-003<br>Water     |                       | <b>Date Collected:</b> 12/4/19<br><b>Date Received:</b> 12/12/19 |
| <b>Analysis Method</b><br>1650C             |                                         | Extracted/Digested By | Analyzed By<br>ESCHLOSS                                          |
| Sample Name:<br>Lab Code:<br>Sample Matrix: | L2393410-4<br>K1911628-004<br>Water     |                       | <b>Date Collected:</b> 12/4/19<br><b>Date Received:</b> 12/12/19 |
| <b>Analysis Method</b><br>1650C             |                                         | Extracted/Digested By | Analyzed By<br>ESCHLOSS                                          |
| Sample Name:<br>Lab Code:<br>Sample Matrix: | L2393410-5<br>K1911628-005<br>Water     |                       | <b>Date Collected:</b> 12/5/19<br><b>Date Received:</b> 12/12/19 |
| <b>Analysis Method</b><br>1650C             |                                         | Extracted/Digested By | Analyzed By<br>ESCHLOSS                                          |



# Sample Results

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 13 of 24



# **General Chemistry**

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 14 of 24

Analytical Report

| Client:        | ALS Environmental - Canada | Service Request: K1911628            |
|----------------|----------------------------|--------------------------------------|
| Project:       | L2393410                   | Date Collected: 12/04/19             |
| Sample Matrix: | Water                      | <b>Date Received:</b> 12/12/19 10:00 |
| Sample Name:   | L2393410-1                 | Basis: NA                            |
| Lab Code:      | K1911628-001               |                                      |
|                |                            |                                      |

|                                   | Analysis |        |       |      |      |                |   |
|-----------------------------------|----------|--------|-------|------|------|----------------|---|
| Analyte Name                      | Method   | Result | Units | MRL  | Dil. | Date Analyzed  | Q |
| Halides, Adsorbable Organic (AOX) | 1650C    | ND U   | mg/L  | 0.50 | 50   | 12/17/19 09:06 |   |

Analytical Report

| Client:        | ALS Environmental - Canada | Service Request: K1911628            |
|----------------|----------------------------|--------------------------------------|
| Project:       | L2393410                   | <b>Date Collected:</b> 12/04/19      |
| Sample Matrix: | Water                      | <b>Date Received:</b> 12/12/19 10:00 |
| Sample Name:   | L2393410-2                 | Basis: NA                            |
| Lab Code:      | K1911628-002               |                                      |
|                |                            |                                      |

|                                   | Analysis |        |       |       |      |                |   |
|-----------------------------------|----------|--------|-------|-------|------|----------------|---|
| Analyte Name                      | Method   | Result | Units | MRL   | Dil. | Date Analyzed  | Q |
| Halides, Adsorbable Organic (AOX) | 1650C    | ND U   | mg/L  | 0.025 | 2.5  | 12/17/19 09:06 |   |

Analytical Report

| Client:        | ALS Environmental - Canada | Service Request: K1911628            |
|----------------|----------------------------|--------------------------------------|
| Project:       | L2393410                   | <b>Date Collected:</b> 12/04/19      |
| Sample Matrix: | Water                      | <b>Date Received:</b> 12/12/19 10:00 |
| Sample Name:   | L2393410-3                 | Basis: NA                            |
| Lab Code:      | K1911628-003               |                                      |
|                |                            |                                      |

|                                   | Analysis |        |       |      |      |                |   |
|-----------------------------------|----------|--------|-------|------|------|----------------|---|
| Analyte Name                      | Method   | Result | Units | MRL  | Dil. | Date Analyzed  | Q |
| Halides, Adsorbable Organic (AOX) | 1650C    | ND U   | mg/L  | 0.10 | 10   | 12/17/19 09:06 |   |

Analytical Report

| Client:        | ALS Environmental - Canada | Service Request: K1911628            |
|----------------|----------------------------|--------------------------------------|
| Project:       | L2393410                   | <b>Date Collected:</b> 12/04/19      |
| Sample Matrix: | Water                      | <b>Date Received:</b> 12/12/19 10:00 |
| Sample Name:   | L2393410-4                 | Basis: NA                            |
| Lab Code:      | K1911628-004               |                                      |
|                |                            |                                      |

|                                   | Analysis |        |       |      |      |                |   |
|-----------------------------------|----------|--------|-------|------|------|----------------|---|
| Analyte Name                      | Method   | Result | Units | MRL  | Dil. | Date Analyzed  | Q |
| Halides, Adsorbable Organic (AOX) | 1650C    | ND U   | mg/L  | 0.10 | 10   | 12/17/19 09:06 |   |

Analytical Report

| Client:        | ALS Environmental - Canada | Service Request: K1911628            |
|----------------|----------------------------|--------------------------------------|
| Project:       | L2393410                   | Date Collected: 12/05/19             |
| Sample Matrix: | Water                      | <b>Date Received:</b> 12/12/19 10:00 |
| Sample Name:   | L2393410-5                 | Basis: NA                            |
| Lab Code:      | K1911628-005               |                                      |
|                |                            |                                      |

|                                   | Analysis |        |       |       |      |                |   |
|-----------------------------------|----------|--------|-------|-------|------|----------------|---|
| Analyte Name                      | Method   | Result | Units | MRL   | Dil. | Date Analyzed  | Q |
| Halides, Adsorbable Organic (AOX) | 1650C    | ND U   | mg/L  | 0.050 | 5    | 12/17/19 09:06 |   |



# QC Summary Forms

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 20 of 24



# **General Chemistry**

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 21 of 24

Analytical Report

| Client:        | ALS Environmental - Canada | Service Request: K1911628 |
|----------------|----------------------------|---------------------------|
| Project:       | L2393410                   | Date Collected: NA        |
| Sample Matrix: | Water                      | Date Received: NA         |
| Sample Name:   | Method Blank               | Basis: NA                 |
| Lab Code:      | K1911628-MB                |                           |
|                |                            |                           |

|                                   | Analysis |        |       |       |      |                |   |
|-----------------------------------|----------|--------|-------|-------|------|----------------|---|
| Analyte Name                      | Method   | Result | Units | MRL   | Dil. | Date Analyzed  | Q |
| Halides, Adsorbable Organic (AOX) | 1650C    | ND U   | mg/L  | 0.010 | 1    | 12/17/19 09:06 |   |

QA/QC Report

| Client:        | ALS Environmental - Canada |
|----------------|----------------------------|
| Project:       | L2393410/                  |
| Sample Matrix: | Water                      |

| Service Request: | K1911628   |
|------------------|------------|
| Date Collected:  | NA         |
| Date Received:   | NA         |
| Date Analyzed:   | 12/17/2019 |
| Analysis Lot:    | 663572     |

## Calibration and Method Blank Summary Halides, Adsorbable Organic (AOX) 1650C

|                                                            | Halide<br>Check<br>Standard<br>(ug) | Instrument<br>Calibration<br>Standard<br>(ug) | PAR<br>Standard<br>(ug/L) |
|------------------------------------------------------------|-------------------------------------|-----------------------------------------------|---------------------------|
| True Value                                                 | 3.64                                | 10.0                                          | 0.100                     |
| Run A<br>Percent Recovery A<br>Run B<br>Percent Recovery B | 3.81<br>105<br>3.32<br>91           | 10.2<br>102<br>10.4<br>104                    | 0.095<br>95               |

QA/QC Report

| Client:               | ALS Environme | ental - Cana | da                    |                              |          |                | Service R         | equest:            | K1911  | 628 |       |
|-----------------------|---------------|--------------|-----------------------|------------------------------|----------|----------------|-------------------|--------------------|--------|-----|-------|
| Project:              | L2393410      |              |                       |                              |          |                | Date Coll         | ected:             | N/A    |     |       |
| Sample Matrix:        | Water         |              |                       |                              |          |                | Date Rece         | eived:             | N/A    |     |       |
|                       |               |              |                       |                              |          |                | Date Ana          | lyzed:             | 12/17/ | 19  |       |
|                       |               |              |                       |                              |          |                | Date Extr         | acted:             | NA     |     |       |
|                       |               |              | Duplica               | te Matrix S                  | pike Sum | mary           |                   |                    |        |     |       |
|                       |               |              | Halides,              | Adsorbable                   | Organic  | (AOX)          |                   |                    |        |     |       |
| Sample Name:          | Batch QC      |              |                       |                              |          |                |                   | Units:             | mg/L   |     |       |
| Lab Code:             | KQ1918589-09  |              |                       |                              |          |                |                   | Basis:             | NA     |     |       |
| Analysis Method:      | 1650C         |              |                       |                              |          |                |                   |                    |        |     |       |
| Prep Method:          | None          |              |                       |                              |          |                |                   |                    |        |     |       |
|                       |               |              | <b>Matr</b><br>KQ1918 | <b>ix Spike</b><br>3589-09MS |          | Duplic<br>KQ19 | <b>ate Matrix</b> | <b>Spike</b><br>MS |        |     |       |
|                       |               | Sample       |                       | Spike                        |          |                | Spike             |                    | % Rec  |     | RPD   |
| Analyte Name          |               | Result       | Result                | Amount                       | % Rec    | Result         | Amount            | % Rec              | Limits | RPD | Limit |
| Halides, Adsorbable ( | Organic (AOX) | 3.13         | 13.5                  | 10.0                         | 103      | 13.5           | 10.0              | 104                | 90-110 | <1  | 20    |

Results flagged with an asterisk (\*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.



| ← F2         | → <b>4</b>        | 3                 | F4>                           |  |
|--------------|-------------------|-------------------|-------------------------------|--|
| nC10         | nC16              | nC34              | nC50                          |  |
| 174°C        | 287°C             | 481°C             | 575°C                         |  |
| 346'F        | 549'F             | 898'F             | 1067'F                        |  |
| ← Gasoline - | $\rightarrow$     | ←                 | Motor Oils/ Lube Oils/ Grease |  |
| ←−−−         | Diesel/ Jet Fuels | $\longrightarrow$ |                               |  |

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.



| ← F2         | → <b>-</b>        | 3►◀               | F4>                           |   |
|--------------|-------------------|-------------------|-------------------------------|---|
| nC10         | nC16              | nC34              | nC50                          |   |
| 174°C        | 287°C             | 481°C             | 575°C                         |   |
| 346'F        | 549'F             | 898'F             | 1067'F                        |   |
| ← Gasoline - | $\rightarrow$     | ←                 | Motor Oils/ Lube Oils/ Grease | > |
| ←───         | Diesel/ Jet Fuels | $\longrightarrow$ |                               |   |

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.



| ← F2 —       | →•—— I            | 3►◀               | F4>                           |  |
|--------------|-------------------|-------------------|-------------------------------|--|
| nC10         | nC16              | nC34              | nC50                          |  |
| 174°C        | 287°C             | 481°C             | 575°C                         |  |
| 346'F        | 549'F             | 898'F             | 1067'F                        |  |
| ← Gasoline - | $\rightarrow$     | ~                 | Motor Oils/ Lube Oils/ Grease |  |
| ←───         | Diesel/ Jet Fuels | $\longrightarrow$ |                               |  |

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.



| nC10         | nC16              | nC34              | nC50                          |                   |
|--------------|-------------------|-------------------|-------------------------------|-------------------|
| 174°C        | 287°C             | 481°C             | 575°C                         |                   |
| 346'F        | 549'F             | 898'F             | 1067'F                        |                   |
| ← Gasoline - | $\rightarrow$     | ~                 | Motor Oils/ Lube Oils/ Grease | $\longrightarrow$ |
| ←            | Diesel/ Jet Fuels | $\longrightarrow$ |                               |                   |

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.



| ← F2         |                   |                   | F4>                           |   |
|--------------|-------------------|-------------------|-------------------------------|---|
| nC10         | nC16              | nC34              | nC50                          |   |
| 174°C        | 287°C             | 481°C             | 575°C                         |   |
| 346'F        | 549'F             | 898'F             | 1067'F                        |   |
| ← Gasoline - | $\rightarrow$     | ~                 | Motor Oils/ Lube Oils/ Grease | > |
| ←−−−         | Diesel/ Jet Fuels | $\longrightarrow$ |                               |   |

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.



| Environmental Division          Report to:         Company:       Tetra Tech Canada Inc.         Contact:       Darby Madalena         Address:       110, 140 Quarry Park Blvd : |                                            | Report F        | www.alsglobal.cor   | <u>n</u>               |                                                         |             |        |                |        |       |                     |                 | Page            | , _     | <u>1</u> of      | · _ ·    | 1        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------------|---------------------|------------------------|---------------------------------------------------------|-------------|--------|----------------|--------|-------|---------------------|-----------------|-----------------|---------|------------------|----------|----------|
| Report to:<br>Company: Tetra Tech Canada Inc.<br>Contact: Darby Madalena<br>Address: 110, 140 Quarry Park Blvd :                                                                  |                                            | Report F        | ormat / Distributio |                        |                                                         |             |        |                |        |       |                     |                 |                 |         |                  |          | -        |
| Company: Tetra Tech Canada Inc.<br>Contact: Darby Madalena<br>Address: 110, 140 Quarry Park Blvd :                                                                                |                                            | C Stan          |                     | n                      |                                                         | Ser         | vice I | Requ           | este   | d:    | _                   |                 |                 |         | _                |          |          |
| Contact: Darby Madalena<br>Address: 110, 140 Quarry Park Blvd                                                                                                                     |                                            | , Otain         | dard <b>f</b> Other |                        |                                                         | ন           | Reg    | ular S         | Servio | xe (D | )efau               | ult)            |                 |         |                  |          |          |
| Address: 110, 140 Quarry Park Blvd                                                                                                                                                |                                            | PDF             | Excel [             | Fax                    |                                                         | 1-          | Rus    | n Ser          | vice   | (2-3  | Days                | s)              |                 |         |                  |          |          |
|                                                                                                                                                                                   | SE, Calgary, AB T2C 3G3                    | Email 1:        | darby.madalena@     | tetratech.com          |                                                         | r           | Prior  | ity Se         | ervice | e (1  | Day                 | or As           | SAP)            |         |                  |          |          |
|                                                                                                                                                                                   |                                            | Emall 2:        |                     |                        |                                                         | ſ-          | Eme    | rgen           | cy Se  | rvice | e (<1               | Day             | / W             | kend    | ) - Co           | ntact /  | ۳.s      |
| Phone: 403-723-6867 Fax:                                                                                                                                                          | 403-203-3301                               | ALS Digit       | al Crosstab results |                        |                                                         |             |        |                | _      | An    | alys                | is Re           | eupe            | st      |                  |          |          |
| Invoice To: IV Same as Report                                                                                                                                                     |                                            |                 |                     | Indicate Bottle        | s: Filtered / Preserved (F/P) $\rightarrow \rightarrow$ |             |        |                |        |       |                     |                 |                 |         |                  | Т        | Τ        |
| Company: SAME AS REPORT                                                                                                                                                           |                                            | Client / F      | roject Information  | n:                     |                                                         | Γ           |        | Ī              | Т      |       |                     |                 |                 |         |                  |          |          |
| Contact:                                                                                                                                                                          |                                            | Job #:          |                     | SWM.SWOP04             | 071-01.003                                              | ]           |        |                |        |       |                     |                 |                 |         |                  |          |          |
| Address:                                                                                                                                                                          |                                            | PO/AFE:         |                     | SWM.SWOP04             | 071-01.003                                              | ]           |        |                | 히      |       |                     |                 |                 |         |                  | 2        | 2        |
| Sample                                                                                                                                                                            |                                            | Legal Site      | e Description:      |                        |                                                         | 1           |        |                | É      |       |                     |                 |                 |         |                  | ate      |          |
| Phone: Fax:                                                                                                                                                                       |                                            | Quote #:        | Q71650              |                        |                                                         | 1_          |        |                | ₽      | 7     |                     |                 |                 |         |                  | 1        |          |
| Lab Work Order #                                                                                                                                                                  | 1.21. <sup>20</sup> -20 <sup>-4</sup> 7-34 | ALS             | Wendy Sears         | Sampler<br>(initiats): | M                                                       | F2-0        | 260-CI | IJ             | Б      | ORG-0 | ರ                   | Ч<br>Г          | IISA-K          | ٩       |                  | Contar   | of C     |
| *Sample * San                                                                                                                                                                     | ple Identification                         |                 | Date                | Time                   | Sample Type                                             | Ē           | 3      | μ              | 3      | 허     | Б                   | ğ               | ×               | ş       |                  | 2g  ≩    | h a      |
| 孫術# 鄒範 / (This descript                                                                                                                                                           | ion will appear on the report)             |                 | dd-mmm-yy           | hh:mm                  | (Select from drop-down list)                            | E<br>E<br>E | 9      | ξ              | å      | 3     | Ŧ                   | Han I           | 8               | 핏       | :                | <u> </u> | <u> </u> |
| 《梁 <b>王/ 恶动 MW-01</b>                                                                                                                                                             |                                            |                 | 04-12-19            | 08:05                  | Water                                                   | X           | X      | X              | X      | X     | X                   | X               | X               | X       |                  |          | 12       |
| MW-02                                                                                                                                                                             |                                            |                 | 04-12-19            | 09:45                  | Water                                                   | X           | X      | X              | Х      | Х     | Х                   | X               | Х               | X       |                  |          | 12       |
| MW-03                                                                                                                                                                             |                                            |                 | 04-12-19            | 08:55                  | Water                                                   | Х           | X      | X              | X      | x     | Х                   | X               | X               | X       |                  |          | ]/2      |
| ※》 WW-04                                                                                                                                                                          |                                            |                 | 04-12-19            | 08:35                  | Water                                                   | X           | X      | Х              | X      | X     | X                   | x               | Х               | x       |                  |          | 12       |
| MARCON MW-05 DRY                                                                                                                                                                  |                                            |                 |                     |                        | Water                                                   | -X-         | -×-    | - <del>x</del> | -×-    | ×     | -×-                 | -×-             | X               | -X      |                  | 7-       | 77       |
| MW203                                                                                                                                                                             |                                            |                 | 05-12-19            | 0815                   | Water                                                   | х           | X      | X              | X      | х     | X                   | х               | X               | X       |                  |          | 12       |
| MARKAN AND AND AND AND AND AND AND AND AND A                                                                                                                                      |                                            |                 |                     |                        | <u></u> _                                               |             |        |                |        |       |                     | Î               |                 |         |                  |          | 1        |
| TATION IN CONTRACTOR                                                                                                                                                              |                                            |                 |                     | · ·                    |                                                         |             |        |                |        |       |                     |                 |                 |         | -                |          |          |
| NEW JUNE                                                                                                                                                                          |                                            |                 |                     |                        |                                                         |             |        |                |        |       |                     |                 |                 |         |                  |          | 1-       |
| SET 3.20                                                                                                                                                                          |                                            |                 |                     |                        |                                                         |             |        | - 1            |        |       |                     |                 |                 |         |                  |          |          |
| Guidelines                                                                                                                                                                        | / Regulations                              |                 |                     |                        | Special Instructions                                    | /Ha         | zardo  | ous D          | )etail | 8     |                     |                 |                 |         |                  | _        | <u></u>  |
|                                                                                                                                                                                   |                                            |                 | met                 | JV+F                   | KY DOC                                                  | F           | 12     |                |        |       |                     | _               |                 |         |                  |          |          |
|                                                                                                                                                                                   | Failure to complet                         | e all portion   | s of this form ma   | y delay analysis       | . Please fill in this form                              | LEG         | BLY    | -              |        |       |                     |                 |                 |         |                  |          |          |
| By the                                                                                                                                                                            | use of this form the user ac               | knowledges      | and agrees with     | the Terms and (        | Conditions as specified o                               | on th       | e adj  | acen           | t wo   | rksh  | veet.               |                 |                 |         |                  |          |          |
| Relinquished Duch M. 110 Date &                                                                                                                                                   | Time: Dec 6/19                             | Received        |                     | Date & Time:           |                                                         | 1           |        |                | S      | mole  | Cond                | lition (l       | ab us           | e only) | ) <b>(201</b> 0) | 2429 A   | Ree room |
| By: Kyun '(1)/C'                                                                                                                                                                  | Time                                       | By:<br>Received |                     |                        | 1 Stropy                                                | _           | Temp   | ratura         | - [    | Samp  | les Re              | eceive          | d in G          | bood    | ~                |          |          |
| By:                                                                                                                                                                               | 1600                                       | Received<br>By: | -                   | Date & 11me:           | - 4-K-2)                                                |             | Þ      |                |        | Cone  | dition'i<br>proviet | 7Y/N<br>Hedidel | i (if<br>talis) | no      |                  |          |          |
|                                                                                                                                                                                   | •                                          |                 | <b>18</b> .1        |                        | - 100                                                   | _           |        | ナ              |        |       |                     |                 |                 |         |                  |          | _        |

-



| Environmental Division          Report to:         Company:       Tetra Tech Canada Inc.         Contact:       Darby Madalena         Address:       110, 140 Quarry Park Blvd : |                                              | Report F        | www.alsglobal.cor   | <u>n</u>               |                                                         |             |        |                |        |       |                     |                  | Page            | , _     | <u>1</u> of      | · _ ·       | 1        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------|---------------------|------------------------|---------------------------------------------------------|-------------|--------|----------------|--------|-------|---------------------|------------------|-----------------|---------|------------------|-------------|----------|
| Report to:<br>Company: Tetra Tech Canada Inc.<br>Contact: Darby Madalena<br>Address: 110, 140 Quarry Park Blvd :                                                                  |                                              | Report F        | ormat / Distributio |                        |                                                         |             |        |                |        |       |                     |                  |                 |         |                  |             | -        |
| Company: Tetra Tech Canada Inc.<br>Contact: Darby Madalena<br>Address: 110, 140 Quarry Park Blvd :                                                                                |                                              | C Stan          |                     | n                      |                                                         | Ser         | vice I | Requ           | este   | d:    | _                   |                  |                 |         | _                |             |          |
| Contact: Darby Madalena<br>Address: 110, 140 Quarry Park Blvd                                                                                                                     |                                              | , Otain         | dard <b>f</b> Other |                        |                                                         | ন           | Reg    | ular S         | Servio | xe (D | )efau               | ult)             |                 |         |                  |             |          |
| Address: 110, 140 Quarry Park Blvd                                                                                                                                                |                                              | PDF             | Excel [             | Fax                    |                                                         | 1-          | Rus    | 1 Ser          | vice   | (2-3  | Days                | s)               |                 |         |                  |             |          |
|                                                                                                                                                                                   | SE, Calgary, AB T2C 3G3                      | Email 1:        | darby.madalena@     | tetratech.com          |                                                         | r           | Prior  | ity Se         | ervice | e (1  | Day                 | or As            | SAP)            |         |                  |             |          |
|                                                                                                                                                                                   |                                              | Emall 2:        |                     |                        |                                                         | ſ-          | Eme    | rgen           | cy Se  | rvice | e (<1               | Day              | / W             | kend    | ) - Co           | ntact /     | ۳.s      |
| Phone: 403-723-6867 Fax:                                                                                                                                                          | 403-203-3301                                 | ALS Digit       | al Crosstab results |                        |                                                         |             |        |                | _      | An    | alys                | is Re            | eupe            | st      |                  |             |          |
| Invoice To: IV Same as Report                                                                                                                                                     |                                              |                 |                     | Indicate Bottle        | s: Filtered / Preserved (F/P) $\rightarrow \rightarrow$ |             |        |                |        |       |                     |                  |                 |         |                  | Т           | Τ        |
| Company: SAME AS REPORT                                                                                                                                                           |                                              | Client / F      | roject Information  | n:                     |                                                         | Γ           |        | Ī              | Т      |       |                     |                  |                 |         |                  |             |          |
| Contact:                                                                                                                                                                          |                                              | Job #:          |                     | SWM.SWOP04             | 071-01.003                                              | ]           |        |                |        |       |                     |                  |                 |         |                  |             |          |
| Address:                                                                                                                                                                          |                                              | PO/AFE:         |                     | SWM.SWOP04             | 071-01.003                                              | ]           |        |                | 히      |       |                     |                  |                 |         |                  | 2           | 2        |
| Sample                                                                                                                                                                            |                                              | Legal Site      | e Description:      |                        |                                                         | 1           |        |                | É      |       |                     |                  |                 |         |                  | ate         |          |
| Phone: Fax:                                                                                                                                                                       |                                              | Quote #:        | Q71650              |                        |                                                         | 1_          |        |                | ₽      | 7     |                     |                  |                 |         |                  | 1           |          |
| Lab Work Order #                                                                                                                                                                  | 121 <sup>20</sup> -18 <sup>-19</sup> -14-1-1 | ALS             | Wendy Sears         | Sampler<br>(initiats): | M                                                       | F2-C        | 260-CI | IJ             | Б      | ORG-0 | ರ                   | Ч<br>Г           | IISA-K          | ٩       |                  | Contar      | of C     |
| *Sample * San                                                                                                                                                                     | ple Identification                           |                 | Date                | Time                   | Sample Type                                             | Ē           | 3      | μ              | 3      | 허     | Б                   | ğ                | ×               | ş       |                  | 2g  ≩       | h a      |
| 孫術# 鄒範 / (This descript                                                                                                                                                           | ion will appear on the report)               |                 | dd-mmm-yy           | hh:mm                  | (Select from drop-down list)                            | E<br>E<br>E | 9      | ξ              | å      | 3     | Ŧ                   | Han I            | 8               | 핏       | :                | <u> 명</u> 물 | <u> </u> |
| 《晋 <b>/ 恶动 MW-01</b>                                                                                                                                                              |                                              |                 | 04-12-19            | 08:05                  | Water                                                   | X           | X      | X              | X      | X     | X                   | X                | X               | X       |                  |             | 12       |
| MW-02                                                                                                                                                                             |                                              |                 | 04-12-19            | 09:45                  | Water                                                   | X           | X      | X              | Х      | X     | Х                   | X                | Х               | X       |                  |             | 12       |
| MW-03                                                                                                                                                                             |                                              |                 | 04-12-19            | 08:55                  | Water                                                   | Х           | X      | X              | X      | x     | Х                   | X                | X               | X       |                  |             | ]/2      |
| ※》 WW-04                                                                                                                                                                          |                                              |                 | 04-12-19            | 08:35                  | Water                                                   | X           | X      | Х              | X      | X     | X                   | x                | Х               | x       |                  |             | 12       |
| MARCON MW-05 DRY                                                                                                                                                                  |                                              |                 |                     |                        | Water                                                   | -X-         | -×-    | - <del>x</del> | -×-    | ×     | -×-                 | -×-              | X               | -X      |                  | 7-          | 77       |
| MW203                                                                                                                                                                             |                                              |                 | 05-12-19            | 0815                   | Water                                                   | Х           | X      | X              | X      | х     | X                   | х                | X               | X       |                  |             | 12       |
| MARKAN AND AND AND AND AND AND AND AND AND A                                                                                                                                      |                                              |                 |                     |                        | <u></u> _                                               |             |        |                |        |       |                     | Î                |                 |         |                  |             | 1        |
| TATION IN CONTRACTOR                                                                                                                                                              |                                              |                 |                     | · ·                    |                                                         |             |        |                |        |       |                     |                  |                 |         | -                |             |          |
| NEW JUNE                                                                                                                                                                          |                                              |                 |                     |                        |                                                         |             |        |                |        |       |                     |                  |                 |         |                  |             | 1-       |
| SET 3.20                                                                                                                                                                          |                                              |                 |                     |                        |                                                         |             |        | - 1            |        |       |                     |                  |                 |         |                  |             |          |
| Guidelines                                                                                                                                                                        | / Regulations                                |                 |                     |                        | Special Instructions                                    | /Ha         | zardo  | ous D          | )etail | 8     |                     |                  |                 |         |                  | _           | <u></u>  |
|                                                                                                                                                                                   |                                              |                 | met                 | JV+F                   | KY DOC                                                  | F           | 12     |                |        |       |                     | _                |                 |         |                  |             |          |
|                                                                                                                                                                                   | Failure to complet                           | e all portion   | s of this form ma   | y delay analysis       | . Please fill in this form                              | LEG         | BLY    | -              |        |       |                     |                  |                 |         |                  |             |          |
| By the                                                                                                                                                                            | use of this form the user ac                 | knowledges      | and agrees with     | the Terms and (        | Conditions as specified o                               | on th       | e adj  | acen           | t wo   | rksh  | veet.               |                  |                 |         |                  |             |          |
| Relinquished Duch M. 110 Date &                                                                                                                                                   | Time: Dec 6/19                               | Received        |                     | Date & Time:           |                                                         | 1           |        |                | S      | mole  | Cond                | lition (l        | ab us           | e only) | ) <b>(201</b> 0) | 2429 A      | Ree room |
| By: Kyun '(1)/C'                                                                                                                                                                  | Time                                         | By:<br>Received |                     |                        | 1 Stropy                                                | _           | Temp   | ratura         | - [    | Samp  | les Re              | eceive           | d in G          | bood    | ~                |             |          |
| By:                                                                                                                                                                               | 1600                                         | Received<br>By: | -                   | Date & 11me:           | - 4-K-2)                                                |             | Þ      |                |        | Cone  | dition'i<br>proviet | 7Y/N<br>Teclidet | i (if<br>talis) | no      |                  |             |          |
|                                                                                                                                                                                   | •                                            |                 | <b>18</b> .1        |                        | - 100                                                   | _           |        | ナ              |        |       |                     |                  |                 |         |                  |             | _        |

-



SOLD TO:

#### TETRA TECH CANADA INC. ATTN: Accounts Payable Suite 110, 140 Quarry Park Blvd SE Calgary AB T2C 3G3

**REPORTED TO:** 

10175

\$2,659.75

\$132.99

TETRA TECH CANADA INC. ATTN:Darby Madalena 110, 140 Quarry Park Blvd SE Calgary AB T2C 3G3 JOB #: SWM.SWOP04071-01.003 Quote #: Q71650

Sub-total:

GST (5%):

| D      | ate      | Account #   | Terms                     | Due Date        | PO N          | umber/Refer   | ence               |
|--------|----------|-------------|---------------------------|-----------------|---------------|---------------|--------------------|
| 20-D   | ec-2019  | 10175       | Net 30 Days               | 19-Jan-2020     | ) SWM         | .SWOP04071-01 | .003               |
| Matrix | Analys   | is          | Description               |                 | Surcharge Qty | Unit Price    | <b>Total Price</b> |
| Water  | AOX-MIS  | A-KL        | Adsorbable Organic Hali   | des             | 5             | \$175.00      | \$875.00           |
| Water  | C-DIS-OR | G-CL        | Dissolved Organic Carbo   | on              | 5             | \$19.35       | \$96.75            |
| Water  | F1,F2-CL |             | F1 (C6-C10) and F2 (>C    | C10-C16)        | 5             | \$52.00       | \$260.00           |
| Water  | NH3-F-CL | -           | Ammonia by Fluorescen     | ce              | 5             | \$6.60        | \$33.00            |
| Water  | P-T-COL- | CL          | Total P in Water by Colo  | ur              | 5             | \$9.00        | \$45.00            |
| Water  | ROU+ME   | Γ_D-ABT1-CL | Major Ions & Trace Diss   | olved Metals    | 5             | \$69.00       | \$345.00           |
| Water  | TKN-F-CL |             | Total Kjeldahl Nitrogen I | by Fluorescence | 5             | \$12.00       | \$60.00            |
| Water  | VFA-WP   |             | Volatile fatty/carboxylic | acids           | 5             | \$115.00      | \$575.00           |
| Water  | VOC-8260 | )-PKG-CL    | EPA 8260 Volatile Organ   | nics            | 5             | \$72.00       | \$360.00           |
| Misc.  | SAMPLE-  | DISPOSAL-CL | Sample Handling and Di    | sposal Fee      | 5             | \$2.00        | \$10.00            |

ALS Work Order Numbers and Receive Dates: L2393410 06-DEC-2019

GST/HST BN 100938885

Total (CAD): \$2,792.74 PRICES REFLECT DISCOUNT

#### **Contact Information:**

Inayat Dhaliwal Phone #: (403) 407-1800 Fax #: (403) 291-0298 CALGARY

Please remit payment to ALS Canada Ltd. at the address below. We accept Visa and Mastercard.

ADDRESS: 2103 Dollarton Hwy. North Vancouver BC V7H 0A7 Canada

ALS CANADA LTD Part of the ALS Group An ALS Limited Company



TETRA TECH CANADA INC. ATTN: Darby Madalena 110, 140 Quarry Park Blvd SE Calgary AB T2C 3G3 Date Received: 06-DEC-19 Report Date: 24-DEC-19 13:35 (MT) Version: FINAL

Client Phone: 403-203-3355

# Certificate of Analysis

Lab Work Order #: L2393598

Project P.O. #: Job Reference: SWM.SWOP04071-01.003 SWM.SWOP04071-01.003 (MCKENZIE TRAILS RECREATION AREA)

C of C Numbers: Legal Site Desc:

rlivol

Inayat Dhaliwal Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 2559 29 Street NE, Calgary, AB T1Y 7B5 Canada | Phone: +1 403 291 9897 | Fax: +1 403 291 0298 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🐊

www.alsglobal.com

**RIGHT SOLUTIONS RIGHT PARTNER** 

# ALS ENVIRONMENTAL ANALYTICAL REPORT

| Sample Details/Parameters                    | Result | Qualifier* | D.L.   | Units          | Extracted | Analyzed  | Batch    |
|----------------------------------------------|--------|------------|--------|----------------|-----------|-----------|----------|
| 2393598-1 V/W-01                             |        |            |        |                |           |           |          |
| Sampled By: MEGAN ROUSE on 03-DEC-19 @ 15:00 |        |            |        |                |           |           |          |
|                                              |        |            |        |                |           |           |          |
| Matrix: 5G                                   |        |            |        |                |           |           |          |
| Alightia Areastic DHC Sub Fractionation      |        |            |        |                |           |           |          |
| Aliphatic C6-C8                              | 17     |            | 15     | ua/m3          |           | 23-DEC-19 | R4953011 |
| Aliphatic C>8-C10                            | <15    |            | 15     | ug/m3          |           | 23-DEC-19 | R4953011 |
| Aliphatic C>10-C12                           | <15    |            | 15     | ug/m3          |           | 23-DEC-19 | R4953011 |
| Aliphatic C>12-C16                           | <30    |            | 30     | ug/m3          |           | 23-DEC-19 | R4953011 |
| Aromatic C>8-C10                             | <15    |            | 15     | ug/m3          |           | 23-DEC-19 | R4953011 |
| Aromatic C>10-C12                            | <15    |            | 15     | ua/m3          |           | 23-DEC-19 | R4953011 |
| Aromatic C>12-C16                            | <30    |            | 30     | ug/m3          |           | 23-DEC-19 | R4953011 |
| Total F1and F2 fractions (not corrected)     |        |            |        | 0              |           |           |          |
| F1 (C6-C10)                                  | 16     |            | 15     | ug/m3          |           | 23-DEC-19 | R4953011 |
| F2 (C10-C16)                                 | <15    |            | 15     | ug/m3          |           | 23-DEC-19 | R4953011 |
| Surrogate: 4-Bromofluorobenzene              | 98.2   |            | 50-150 | %              |           | 23-DEC-19 | R4953011 |
|                                              |        |            |        |                |           |           |          |
| High Level Fixed Gases by TCD                |        |            |        |                |           |           |          |
| Nitrogen                                     | 74.7   |            | 1.0    | %              |           | 13-DEC-19 | R4944389 |
| Oxygen                                       | 19.5   |            | 0.10   | %              |           | 13-DEC-19 | R4944389 |
| Carbon Dioxide                               | 1.76   |            | 0.050  | %              |           | 13-DEC-19 | R4944389 |
| Carbon Monoxide                              | <0.050 |            | 0.050  | %              |           | 13-DEC-19 | R4944389 |
| Methane                                      | <0.050 |            | 0.050  | %              |           | 13-DEC-19 | R4944389 |
| BTEX and Naphthalene                         |        |            |        |                |           |           |          |
| Naphthalene                                  | <2.6   |            | 2.6    | ug/m3          |           | 23-DEC-19 | R4953168 |
| Naphthalene                                  | <0.50  |            | 0.50   | ppb(V)         |           | 23-DEC-19 | R4953168 |
| Surrogate: 4-Bromofluorobenzene              | 96.9   |            | 50-150 | %              |           | 23-DEC-19 | R4953168 |
| Canister EPA TO-15                           |        |            |        |                |           |           |          |
| 1,1,1-Trichloroethane                        | <1.1   |            | 1.1    | ug/m3          |           | 23-DEC-19 | R4953168 |
| 1,1,1-Trichloroethane                        | <0.20  |            | 0.20   | ppb(V)         |           | 23-DEC-19 | R4953168 |
| 1,1,2,2-Tetrachloroethane                    | <1.4   |            | 1.4    | ug/m3          |           | 23-DEC-19 | R4953168 |
| 1,1,2,2-Tetrachloroethane                    | <0.20  |            | 0.20   | ppb(V)         |           | 23-DEC-19 | R4953168 |
| 1,1,2-Trichloroethane                        | <1.1   |            | 1.1    | ug/m3          |           | 23-DEC-19 | R4953168 |
| 1,1,2-Trichloroethane                        | <0.20  |            | 0.20   | ppb(V)         |           | 23-DEC-19 | R4953168 |
| 1,1-Dichloroethane                           | <0.81  |            | 0.81   | ug/m3          |           | 23-DEC-19 | R4953168 |
| 1,1-Dichloroethane                           | <0.20  |            | 0.20   | ppb(V)         |           | 23-DEC-19 | R4953168 |
| 1,1-Dichloroethene                           | <0.79  |            | 0.79   | ug/m3          |           | 23-DEC-19 | R4953168 |
|                                              | <0.20  |            | 0.20   | ppb(V)         |           | 23-DEC-19 | R4953168 |
| 1,2,4-Irichlorobenzene                       | <1.5   |            | 1.5    | ug/m3          |           | 23-DEC-19 | R4953168 |
| 1,2,4- I richlorobenzene                     | <0.20  |            | 0.20   | ppb(v)         |           | 23-DEC-19 | R4953168 |
| 1,2,4-1 methylbenzene                        | <0.98  |            | 0.98   | ug/m3          |           | 23-DEC-19 | R4953168 |
| 1,2,4-1 hmethylbenzene                       | <0.20  |            | 0.20   | ppb(v)         |           | 23-DEC-19 | R4953168 |
| 1,2-Dibromoethane                            | <1.5   |            | 1.5    | ug/m3          |           | 23-DEC-19 | R4953168 |
| 1,2-Dibromoethane                            | <0.20  |            | 0.20   | ppb(v)         |           | 23-DEC-19 | R4953168 |
| 1,2-Dichlorobenzene                          | <1.2   |            | 1.2    | ug/m3          |           | 23-DEC-19 | R4953168 |
| 1,2-Dichlorootenzene                         | <0.20  |            | 0.20   | ppp(v)         |           | 23-DEC-19 | R4953168 |
| 1,2-Dichloroethane                           | <0.81  |            | 0.81   | ug/m3          |           | 23-DEC-19 | R4953168 |
| 1,2-Dichloropenane                           | <0.20  |            | 0.20   | ppp(v)         |           | 23-DEC-19 | R4953168 |
| 1,2-Dichloropropane                          | <0.92  |            | 0.92   | ug/m3          |           | 23-DEC-19 | R4953168 |
| 1.2.5 Trimothulbonzono                       | <0.20  |            | 0.20   | $hhn(\Lambda)$ |           | 23-DEC-19 | R4953168 |
| 1,3,5-Thmethylbenzene                        | <0.98  |            | 0.98   | ug/m3          |           | 23-DEC-19 | R4953168 |
| 1.3.5-Thmethylbenzene                        | <0.20  |            | 0.20   | hhn(v)         |           | 23-DEC-19 | R4953168 |
| 1.3-Dutaulerie                               | <0.44  |            | 0.44   | ug/m3          |           | 23-DEC-19 | R4953168 |
|                                              | <0.20  |            | 0.20   | hhn(v)         |           | 23-DEC-19 | R4953168 |
|                                              | <1.2   |            | 1.2    | ug/m3          |           | 23-DEC-19 | R4953168 |
| I,3-DICNIOFODENZENE                          | <0.20  |            | 0.20   | (V)aqq         |           | 23-DEC-19 | K4953168 |

\* Refer to Referenced Information for Qualifiers (if any) and Methodology.

# ALS ENVIRONMENTAL ANALYTICAL REPORT

| Sample Details/Parameters                    | Result        | Qualifier* | D.L. | Units          | Extracted | Analyzed  | Batch     |
|----------------------------------------------|---------------|------------|------|----------------|-----------|-----------|-----------|
| 1 2202508 1 \/\\/ 01                         |               |            |      |                |           |           |           |
| Sampled By: MEGAN POUSE on 03 DEC 10 @ 15:00 |               |            |      |                |           |           |           |
| Matrix CO                                    |               |            |      |                |           |           |           |
| Matrix: SG                                   |               |            |      |                |           |           |           |
| Canister EPA TO-15                           | .1.0          |            | 4.0  | ug/m2          |           | 22 DEC 10 | D4052469  |
| 1,4-Dichlorobenzene                          | <1.2          |            | 1.2  |                |           | 23-DEC-19 | R4953100  |
|                                              | <0.20         |            | 0.20 | ppp(v)         |           | 23-DEC-19 | R4953166  |
| 1,4-Dioxane                                  | <0.72         |            | 0.72 |                |           | 23-DEC-19 | R4953100  |
| 2-Hevapone                                   | <0.20         |            | 0.20 | php(A)         |           | 23-DEC-19 | R4953100  |
|                                              | <4.1          |            | 4.1  |                |           | 23-DEC-19 | R4903100  |
| 4-Ethyltoluene                               | < 1.0         |            | 0.08 |                |           | 23-DEC-19 | R4953100  |
| 4-Ethyltoluene                               | <0.90         |            | 0.30 | nnh(\/)        |           | 23-DEC-19 | R4953168  |
| Acetone                                      | 23            |            | 1.20 |                |           | 23-DEC-19 | R4953168  |
| Acetone                                      | 2.5           |            | 0.50 |                |           | 23-DEC-19 | R4953168  |
| Allyl chloride                               | 0.00<br>∽0.63 |            | 0.50 |                |           | 23-DEC-19 | R4953168  |
| Allyl chloride                               | <0.03         |            | 0.00 |                |           | 23-DEC-19 | R4953168  |
| Benzene                                      | <0.20         |            | 0.20 | ug/m3          |           | 23-DEC-19 | R4953168  |
| Benzene                                      | <0.20         |            | 0.04 | ppb(V)         |           | 23-DEC-19 | R4953168  |
| Benzyl chloride                              | <1.0          |            | 1.0  | ug/m3          |           | 23-DEC-19 | R4953168  |
| Benzyl chloride                              | <0.20         |            | 0.20 | ppb(V)         |           | 23-DEC-19 | R4953168  |
| Bromodichloromethane                         | <1.3          |            | 1.3  | ug/m3          |           | 23-DEC-19 | R4953168  |
| Bromodichloromethane                         | <0.20         |            | 0.20 | ppb(V)         |           | 23-DEC-19 | R4953168  |
| Bromoform                                    | <2.1          |            | 2.1  | ua/m3          |           | 23-DEC-19 | R4953168  |
| Bromoform                                    | <0.20         |            | 0.20 | (V)dqq         |           | 23-DEC-19 | R4953168  |
| Bromomethane                                 | <0.78         |            | 0.78 | ua/m3          |           | 23-DEC-19 | R4953168  |
| Bromomethane                                 | <0.20         |            | 0.20 | (V)dqq         |           | 23-DEC-19 | R4953168  |
| Carbon Disulfide                             | <0.62         |            | 0.62 | ug/m3          |           | 23-DEC-19 | R4953168  |
| Carbon Disulfide                             | <0.20         |            | 0.20 | (V)dqq         |           | 23-DEC-19 | R4953168  |
| Carbon Tetrachloride                         | <1.3          |            | 1.3  | ug/m3          |           | 23-DEC-19 | R4953168  |
| Carbon Tetrachloride                         | <0.20         |            | 0.20 | ppb(V)         |           | 23-DEC-19 | R4953168  |
| Chlorobenzene                                | <0.92         |            | 0.92 | ug/m3          |           | 23-DEC-19 | R4953168  |
| Chlorobenzene                                | <0.20         |            | 0.20 | ppb(V)         |           | 23-DEC-19 | R4953168  |
| Chloroethane                                 | <0.53         |            | 0.53 | ug/m3          |           | 23-DEC-19 | R4953168  |
| Chloroethane                                 | <0.20         |            | 0.20 | ppb(V)         |           | 23-DEC-19 | R4953168  |
| Chloroform                                   | <0.98         |            | 0.98 | ug/m3          |           | 23-DEC-19 | R4953168  |
| Chloroform                                   | <0.20         |            | 0.20 | ppb(V)         |           | 23-DEC-19 | R4953168  |
| Chloromethane                                | <0.41         |            | 0.41 | ug/m3          |           | 23-DEC-19 | R4953168  |
| Chloromethane                                | <0.20         |            | 0.20 | ppb(V)         |           | 23-DEC-19 | R4953168  |
| cis-1,2-Dichloroethene                       | <0.79         |            | 0.79 | ug/m3          |           | 23-DEC-19 | R4953168  |
| cis-1,2-Dichloroethene                       | <0.20         |            | 0.20 | ppb(V)         |           | 23-DEC-19 | R4953168  |
| cis-1,3-Dichloropropene                      | <0.91         |            | 0.91 | ug/m3          |           | 23-DEC-19 | R4953168  |
| cis-1,3-Dichloropropene                      | <0.20         |            | 0.20 | ppb(V)         |           | 23-DEC-19 | R4953168  |
| Cyclohexane                                  | <0.69         |            | 0.69 | ug/m3          |           | 23-DEC-19 | R4953168  |
| Cyclohexane                                  | <0.20         |            | 0.20 | ppb(V)         |           | 23-DEC-19 | R4953168  |
| Dibromochloromethane                         | <1.7          |            | 1.7  | ug/m3          |           | 23-DEC-19 | R4953168  |
| Dibromochloromethane                         | <0.20         |            | 0.20 | ppb(V)         |           | 23-DEC-19 | R4953168  |
| Dichlorodifluoromethane                      | 1.89          |            | 0.99 | ug/m3          |           | 23-DEC-19 | R4953168  |
| Dicnioroainuoromethane                       | 0.38          |            | 0.20 | ppb(V)         |           | 23-DEC-19 | R4953168  |
| Ethyl acetate                                | <0.72         |            | 0.72 | ug/m3          |           | 23-DEC-19 | R4953168  |
| Ethylacetate                                 | <0.20         |            | 0.20 | ppp(V)         |           | 23-DEC-19 | K4953168  |
| Ethylbenzene                                 | <0.87         |            | 0.87 | ug/m3          |           | 23-DEC-19 | K4953168  |
|                                              | <0.20         |            | 0.20 | (V)            |           | 23-DEC-19 | R4953168  |
| Freen 113                                    | <1.5          |            | 1.5  | ug/m3          |           | 23-DEC-19 | R4953168  |
| Freen 114                                    | <0.20         |            | 0.20 | $hhn(\Lambda)$ |           | 23-DEC-19 | R4903100  |
|                                              | <1.4          |            | 1.4  | uy/mo          |           | 20-020-19 | 114900100 |

\* Refer to Referenced Information for Qualifiers (if any) and Methodology.

# ALS ENVIRONMENTAL ANALYTICAL REPORT

| Sample Details/Parameters           |               | Result | Qualifier* | D.L.   | Units               | Extracted | Analyzed  | Batch    |
|-------------------------------------|---------------|--------|------------|--------|---------------------|-----------|-----------|----------|
| 1 2202508 1                         | V/W/ 01       |        |            |        |                     |           |           |          |
| Sampled By:                         |               |        |            |        |                     |           |           |          |
| Matrice                             |               |        |            |        |                     |           |           |          |
|                                     |               |        |            |        |                     |           |           |          |
| Canister EPA 10-15<br>Freen 114     |               | ~0.20  |            | 0.20   | nnh()/)             |           | 23-DEC-10 | P4053169 |
| Hexachlorobutadiene                 |               | <0.20  |            | 0.20   | hbn(s)              |           | 23-DEC-19 | R4953168 |
| Hexachlorobutadiene                 |               | <0.20  |            | 0.20   |                     |           | 23-DEC-19 | R4953168 |
| Isooctane                           |               | <0.20  |            | 0.20   | ua/m3               |           | 23-DEC-19 | R4953168 |
| Isooctane                           |               | <0.33  |            | 0.00   | nnh(V)              |           | 23-DEC-19 | R4953168 |
| Isopropyl alcohol                   |               | <2.5   |            | 2.5    | ua/m3               |           | 23-DEC-19 | R4953168 |
| Isopropyl alcohol                   |               | <1.0   |            | 1.0    | ppb(V)              |           | 23-DEC-19 | R4953168 |
| Isopropylbenzene                    |               | <0.98  |            | 0.98   | ua/m3               |           | 23-DEC-19 | R4953168 |
| Isopropylbenzene                    |               | <0.20  |            | 0.20   | ppb(V)              |           | 23-DEC-19 | R4953168 |
| m&p-Xylene                          |               | <1.7   |            | 1.7    | ua/m3               |           | 23-DEC-19 | R4953168 |
| m&p-Xylene                          |               | <0.40  |            | 0.40   | (V)daa              |           | 23-DEC-19 | R4953168 |
| Methyl ethyl ketone                 |               | <0.59  |            | 0.59   | ug/m3               |           | 23-DEC-19 | R4953168 |
| Methyl ethyl ketone                 |               | <0.20  |            | 0.20   | ppb(V)              |           | 23-DEC-19 | R4953168 |
| Methyl isobutyl ketone              |               | <0.82  |            | 0.82   | ug/m3               |           | 23-DEC-19 | R4953168 |
| Methyl isobutyl ketone              |               | <0.20  |            | 0.20   | ppb(V)              |           | 23-DEC-19 | R4953168 |
| Methylene chloride                  |               | <0.69  |            | 0.69   | ug/m3               |           | 23-DEC-19 | R4953168 |
| Methylene chloride                  |               | <0.20  |            | 0.20   | ppb(V)              |           | 23-DEC-19 | R4953168 |
| MTBE                                |               | <0.72  |            | 0.72   | ug/m3               |           | 23-DEC-19 | R4953168 |
| МТВЕ                                |               | <0.20  |            | 0.20   | ppb(V)              |           | 23-DEC-19 | R4953168 |
| n-Heptane                           |               | <0.82  |            | 0.82   | ug/m3               |           | 23-DEC-19 | R4953168 |
| n-Heptane                           |               | <0.20  |            | 0.20   | ppb(V)              |           | 23-DEC-19 | R4953168 |
| n-Hexane                            |               | <0.70  |            | 0.70   | ug/m3               |           | 23-DEC-19 | R4953168 |
| n-Hexane                            |               | <0.20  |            | 0.20   | ppb(V)              |           | 23-DEC-19 | R4953168 |
| o-Xylene                            |               | <0.87  |            | 0.87   | ug/m3               |           | 23-DEC-19 | R4953168 |
| o-Xylene                            |               | <0.20  |            | 0.20   | ppb(V)              |           | 23-DEC-19 | R4953168 |
| Propylene                           |               | <0.34  |            | 0.34   | ug/m3               |           | 23-DEC-19 | R4953168 |
| Propylene                           |               | <0.20  |            | 0.20   | ppb(V)              |           | 23-DEC-19 | R4953168 |
| Styrene                             |               | <0.85  |            | 0.85   | ug/m3               |           | 23-DEC-19 | R4953168 |
| Styrene                             |               | <0.20  |            | 0.20   | ppb(V)              |           | 23-DEC-19 | R4953168 |
| Tetrachloroethylene                 |               | <1.4   |            | 1.4    | ug/m3               |           | 23-DEC-19 | R4953168 |
| Tetrachloroethylene                 |               | <0.20  |            | 0.20   | ppb(V)              |           | 23-DEC-19 | R4953168 |
| I etrahydrofuran                    |               | <0.59  |            | 0.59   | ug/m3               |           | 23-DEC-19 | R4953168 |
| l etrahydrofuran                    |               | <0.20  |            | 0.20   | ppb(V)              |           | 23-DEC-19 | R4953168 |
| Toluene                             |               | <0.75  |            | 0.75   | ug/m3               |           | 23-DEC-19 | R4953168 |
|                                     |               | <0.20  |            | 0.20   | ppb(V)              |           | 23-DEC-19 | R4953168 |
| trans-1,2-Dichloroethene            |               | <0.79  |            | 0.79   | ug/m3               |           | 23-DEC-19 | R4953168 |
|                                     |               | <0.20  |            | 0.20   | ppb(V)              |           | 23-DEC-19 | R4953168 |
| trans-1,3-Did                       | chioropropene | <0.91  |            | 0.91   | ug/m3               |           | 23-DEC-19 | R4953168 |
| trans-1,3-Dic                       | chioropropene | <0.20  |            | 0.20   | ppb(V)              |           | 23-DEC-19 | R4953168 |
| Trichloroethylene                   |               | <1.1   |            | 1.1    | ug/m3               |           | 23-DEC-19 | R4953168 |
| Trichlorofluoromethane              |               | <0.20  |            | 0.20   | ppp(v)              |           | 23-DEC-19 | R4953168 |
| Trichlorofluoromethana              |               | <1.1   |            | 1.1    | ug/m3               |           | 23-DEC-19 | R4953168 |
|                                     |               | <0.20  |            | 0.20   | ppp(v)              |           | 23-DEC-19 | R4953168 |
| Vinyl acetate                       |               | < 1.0  |            | 1.0    | nph()/)             |           | 23-DEC-19 | R4900100 |
| Vinvl bromide                       |               | <0.50  |            | 0.50   | hbp( <sub>A</sub> ) |           | 23-DEC-19 | R4953168 |
| Vinvl bromide                       |               | <0.07  |            | 0.07   | nnh(\/)             |           | 23-DEC-19 | R4953168 |
| Vinyl chloride                      |               | ~0.20  |            | 0.20   | hbp(s)              |           | 23-DEC-19 | R4953168 |
| Vinvl chloride                      |               | ~0.01  |            | 0.01   | pph(\/)             |           | 23-DEC-19 | R4953168 |
| Surrogate: 4-Bromofluorobenzene     |               | 96.9   |            | 50-150 | %                   |           | 23-DEC-19 | R4953168 |
| Sum of Xylene Isomer Concentrations |               | 00.0   |            | 00 100 |                     |           | ,         |          |
|                                     |               |        |            |        |                     |           |           |          |

\* Refer to Referenced Information for Qualifiers (if any) and Methodology.
| Sample Details/Parameters                    | Result     | Qualifier* | D.L.    | Units  | Extracted | Analyzed  | Batch    |
|----------------------------------------------|------------|------------|---------|--------|-----------|-----------|----------|
| L 2393598-1 V/W-01                           |            |            |         |        |           |           |          |
| Sampled By: MEGAN ROUSE on 03-DEC-19 @ 15:00 |            |            |         |        |           |           |          |
| Matrix: SG                                   |            |            |         |        |           |           |          |
| Sum of Xylene Isomer Concentrations          |            |            |         |        |           |           |          |
| Xylenes (Total)                              | <0.45      |            | 0.45    | ppb(V) |           | 23-DEC-19 |          |
| Xylenes (Total)                              | <2.0       |            | 2.0     | ug/m3  |           | 23-DEC-19 |          |
| Select list of 7 C1-C5 hydrocarbon gases     |            |            |         | -      |           |           |          |
| Methane                                      | 0.00017    |            | 0.00010 | %      |           | 10-DEC-19 | R4944650 |
| Ethane                                       | <0.00020   |            | 0.00020 | %      |           | 10-DEC-19 | R4944650 |
| Ethene                                       | <0.00020   |            | 0.00020 | %      |           | 10-DEC-19 | R4944650 |
| Propane                                      | <0.00020   |            | 0.00020 | %      |           | 10-DEC-19 | R4944650 |
| Propene                                      | <0.00020   |            | 0.00020 | %      |           | 10-DEC-19 | R4944650 |
| Butane                                       | <0.00020   |            | 0.00020 | %      |           | 10-DEC-19 | R4944650 |
| Pentane<br>Conjeten Information              | <0.00020   |            | 0.00020 | %      |           | 10-DEC-19 | R4944650 |
| Pressure on Receipt                          | -9.2       |            | -30     | in Ha  | 17-DEC-19 | 17-DEC-19 | R4944737 |
| Canister ID                                  | 01400-0340 |            | -00     | innig  | 17-DEC-19 | 17-DEC-19 | R4944737 |
| Regulator ID                                 | G169       |            |         |        | 17-DEC-19 | 17-DEC-19 | R4944737 |
| Batch Proof ID                               | 191119.123 |            |         |        | 17-DEC-19 | 17-DEC-19 | R4944737 |
|                                              |            |            |         |        |           |           |          |

| Sample Details  | /Parameters                      | Result    | Qualifier* | D.L.   | Units      | Extracted | Analyzed  | Batch     |
|-----------------|----------------------------------|-----------|------------|--------|------------|-----------|-----------|-----------|
| 1 2202508 2     |                                  |           |            |        |            |           |           |           |
| L2393596-2      |                                  |           |            |        |            |           |           |           |
| Sampled By:     | MEGAN ROUSE on 03-DEC-19 @ 12:00 |           |            |        |            |           |           |           |
| Matrix:         | SG                               |           |            |        |            |           |           |           |
|                 | F2+ Sub Fractionation            |           |            |        |            |           |           |           |
| Aliphatic Co.   | Omatic PHC Sub-Fractionation     | 20        |            | 15     | ua/m3      |           | 23-DEC-10 | P4052011  |
|                 | -C6<br>8-C10                     | 29        |            | 15     | ug/m3      |           | 23-DEC-19 | R4953011  |
| Aliphatic C>    | 10-012                           | 41<br>~15 |            | 15     | ug/m3      |           | 23-DEC-19 | R4953011  |
| Aliphatic C>    | 12-C16                           | <10       |            | 30     | ug/m3      |           | 23-DEC-19 | R4953011  |
| Aromatic C>     | 8-C10                            | <15       |            | 15     | ug/m3      |           | 23-DEC-19 | R4953011  |
| Aromatic C>     | 10-C12                           | <15       |            | 15     | ug/m3      |           | 23-DEC-19 | R4953011  |
| Aromatic C>     | 12-C16                           | <30       |            | 30     | ua/m3      |           | 23-DEC-19 | R4953011  |
| Total F1and     | F2 fractions (not corrected)     |           |            |        | - <b>J</b> |           |           |           |
| F1 (C6-C10)     |                                  | 62        |            | 15     | ug/m3      |           | 23-DEC-19 | R4953011  |
| F2 (C10-C16     | 3)                               | <15       |            | 15     | ug/m3      |           | 23-DEC-19 | R4953011  |
| Surrogate: 4    | -Bromofluorobenzene              | 98.6      |            | 50-150 | %          |           | 23-DEC-19 | R4953011  |
|                 |                                  |           |            |        |            |           |           |           |
| High Level      | Fixed Gases by TCD               |           |            |        |            |           |           |           |
| Nitrogen        |                                  | 75.8      |            | 1.0    | %          |           | 12-DEC-19 | R4944389  |
| Oxygen          |                                  | 20.1      |            | 0.10   | %          |           | 12-DEC-19 | R4944389  |
| Carbon Diox     | ide                              | 1.73      |            | 0.050  | %          |           | 12-DEC-19 | R4944389  |
| Carbon Mon      | oxide                            | <0.050    |            | 0.050  | %          |           | 12-DEC-19 | R4944389  |
| Methane         |                                  | <0.050    |            | 0.050  | %          |           | 12-DEC-19 | R4944389  |
| BTEX and N      | laphthalene                      |           |            |        |            |           |           |           |
| Naphthalene     |                                  | <2.6      |            | 2.6    | ug/m3      |           | 23-DEC-19 | R4953168  |
| Naphthalene     |                                  | <0.50     |            | 0.50   | ppb(V)     |           | 23-DEC-19 | R4953168  |
| Surrogate: 4    | -Bromofluorobenzene              | 96.3      |            | 50-150 | %          |           | 23-DEC-19 | R4953168  |
| Canister EP     | A TO-15                          |           |            |        |            |           |           | D 4050400 |
| 1,1,1-1 richio  | roethane                         | <1.1      |            | 1.1    | ug/m3      |           | 23-DEC-19 | R4953168  |
| 1, 1, 1-1 HCHIO |                                  | <0.20     |            | 0.20   | hbp(v)     |           | 23-DEC-19 | R4953168  |
| 1,1,2,2-Tella   |                                  | <1.4      |            | 1.4    | ug/III3    |           | 23-DEC-19 | R4953100  |
| 1,1,2,2-1602    | roethane                         | <0.20     |            | 0.20   | hbn(s)     |           | 23-DEC-19 | R4953100  |
| 1,1,2-Trichlo   | roethane                         | < 1.1     |            | 0.20   | nph(\/)    |           | 23-DEC-19 | R4953100  |
| 1,1,2 Thenio    | ethane                           | <0.20     |            | 0.20   | ua/m3      |           | 23-DEC-19 | R4953168  |
| 1 1-Dichloro    | ethane                           | <0.01     |            | 0.01   | nnh(\/)    |           | 23-DEC-19 | R4953168  |
| 1.1-Dichloro    | ethene                           | <0.79     |            | 0.79   | ua/m3      |           | 23-DEC-19 | R4953168  |
| 1.1-Dichloro    | ethene                           | <0.20     |            | 0.20   | ppb(V)     |           | 23-DEC-19 | R4953168  |
| 1.2.4-Trichlo   | robenzene                        | <1.5      |            | 1.5    | ua/m3      |           | 23-DEC-19 | R4953168  |
| 1,2,4-Trichlo   | robenzene                        | <0.20     |            | 0.20   | ppb(V)     |           | 23-DEC-19 | R4953168  |
| 1,2,4-Trimet    | hylbenzene                       | <0.98     |            | 0.98   | ug/m3      |           | 23-DEC-19 | R4953168  |
| 1,2,4-Trimet    | hylbenzene                       | <0.20     |            | 0.20   | ppb(V)     |           | 23-DEC-19 | R4953168  |
| 1,2-Dibromo     | ethane                           | <1.5      |            | 1.5    | ug/m3      |           | 23-DEC-19 | R4953168  |
| 1,2-Dibromo     | ethane                           | <0.20     |            | 0.20   | ppb(V)     |           | 23-DEC-19 | R4953168  |
| 1,2-Dichloro    | benzene                          | <1.2      |            | 1.2    | ug/m3      |           | 23-DEC-19 | R4953168  |
| 1,2-Dichloro    | benzene                          | <0.20     |            | 0.20   | ppb(V)     |           | 23-DEC-19 | R4953168  |
| 1,2-Dichloro    | ethane                           | <0.81     |            | 0.81   | ug/m3      |           | 23-DEC-19 | R4953168  |
| 1,2-Dichloro    | ethane                           | <0.20     |            | 0.20   | ppb(V)     |           | 23-DEC-19 | R4953168  |
| 1,2-Dichloro    | propane                          | <0.92     |            | 0.92   | ug/m3      |           | 23-DEC-19 | R4953168  |
| 1,2-Dichloro    | propane                          | <0.20     |            | 0.20   | ppb(V)     |           | 23-DEC-19 | R4953168  |
| 1,3,5-Trimet    | hylbenzene                       | <0.98     |            | 0.98   | ug/m3      |           | 23-DEC-19 | R4953168  |
| 1,3,5-Trimet    | hylbenzene                       | <0.20     |            | 0.20   | ppb(V)     |           | 23-DEC-19 | R4953168  |
| 1,3-Butadier    | le                               | <0.44     |            | 0.44   | ug/m3      |           | 23-DEC-19 | R4953168  |
| 1,3-Butadier    | ie                               | <0.20     |            | 0.20   | ppb(V)     |           | 23-DEC-19 | R4953168  |
| 1,3-Dichloro    | benzene                          | <1.2      |            | 1.2    | ug/m3      |           | 23-DEC-19 | R4953168  |
| 1,3-Dichloro    | benzene                          | <0.20     |            | 0.20   | ppb(V)     |           | 23-DEC-19 | R4953168  |

| Sample Details/Parameters                    | Result | Qualifier* | D.L. | Units   | Extracted | Analyzed  | Batch    |
|----------------------------------------------|--------|------------|------|---------|-----------|-----------|----------|
| 1 2202508 2 1001 1001                        |        |            |      |         |           |           |          |
| Sampled By: MEGAN POUSE on 03 DEC 10 @ 12:00 |        |            |      |         |           |           |          |
| Sampled By. MEGAN ROOSE ON 05-DEC-19 @ 12.00 |        |            |      |         |           |           |          |
| Matrix: SG                                   |        |            |      |         |           |           |          |
| Canister EPA 10-15                           | -1.0   |            | 10   | ua/m2   |           | 22 DEC 10 | D4052169 |
| 1,4-Dichlorobenzene                          | < 1.2  |            | 0.20 | nnh(\/) |           | 23-DEC-19 | R4953100 |
| 1 4-Dioxane                                  | <0.20  |            | 0.20 | hbn(s)  |           | 23-DEC-19 | R4953168 |
| 1 4-Dioxane                                  | <0.72  |            | 0.72 | nnh(V)  |           | 23-DEC-19 | R4953168 |
| 2-Hexanone                                   | <0.20  |            | 4 1  | ua/m3   |           | 23-DEC-19 | R4953168 |
| 2-Hexanone                                   | <10    |            | 1.0  | ppb(V)  |           | 23-DEC-19 | R4953168 |
| 4-Ethyltoluene                               | <0.98  |            | 0.98 | ua/m3   |           | 23-DEC-19 | R4953168 |
| 4-Ethyltoluene                               | <0.20  |            | 0.20 | (V)daa  |           | 23-DEC-19 | R4953168 |
| Acetone                                      | 3.5    |            | 1.2  | ua/m3   |           | 23-DEC-19 | R4953168 |
| Acetone                                      | 1.47   |            | 0.50 | (V)dqq  |           | 23-DEC-19 | R4953168 |
| Allyl chloride                               | <0.63  |            | 0.63 | ug/m3   |           | 23-DEC-19 | R4953168 |
| Allyl chloride                               | <0.20  |            | 0.20 | ppb(V)  |           | 23-DEC-19 | R4953168 |
| Benzene                                      | <0.64  |            | 0.64 | ug/m3   |           | 23-DEC-19 | R4953168 |
| Benzene                                      | <0.20  |            | 0.20 | ppb(V)  |           | 23-DEC-19 | R4953168 |
| Benzyl chloride                              | <1.0   |            | 1.0  | ug/m3   |           | 23-DEC-19 | R4953168 |
| Benzyl chloride                              | <0.20  |            | 0.20 | ppb(V)  |           | 23-DEC-19 | R4953168 |
| Bromodichloromethane                         | <1.3   |            | 1.3  | ug/m3   |           | 23-DEC-19 | R4953168 |
| Bromodichloromethane                         | <0.20  |            | 0.20 | ppb(V)  |           | 23-DEC-19 | R4953168 |
| Bromoform                                    | <2.1   |            | 2.1  | ug/m3   |           | 23-DEC-19 | R4953168 |
| Bromoform                                    | <0.20  |            | 0.20 | ppb(V)  |           | 23-DEC-19 | R4953168 |
| Bromomethane                                 | <0.78  |            | 0.78 | ug/m3   |           | 23-DEC-19 | R4953168 |
| Bromomethane                                 | <0.20  |            | 0.20 | ppb(V)  |           | 23-DEC-19 | R4953168 |
| Carbon Disulfide                             | <0.62  |            | 0.62 | ug/m3   |           | 23-DEC-19 | R4953168 |
| Carbon Disulfide                             | <0.20  |            | 0.20 | ppb(V)  |           | 23-DEC-19 | R4953168 |
| Carbon Tetrachloride                         | <1.3   |            | 1.3  | ug/m3   |           | 23-DEC-19 | R4953168 |
| Carbon Tetrachloride                         | <0.20  |            | 0.20 | ppb(V)  |           | 23-DEC-19 | R4953168 |
| Chlorobenzene                                | <0.92  |            | 0.92 | ug/m3   |           | 23-DEC-19 | R4953168 |
| Chlorobenzene                                | <0.20  |            | 0.20 | ppb(V)  |           | 23-DEC-19 | R4953168 |
| Chloroethane                                 | <0.53  |            | 0.53 | ug/m3   |           | 23-DEC-19 | R4953168 |
| Chloroethane                                 | <0.20  |            | 0.20 | ppb(V)  |           | 23-DEC-19 | R4953168 |
| Chloroform                                   | <0.98  |            | 0.98 | ug/m3   |           | 23-DEC-19 | R4953168 |
| Chlorotorm                                   | <0.20  |            | 0.20 | ppb(V)  |           | 23-DEC-19 | R4953168 |
| Chloromethane                                | <0.41  |            | 0.41 | ug/m3   |           | 23-DEC-19 | R4953168 |
| chioromethane                                | <0.20  |            | 0.20 | ppb(V)  |           | 23-DEC-19 | R4953168 |
| cis 1.2 Dichloroothono                       | <0.79  |            | 0.79 | ug/m3   |           | 23-DEC-19 | R4953168 |
| cis-1,2-Dichloropropene                      | <0.20  |            | 0.20 | hbn(s)  |           | 23-DEC-19 | R4953100 |
| cis-1,3-Dichloropropene                      | <0.91  |            | 0.91 | ug/III3 |           | 23-DEC-19 | R4953100 |
| Cyclohexane                                  | <0.20  |            | 0.20 | hbn(s)  |           | 23-DEC-19 | R4953168 |
| Cyclohexane                                  | <0.09  |            | 0.09 | nnh(\/) |           | 23-DEC-19 | R4953168 |
| Dibromochloromethane                         | <17    |            | 17   | ua/m3   |           | 23-DEC-19 | R4953168 |
| Dibromochloromethane                         | <0.20  |            | 0.20 | nnh(V)  |           | 23-DEC-19 | R4953168 |
| Dichlorodifluoromethane                      | 2 40   |            | 0.20 | ug/m3   |           | 23-DEC-19 | R4953168 |
| Dichlorodifluoromethane                      | 0.49   |            | 0.00 | ppb(V)  |           | 23-DEC-19 | R4953168 |
| Ethyl acetate                                | <0.72  |            | 0.72 | ua/m3   |           | 23-DEC-19 | R4953168 |
| Ethyl acetate                                | <0.20  |            | 0.20 | ppb(V)  |           | 23-DEC-19 | R4953168 |
| Ethylbenzene                                 | <0.87  |            | 0.87 | ug/m3   |           | 23-DEC-19 | R4953168 |
| Ethylbenzene                                 | <0.20  |            | 0.20 | ppb(V)  |           | 23-DEC-19 | R4953168 |
| Freon 113                                    | <1.5   |            | 1.5  | ug/m3   |           | 23-DEC-19 | R4953168 |
| Freon 113                                    | <0.20  |            | 0.20 | ppb(V)  |           | 23-DEC-19 | R4953168 |
| Freon 114                                    | <1.4   |            | 1.4  | ug/m3   |           | 23-DEC-19 | R4953168 |
|                                              |        |            |      | -       |           |           |          |

| Sample Details/Param | neters                        | Result | Qualifier* | D.L.   | Units          | Extracted | Analyzed  | Batch    |
|----------------------|-------------------------------|--------|------------|--------|----------------|-----------|-----------|----------|
| 1 2202508 2 10011    | ID01                          |        |            |        |                |           |           |          |
| Sempled By: MEC      |                               |        |            |        |                |           |           |          |
|                      | AN ROUSE OF 05-DEC-19 @ 12.00 |        |            |        |                |           |           |          |
| Matrix: SG           | -                             |        |            |        |                |           |           |          |
| Canister EPA TO-1    | 15                            | -0.20  |            | 0.00   | nnh(1/)        |           | 22 DEC 10 | D4052469 |
| Hevachlorobutadier   |                               | <0.20  |            | 0.20   | hbn(s)         |           | 23-DEC-19 | R4953100 |
| Hexachlorobutadier   |                               | <2.1   |            | 0.20   | nnh(\/)        |           | 23-DEC-19 | R4953168 |
| Isooctane            |                               | <0.20  |            | 0.20   | hbp()<br>nu/m3 |           | 23-DEC-19 | R4953168 |
| Isooctane            |                               | <0.00  |            | 0.00   | nnh(\/)        |           | 23-DEC-19 | R4953168 |
| Isopropyl alcohol    |                               | <2.5   |            | 2.5    | ua/m3          |           | 23-DEC-19 | R4953168 |
| Isopropyl alcohol    |                               | <1.0   |            | 1.0    | ppb(V)         |           | 23-DEC-19 | R4953168 |
| Isopropylbenzene     |                               | <0.98  |            | 0.98   | uq/m3          |           | 23-DEC-19 | R4953168 |
| Isopropylbenzene     |                               | <0.20  |            | 0.20   | ppb(V)         |           | 23-DEC-19 | R4953168 |
| m&p-Xylene           |                               | 6.0    |            | 1.7    | ug/m3          |           | 23-DEC-19 | R4953168 |
| m&p-Xylene           |                               | 1.38   |            | 0.40   | ppb(V)         |           | 23-DEC-19 | R4953168 |
| Methyl ethyl ketone  |                               | <0.59  |            | 0.59   | ug/m3          |           | 23-DEC-19 | R4953168 |
| Methyl ethyl ketone  |                               | <0.20  |            | 0.20   | ppb(V)         |           | 23-DEC-19 | R4953168 |
| Methyl isobutyl keto | one                           | <0.82  |            | 0.82   | ug/m3          |           | 23-DEC-19 | R4953168 |
| Methyl isobutyl keto | one                           | <0.20  |            | 0.20   | ppb(V)         |           | 23-DEC-19 | R4953168 |
| Methylene chloride   |                               | <0.69  |            | 0.69   | ug/m3          |           | 23-DEC-19 | R4953168 |
| Methylene chloride   |                               | <0.20  |            | 0.20   | ppb(V)         |           | 23-DEC-19 | R4953168 |
| MTBE                 |                               | <0.72  |            | 0.72   | ug/m3          |           | 23-DEC-19 | R4953168 |
| MTBE                 |                               | <0.20  |            | 0.20   | ppb(V)         |           | 23-DEC-19 | R4953168 |
| n-Heptane            |                               | <0.82  |            | 0.82   | ug/m3          |           | 23-DEC-19 | R4953168 |
| n-Heptane            |                               | <0.20  |            | 0.20   | ppb(V)         |           | 23-DEC-19 | R4953168 |
| n-Hexane             |                               | <0.70  |            | 0.70   | ug/m3          |           | 23-DEC-19 | R4953168 |
| n-Hexane             |                               | <0.20  |            | 0.20   | ppb(V)         |           | 23-DEC-19 | R4953168 |
| o-Xylene             |                               | 1.38   |            | 0.87   | ug/m3          |           | 23-DEC-19 | R4953168 |
| o-Xylene             |                               | 0.32   |            | 0.20   | ppb(V)         |           | 23-DEC-19 | R4953168 |
| Propylene            |                               | <0.34  |            | 0.34   | ug/m3          |           | 23-DEC-19 | R4953168 |
| Propylene            |                               | <0.20  |            | 0.20   | ppb(V)         |           | 23-DEC-19 | R4953168 |
| Styrene              |                               | <0.85  |            | 0.85   | ug/m3          |           | 23-DEC-19 | R4953168 |
| Styrene              |                               | <0.20  |            | 0.20   | ppb(V)         |           | 23-DEC-19 | R4953168 |
| Tetrachioroethylene  |                               | <1.4   |            | 1.4    | ug/m3          |           | 23-DEC-19 | R4953168 |
| Tetrabydrofuran      | -                             | <0.20  |            | 0.20   | hhn(n)         |           | 23-DEC-19 | R4953100 |
| Tetrahydrofuran      |                               | <0.59  |            | 0.59   | ug/III3        |           | 23-DEC-19 | R4903100 |
| Toluene              |                               | <0.20  |            | 0.20   | hbn(s)         |           | 23-DEC-19 | R4953100 |
| Toluene              |                               | 0.71   |            | 0.75   | nnh(\/)        |           | 23-DEC-19 | R4953168 |
| trans-1.2-Dichloroet | thene                         | <0.79  |            | 0.20   | ua/m3          |           | 23-DEC-19 | R4953168 |
| trans-1,2-Dichloroet | thene                         | <0.75  |            | 0.75   | nph(\/)        |           | 23-DEC-19 | R4953168 |
| trans-1.3-Dichlorop  | ropene                        | <0.91  |            | 0.91   | ua/m3          |           | 23-DEC-19 | R4953168 |
| trans-1,3-Dichlorop  | ropene                        | <0.20  |            | 0.20   | (V)dqq         |           | 23-DEC-19 | R4953168 |
| Trichloroethylene    |                               | <1.1   |            | 1.1    | ua/m3          |           | 23-DEC-19 | R4953168 |
| Trichloroethylene    |                               | <0.20  |            | 0.20   | ppb(V)         |           | 23-DEC-19 | R4953168 |
| Trichlorofluorometh  | lane                          | <1.1   |            | 1.1    | ug/m3          |           | 23-DEC-19 | R4953168 |
| Trichlorofluorometh  | lane                          | <0.20  |            | 0.20   | ppb(V)         |           | 23-DEC-19 | R4953168 |
| Vinyl acetate        |                               | <1.8   |            | 1.8    | ug/m3          |           | 23-DEC-19 | R4953168 |
| Vinyl acetate        |                               | <0.50  |            | 0.50   | ppb(V)         |           | 23-DEC-19 | R4953168 |
| Vinyl bromide        |                               | <0.87  |            | 0.87   | ug/m3          |           | 23-DEC-19 | R4953168 |
| Vinyl bromide        |                               | <0.20  |            | 0.20   | ppb(V)         |           | 23-DEC-19 | R4953168 |
| Vinyl chloride       |                               | <0.51  |            | 0.51   | ug/m3          |           | 23-DEC-19 | R4953168 |
| Vinyl chloride       |                               | <0.20  |            | 0.20   | ppb(V)         |           | 23-DEC-19 | R4953168 |
| Surrogate: 4-Bromo   | ofluorobenzene                | 96.3   |            | 50-150 | %              |           | 23-DEC-19 | R4953168 |
| Sum of Xylene Iso    | mer Concentrations            |        |            |        |                |           |           |          |

| Sample Details/Parameters                     | Result     | Qualifier* | D.L.    | Units  | Extracted | Analyzed  | Batch    |
|-----------------------------------------------|------------|------------|---------|--------|-----------|-----------|----------|
|                                               |            |            |         |        |           |           |          |
| Sampled By: MEGAN POLISE on 03-DEC-19 @ 12:00 |            |            |         |        |           |           |          |
|                                               |            |            |         |        |           |           |          |
| Sum of Yulono Isomor Concontrations           |            |            |         |        |           |           |          |
| Xylenes (Total)                               | 1.70       |            | 0.45    | (V)daa |           | 23-DEC-19 |          |
| Xylenes (Total)                               | 7.4        |            | 2.0     | ug/m3  |           | 23-DEC-19 |          |
| Select list of 7 C1-C5 hydrocarbon gases      |            |            |         | Ū      |           |           |          |
| Methane                                       | 0.00013    |            | 0.00010 | %      |           | 10-DEC-19 | R4944650 |
| Ethane                                        | <0.00020   |            | 0.00020 | %      |           | 10-DEC-19 | R4944650 |
| Ethene                                        | <0.00020   |            | 0.00020 | %      |           | 10-DEC-19 | R4944650 |
| Propane                                       | <0.00020   |            | 0.00020 | %      |           | 10-DEC-19 | R4944650 |
| Propene                                       | <0.00020   |            | 0.00020 | %      |           | 10-DEC-19 | R4944650 |
| Butane                                        | <0.00020   |            | 0.00020 | %      |           | 10-DEC-19 | R4944650 |
|                                               | <0.00020   |            | 0.00020 | %      |           | 10-DEC-19 | R4944650 |
| Canister Information<br>Pressure on Receipt   | -9.2       |            | -30     | in Ha  | 17-DEC-19 | 17-DEC-19 | R4944737 |
| Canister ID                                   | 01400-0472 |            | -00     | innig  | 17-DEC-19 | 17-DEC-19 | R4944737 |
| Regulator ID                                  | G169       |            |         |        | 17-DEC-19 | 17-DEC-19 | R4944737 |
| Batch Proof ID                                | 191119.101 |            |         |        | 17-DEC-19 | 17-DEC-19 | R4944737 |
|                                               |            |            |         |        |           |           |          |

| Sample Details/Parameters                    | Result      | Qualifier* | D.L.      | Units       | Extracted | Analyzed  | Batch                |
|----------------------------------------------|-------------|------------|-----------|-------------|-----------|-----------|----------------------|
| 2393598-3 VW-01                              |             |            |           |             |           |           |                      |
| Sampled Bv: MEGAN ROUSE on 03-DEC-19 @ 17:20 |             |            |           |             |           |           |                      |
| Matrix: SG                                   |             |            |           |             |           |           |                      |
| Miscellaneous Parameters                     |             |            |           |             |           |           |                      |
| Air volume                                   | .06         |            |           | L           |           | 10-DEC-19 | R4939247             |
| Linear & Cyclic Methyl Siloxanes             | 470         |            | 470       |             |           |           | D 40 45077           |
| D3(CVMS)                                     | <170        |            | 170<br>10 | ug/m3       |           | 18-DEC-19 | R4945277             |
| D4(CVMS)                                     | <170        |            | 170       | uq/m3       |           | 18-DEC-19 | R4945277             |
| D4(CVMS)                                     | <10         |            | 10        | ng          |           | 18-DEC-19 | R4945277             |
| D5(CVMS)                                     | <170        |            | 170       | ug/m3       |           | 18-DEC-19 | R4945277             |
| D5(CVMS)                                     | <10         |            | 10        | ng          |           | 18-DEC-19 | R4945277             |
| D6(CVMS)                                     | <170        |            | 170       | ug/m3       |           | 18-DEC-19 | R4945277             |
| MM(LVMS)                                     | <10         |            | 10        | ng<br>ua/m3 |           | 18-DEC-19 | R4945277<br>R4945277 |
| MM(LVMS)                                     | <10         |            | 10        | ng          |           | 18-DEC-19 | R4945277             |
| MDM(LVMS)                                    | <170        |            | 170       | ug/m3       |           | 18-DEC-19 | R4945277             |
| MDM(LVMS)                                    | <10         |            | 10        | ng          |           | 18-DEC-19 | R4945277             |
| MD2M(LVMS)                                   | <170        |            | 170       | ug/m3       |           | 18-DEC-19 | R4945277             |
| MD2M(LVMS)                                   | <10         |            | 10        | ng          |           | 18-DEC-19 | R4945277             |
| MD3M(LVMS)                                   | <170        |            | 170       | ug/m3       |           | 18-DEC-19 | R4945277<br>R4945277 |
| Surrogate: 4-Bromofluorobenzene              | 103.6       |            | 50-150    | %           |           | 18-DEC-19 | R4945277             |
| Tube Information                             |             |            |           |             |           |           |                      |
| Tube ID                                      | G0150636SVI |            |           |             |           | 13-DEC-19 | R4942791             |
| Batch Proof ID                               | 19-Nov-19   |            |           |             |           | 13-DEC-19 | R4942791             |
| Tube Usage Number                            | N/A         |            |           |             |           | 13-DEC-19 | R4942791             |
|                                              | IN/A        |            |           |             |           | 13-DEC-19 | R4942791             |
|                                              |             |            |           |             |           |           |                      |
|                                              |             |            |           |             |           |           |                      |
|                                              |             |            |           |             |           |           |                      |
|                                              |             |            |           |             |           |           |                      |
|                                              |             |            |           |             |           |           |                      |
|                                              |             |            |           |             |           |           |                      |
|                                              |             |            |           |             |           |           |                      |
|                                              |             |            |           |             |           |           |                      |
|                                              |             |            |           |             |           |           |                      |
|                                              |             |            |           |             |           |           |                      |
|                                              |             |            |           |             |           |           |                      |
|                                              |             |            |           |             |           |           |                      |
|                                              |             |            |           |             |           |           |                      |
|                                              |             |            |           |             |           |           |                      |
|                                              |             |            |           |             |           |           |                      |
|                                              |             |            |           |             |           |           |                      |
|                                              |             |            |           |             |           |           |                      |
|                                              |             |            |           |             |           |           |                      |
|                                              |             |            |           |             |           |           |                      |
|                                              |             |            |           |             |           |           |                      |
|                                              |             |            |           |             |           |           |                      |
|                                              |             |            |           |             |           |           |                      |
|                                              |             |            |           |             |           |           |                      |

#### **Reference Information**

#### **Test Method References:**

| ALS Test Code      | Matrix   | Test Description                         | Method Reference**       |
|--------------------|----------|------------------------------------------|--------------------------|
| AIR VOLUME-WT      | Misc.    | Air volume (L)                           | DATA ENTRY               |
| ALIPH/AROM-GCMS-WT | Canister | Aliphatic/Aromatic PHC Sub-Fractionation | EPA TO-15, Atlantic RBCA |

This analysis is performed using procedures adapted from EPA TO-15 & Atlantic RBCA. A volume of air is removed from a canister & injected into a GCMS with preconcentrator for analysis. The concentrations of the hydrocarbon aliphatic & aromatic sub-fractions are calculated using gas standards. The canister samples will be retained for 7 calendar days after final report.

**BTEX** and Naphthalene BTEX+NAPH-GCMS-WT Canister

This analysis is performed using procedures adapted from EPA Method TO-15. Air samples are collected into cleaned evacuated canisters. A volume of air sample is transferred from the canister to a preconcentrator system where the analytes are trapped & focused. The analytes are then thermally desorbed into a GC-MSD for analysis. Test results are not blank corrected unless indicated by a qualifier.

EPA TO-15

Canister samples will be retained for 7 calendar days after final report. If you require a longer canister storage time, please contact your account manager.

C1-C5-FID-WT

Select list of 7 C1-C5 hydrocarbon gases EPA Method 3C & ASTM D1946 Canister

This analysis is performed using procedures adapted from ASTM D1946/EPA Method 3C. Air samples are collected into cleaned evaculated canisters. A volume of air is removed from the canister & injected into a GC-FID for analysis. Hydrocarbon gas concentrations are calculated against a gas standard. Test results are not blank corrected unless indicated by a qualifier.

Canister samples will be retained for 7 calendar days after final report. If you require longer canister storage time, please contact your account manager.

| CAN-DATA-WT                 | Canister      | Canister Information     | EPA TO-15 |
|-----------------------------|---------------|--------------------------|-----------|
| Batch Proof ID, Canister ID | , Pressure or | n Receipt, Regulator ID. |           |

F1-F2-GCMS-WT EPATO-15 Canister Total F1and F2 fractions (not corrected)

This analysis is performed using procedures adapted from EPA Method TO-15. Air samples are collected into cleaned evacuated canisters. A volume of air sample is transferred from the canister to a preconcentrator system where the analytes are trapped & focused. The analytes are then thermally desorbed into a GC-MSD for analysis. Test results are not blank corrected unless indicated by a qualifier.

Canister samples will be retained for 7 calendar days after final report. If you require a longer canister storage time, please contact your account manager.

FIXED GASES-TCD-WT Canister High Level Fixed Gases by TCD

This analysis is performed using procedures adapted from EPA Method 3C & ASTM D1946. Air samples are collected into cleaned evacuated canisters. A volume of air is removed from the canister and injected by means of a gas-sampling/backflush valve onto a series of packed GC columns and measured using a thermal conductivity detector (TCD).

Oxygen is not separated from Argon.

Canister samples will be retained for 7 calendar days after final report. If you require a longer canister storage time, please contact your account manager.

Linear & Cvclic Methyl Siloxanes SILOXANES-GCMS-WT Tube

EPA TO-17

EPA TO-15

EPA Method 3C & ASTM D1946

This analysis is performed using procedures adapted from EPA Method TO-17, ISO Method 16017 & NIOSH Method 2549. Air samples actively collected on PE VI TD tubes are thermally stripped & the analytes are re-collected on trapping material of a focusing trap in the thermal desorber. The analytes are then thermally desorbed into a GC-MSD for analysis. Test results are not blank corrected unless indicated by a qualifier.

This analysis was performed under AIHA-IHLAP Scope of Accreditation, GC/MS Field of Testing which is compliant with AIHA-LAP, LLC Accreditation Policy Modules & ISO/IEC 17025:2005 Standard.

TD tube samples will be retained for 7 calendar days after final report. If you require a longer TD tube storage time, please contact your account manager.

TO15-GCMS-WT Canister Canister EPA TO-15

This analysis is performed using procedures adapted from EPA Method TO-15. Air samples are collected into cleaned evacuated canisters. A volume of air sample is transferred from the canister to a preconcentrator system where the analytes are trapped & focused. The analytes are then thermally desorbed into a GC-MSD for analysis. Test results are not blank corrected unless indicated by a gualifier.

Canister samples will be retained for 7 calendar days after final report. If you require a longer canister storage time, please contact your account manager.

| XYLENES-SUM-CALC- | Canister | Sum of Xylene Isomer Concentrations | CALCULATION |
|-------------------|----------|-------------------------------------|-------------|
| WT                |          |                                     |             |

\*\* ALS test methods may incorporate modifications from specified reference methods to improve performance.

#### **Reference Information**

| Test Method References | s:     |                  |                    |
|------------------------|--------|------------------|--------------------|
| ALS Test Code          | Matrix | Test Description | Method Reference** |

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

| Laboratory Definition Code | Laboratory Location                           |
|----------------------------|-----------------------------------------------|
| WT                         | ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA |

#### Chain of Custody Numbers:

#### GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

# ALS Routine Water Chemistry Report

L2393598

| Lab ID | Sample ID |  | 1 | Lab ID | Sample ID | <br> |  |
|--------|-----------|--|---|--------|-----------|------|--|
|        |           |  |   |        |           |      |  |
|        |           |  |   |        |           |      |  |
|        |           |  |   |        |           |      |  |
|        |           |  |   |        |           |      |  |
|        |           |  |   |        |           |      |  |
|        |           |  |   |        |           |      |  |
|        |           |  |   |        |           |      |  |
|        |           |  |   |        |           |      |  |
|        |           |  |   |        |           |      |  |
|        |           |  |   |        |           |      |  |
|        |           |  |   |        |           |      |  |
|        |           |  |   |        |           |      |  |
|        |           |  |   |        |           |      |  |
|        |           |  |   |        |           |      |  |
|        |           |  |   |        |           |      |  |
|        |           |  |   |        |           |      |  |
|        |           |  |   |        |           |      |  |
|        |           |  |   |        |           |      |  |
|        |           |  |   |        |           |      |  |
|        |           |  |   |        |           |      |  |
|        |           |  |   |        |           |      |  |
|        |           |  |   |        |           |      |  |
|        |           |  |   |        |           |      |  |
|        |           |  |   |        |           |      |  |
|        |           |  |   |        |           |      |  |
|        |           |  |   |        |           |      |  |
|        |           |  |   |        |           |      |  |
|        |           |  |   |        |           |      |  |
|        |           |  |   |        |           |      |  |
|        |           |  |   |        |           |      |  |
|        |           |  |   |        |           |      |  |
|        |           |  |   |        |           |      |  |
|        |           |  |   |        |           |      |  |
|        |           |  |   |        |           |      |  |
|        |           |  |   |        |           |      |  |
|        |           |  |   |        |           |      |  |
|        |           |  |   |        |           |      |  |
|        |           |  |   |        |           |      |  |
|        |           |  |   |        |           |      |  |
|        |           |  |   |        |           |      |  |
|        |           |  |   |        |           | <br> |  |

#### ALS LABORATORY GROUP SOIL SALINITY CONVERSION

L2393598

| Lab ID S         | Sample ID                             |             |           |     | Lab ID Sample ID |  |  |  |  |
|------------------|---------------------------------------|-------------|-----------|-----|------------------|--|--|--|--|
|                  |                                       |             |           |     |                  |  |  |  |  |
|                  |                                       |             |           |     |                  |  |  |  |  |
|                  |                                       |             |           |     |                  |  |  |  |  |
|                  |                                       |             |           |     |                  |  |  |  |  |
|                  |                                       |             |           |     |                  |  |  |  |  |
|                  |                                       |             |           |     |                  |  |  |  |  |
|                  |                                       |             |           |     |                  |  |  |  |  |
|                  |                                       |             |           |     |                  |  |  |  |  |
|                  |                                       |             |           |     |                  |  |  |  |  |
|                  |                                       |             |           |     |                  |  |  |  |  |
|                  |                                       |             |           |     |                  |  |  |  |  |
|                  |                                       |             |           |     |                  |  |  |  |  |
|                  |                                       |             |           |     |                  |  |  |  |  |
|                  |                                       |             |           |     |                  |  |  |  |  |
|                  |                                       |             |           |     |                  |  |  |  |  |
|                  |                                       |             |           |     |                  |  |  |  |  |
|                  |                                       |             |           |     |                  |  |  |  |  |
|                  |                                       |             |           |     |                  |  |  |  |  |
|                  |                                       |             |           |     |                  |  |  |  |  |
|                  |                                       |             |           |     |                  |  |  |  |  |
|                  |                                       |             |           |     |                  |  |  |  |  |
|                  |                                       |             |           |     |                  |  |  |  |  |
|                  |                                       |             |           |     |                  |  |  |  |  |
|                  |                                       |             |           |     |                  |  |  |  |  |
|                  |                                       |             |           |     |                  |  |  |  |  |
|                  |                                       |             |           |     |                  |  |  |  |  |
|                  |                                       |             |           |     |                  |  |  |  |  |
|                  |                                       |             |           |     |                  |  |  |  |  |
|                  |                                       |             |           |     |                  |  |  |  |  |
|                  |                                       |             |           |     |                  |  |  |  |  |
|                  |                                       |             |           |     |                  |  |  |  |  |
|                  |                                       |             |           |     |                  |  |  |  |  |
|                  |                                       |             |           |     |                  |  |  |  |  |
|                  |                                       |             |           |     |                  |  |  |  |  |
|                  |                                       |             |           |     |                  |  |  |  |  |
|                  |                                       |             |           |     |                  |  |  |  |  |
|                  |                                       |             |           |     |                  |  |  |  |  |
|                  |                                       |             |           |     |                  |  |  |  |  |
|                  |                                       |             |           |     |                  |  |  |  |  |
|                  |                                       |             |           |     |                  |  |  |  |  |
|                  |                                       |             |           |     |                  |  |  |  |  |
|                  |                                       |             |           |     |                  |  |  |  |  |
|                  |                                       |             |           |     |                  |  |  |  |  |
| "Calculations a  | are as per:                           |             |           |     |                  |  |  |  |  |
| Methods of An    | alysis for So                         | ils, Plants | s and Wat | ers |                  |  |  |  |  |
| Liniversity of C | alifornia Riv                         | arsida C    |           |     |                  |  |  |  |  |
| August. 1961 '   | '   '   '   '   '   '   '   '   '   ' |             | 1.        |     |                  |  |  |  |  |
|                  |                                       |             |           |     |                  |  |  |  |  |



# **Quality Control Report**

|                             |                       |                               | Workorder:                 | L239359 | 8         | Report Date: 24 | 4-DEC-19 |        | Page 1 of 1 | 3 |
|-----------------------------|-----------------------|-------------------------------|----------------------------|---------|-----------|-----------------|----------|--------|-------------|---|
| Client:                     | TETRA T<br>110, 140   | ECH CANADA<br>Quarry Park Blv | INC.<br>/d SE              |         |           |                 |          |        |             |   |
| Contact:                    | Darby Ma              | adalena                       |                            |         |           |                 |          |        |             |   |
| Test                        |                       | Matrix                        | Reference                  | Result  | Qualifier | Units           | RPD      | Limit  | Analyzed    |   |
| ALIPH/AROM-G                | CMS-WT                | Canister                      |                            |         |           |                 |          |        |             |   |
| Batch                       | R4953011              |                               |                            |         |           |                 |          |        |             |   |
| WG3247105-<br>Aliphatic C6- | • <b>2 LCS</b><br>•C8 |                               |                            | 121.6   |           | %               |          | 50-150 | 23-DEC-19   |   |
| Aliphatic C>8               | 8-C10                 |                               |                            | 101.0   |           | %               |          | 50-150 | 23-DEC-19   |   |
| Aliphatic C> <sup>-</sup>   | 10-C12                |                               |                            | 117.1   |           | %               |          | 50-150 | 23-DEC-19   |   |
| Aliphatic C>                | 12-C16                |                               |                            | 128.7   |           | %               |          | 50-150 | 23-DEC-19   |   |
| Aromatic C>                 | ·8-C10                |                               |                            | 105.7   |           | %               |          | 50-150 | 23-DEC-19   |   |
| Aromatic C>                 | 10-C12                |                               |                            | 101.0   |           | %               |          | 50-150 | 23-DEC-19   |   |
| Aromatic C>                 | 12-C16                |                               |                            | 87.2    |           | %               |          | 50-150 | 23-DEC-19   |   |
| WG3247105-                  | 3 LCSD                |                               | WG3247105-2                | 129.6   |           | 0/              | E C      | 50     | 00 DEC 40   |   |
| Aliphatic Co-               | • C10                 |                               | 121.0                      | 120.0   |           | /6              | 5.6      | 50     | 23-DEC-19   |   |
| Aliphatic C>6               | 10 010                |                               | 101.0                      | 103.0   |           | 70              | 2.8      | 50     | 23-DEC-19   |   |
| Aliphatic C>                | 10-012                |                               | 117.1                      | 119.5   |           | %               | 2.0      | 50     | 23-DEC-19   |   |
| Aliphatic C>                | 12-016                |                               | 128.7                      | 136.9   |           | %               | 6.2      | 50     | 23-DEC-19   |   |
| Aromatic C>                 | 8-010                 |                               | 105.7                      | 108.2   |           | %               | 2.3      | 50     | 23-DEC-19   |   |
| Aromatic C>                 | 10-C12                |                               | 101.0                      | 104.3   |           | %               | 3.2      | 50     | 23-DEC-19   |   |
| Aromatic C>                 | -12-C16               |                               | 87.2                       | 95.6    |           | %               | 9.2      | 50     | 23-DEC-19   |   |
| WG3247105-<br>Aliphatic C6- | •1 MB<br>•C8          |                               |                            | <15     |           | ug/m3           |          | 15     | 23-DEC-19   |   |
| Aliphatic C>8               | 8-C10                 |                               |                            | <15     |           | ug/m3           |          | 15     | 23-DEC-19   |   |
| Aliphatic C>                | 10-C12                |                               |                            | <15     |           | ug/m3           |          | 15     | 23-DEC-19   |   |
| Aliphatic C>7               | 12-C16                |                               |                            | <30     |           | ug/m3           |          | 30     | 23-DEC-19   |   |
| Aromatic C>                 | 8-C10                 |                               |                            | <15     |           | ug/m3           |          | 15     | 23-DEC-19   |   |
| Aromatic C>                 | 10-C12                |                               |                            | <15     |           | ug/m3           |          | 15     | 23-DEC-19   |   |
| Aromatic C>                 | 12-C16                |                               |                            | <30     |           | ug/m3           |          | 30     | 23-DEC-19   |   |
| BTEX+NAPH-G                 | смѕ-wт                | Canister                      |                            |         |           |                 |          |        |             |   |
| Batch                       | R4953168              |                               |                            |         |           |                 |          |        |             |   |
| WG3247636-<br>Naphthalene   | •4 DUP                |                               | <b>L2393586-1</b><br><0.50 | <0.50   | RPD-NA    | ppb(V)          | N/A      | 30     | 23-DEC-19   |   |
| WG3247636-                  | 2 LCS                 |                               |                            |         |           |                 |          |        |             |   |
| Naphthalene                 | 9                     |                               |                            | 111.7   |           | %               |          | 70-130 | 23-DEC-19   |   |
| WG3247636-                  | 3 LCSD                |                               | WG3247636-2                |         |           |                 |          |        |             |   |
| Naphthalene                 | 9                     |                               | 111.7                      | 96.1    |           | %               | 15       | 50     | 23-DEC-19   |   |
| WG3247636-<br>Naphthalene   | ·1 MB                 |                               |                            | <0.50   |           | ppb(V)          |          | 0.5    | 23-DEC-19   |   |
| Surrogate: 4                | -Bromofluo            | robenzene                     |                            | 94.2    |           | %               |          | 50-150 | 23-DEC-19   |   |



Client:

Contact:

Test

TETRA TECH CANADA INC.

110, 140 Quarry Park Blvd SE Calgary AB T2C 3G3

Matrix

Darby Madalena

#### **Quality Control Report**

Qualifier

Report Date: 24-DEC-19

RPD

Limit

Units

Page 2 of 13

Analyzed

Workorder: L2393598

Result

Reference

C1-C5-FID-WT Canister R4944650 Batch WG3239341-4 DUP L2393570-1 Methane 0.00029 0.00027 % 7.3 20 10-DEC-19 Ethane < 0.00020 < 0.00020 % **RPD-NA** N/A 20 10-DEC-19 Ethene < 0.00020 < 0.00020 RPD-NA % N/A 20 10-DEC-19 < 0.00020 < 0.00020 Propane **RPD-NA** % N/A 20 10-DEC-19 Propene < 0.00020 < 0.00020 **RPD-NA** % N/A 20 10-DEC-19 **Butane** < 0.00020 < 0.00020 RPD-NA % N/A 20 10-DEC-19 Pentane < 0.00020 < 0.00020 **RPD-NA** % N/A 20 10-DEC-19 WG3239341-1 LCS Methane 78.8 % 70-130 10-DEC-19 Ethane % 88.3 70-130 10-DEC-19 Ethene 84.4 % 70-130 10-DEC-19 Propane 88.8 % 70-130 10-DEC-19 Propene 96.7 % 70-130 10-DEC-19 Pentane 92.4 % 70-130 10-DEC-19 WG3239341-2 LCSD WG3239341-1 Methane 78.8 82.3 % 50 4.4 10-DEC-19 Ethane 88.3 89.4 % 1.2 50 10-DEC-19 Ethene 84.4 84.6 % 0.1 50 10-DEC-19 88.8 88.5 % Propane 0.4 50 10-DEC-19 96.7 96.9 Propene % 0.2 50 10-DEC-19 Pentane 92.4 92.2 % 0.2 50 10-DEC-19 WG3239341-3 MB Methane < 0.00010 % 0.0001 10-DEC-19 Ethane < 0.00020 % 0.0002 10-DEC-19 Ethene % 0.0002 < 0.00020 10-DEC-19 0.0002 Propane < 0.00020 % 10-DEC-19 0.0002 Propene < 0.00020 % 10-DEC-19 Butane < 0.00020 % 0.0002 10-DEC-19 Pentane < 0.00020 % 0.0002 10-DEC-19 Canister **CAN-DATA-WT** Batch R4944737 WG3244055-1 MB Pressure on Receipt -29.8 in Hg 17-DEC-19



# **Quality Control Report**

|                                              |                                                                       | Workorder:                  | L239359 | 8         | Report Date: 2 | 4-DEC-19 |        | Page 3 of 13 |
|----------------------------------------------|-----------------------------------------------------------------------|-----------------------------|---------|-----------|----------------|----------|--------|--------------|
| Client: TET<br>110,<br>Calg<br>Contact: Dark | RA TECH CANADA<br>140 Quarry Park Bh<br>ary AB T2C 3G3<br>oy Madalena | INC.<br>/d SE               |         |           |                |          |        |              |
| Test                                         | Matrix                                                                | Reference                   | Result  | Qualifier | Units          | RPD      | Limit  | Analyzed     |
| F1-F2-GCMS-WT                                | Canister                                                              |                             |         |           |                |          |        |              |
| Batch R4953<br>WG3247105-2 L<br>F1 (C6-C10)  | 8011<br>CS                                                            |                             | 110.1   |           | %              |          | 50-150 | 23-DEC-19    |
| <b>WG3247105-3</b> L<br>F1 (C6-C10)          | CSD                                                                   | <b>WG3247105-2</b><br>110.1 | 108.4   |           | %              | 1.5      | 50     | 23-DEC-19    |
| <b>WG3247105-1</b> M<br>F1 (C6-C10)          | IB                                                                    |                             | <15     |           | ug/m3          |          | 15     | 23-DEC-19    |
| F2 (C10-C16)                                 |                                                                       |                             | <15     |           | ug/m3          |          | 15     | 23-DEC-19    |
| Surrogate: 4-Brome                           | ofluorobenzene                                                        |                             | 98.3    |           | %              |          | 50-150 | 23-DEC-19    |
| FIXED GASES-TCD-W                            | /T Canister                                                           |                             |         |           |                |          |        |              |
| Batch R4944                                  | 1389                                                                  |                             |         |           |                |          |        |              |
| WG3236065-8 D<br>Nitrogen                    | UP                                                                    | <b>L2393575-4</b><br>75.8   | 76.0    |           | %              | 0.3      | 30     | 13-DEC-19    |
| Oxygen                                       |                                                                       | 19.6                        | 19.6    |           | %              | 0.3      | 30     | 13-DEC-19    |
| Carbon Dioxide                               |                                                                       | 2.84                        | 2.76    |           | %              | 2.7      | 30     | 13-DEC-19    |
| Carbon Monoxide                              |                                                                       | <0.050                      | <0.050  | RPD-NA    | %              | N/A      | 30     | 13-DEC-19    |
| Methane                                      |                                                                       | <0.050                      | <0.050  | RPD-NA    | %              | N/A      | 30     | 13-DEC-19    |
| WG3236065-5 L<br>Nitrogen                    | CS                                                                    |                             | 98.5    |           | %              |          | 70-130 | 13-DEC-19    |
| Oxygen                                       |                                                                       |                             | 97.5    |           | %              |          | 70-130 | 13-DEC-19    |
| Carbon Dioxide                               |                                                                       |                             | 95.4    |           | %              |          | 70-130 | 13-DEC-19    |
| Carbon Monoxide                              |                                                                       |                             | 95.7    |           | %              |          | 70-130 | 13-DEC-19    |
| Methane                                      |                                                                       |                             | 98.3    |           | %              |          | 70-130 | 13-DEC-19    |
| WG3236065-6 L<br>Nitrogen                    | CSD                                                                   | <b>WG3236065-5</b><br>98.5  | 98.6    |           | %              | 0.1      | 25     | 13-DEC-19    |
| Oxygen                                       |                                                                       | 97.5                        | 97.6    |           | %              | 0.2      | 25     | 13-DEC-19    |
| Carbon Dioxide                               |                                                                       | 95.4                        | 96.1    |           | %              | 0.8      | 25     | 13-DEC-19    |
| Carbon Monoxide                              |                                                                       | 95.7                        | 95.9    |           | %              | 0.2      | 25     | 13-DEC-19    |
| Methane                                      |                                                                       | 98.3                        | 98.3    |           | %              | 0.0      | 25     | 13-DEC-19    |
| WG3236065-7 M<br>Nitroaen                    | IB                                                                    |                             | <1.0    |           | %              |          | 1      | 13-DEC-19    |
| Oxygen                                       |                                                                       |                             | <0.10   |           | %              |          | 0.1    | 13-DEC-19    |
| Carbon Dioxide                               |                                                                       |                             | <0.050  |           | %              |          | 0.05   | 13-DFC-19    |
| Carbon Monoxide                              |                                                                       |                             | <0.050  |           | %              |          | 0.05   | 13-DEC-19    |
| Methane                                      |                                                                       |                             | <0.050  |           | %              |          | 0.05   | 13-DEC-19    |
| TO15-GCMS-WT                                 | Canister                                                              |                             |         |           |                |          |        |              |



## **Quality Control Report**

Report Date: 24-DEC-19

Page 4 of 13

Workorder: L2393598

TETRA TECH CANADA INC.

110, 140 Quarry Park Blvd SE Calgary AB T2C 3G3

Darby Madalena

Contact:

Client:

| Test                       | Matrix   | Reference  | Result | Qualifier | Units    | RPD  | Limit | Analyzed  |  |
|----------------------------|----------|------------|--------|-----------|----------|------|-------|-----------|--|
| TO15-GCMS-WT               | Canister |            |        |           |          |      |       |           |  |
| Batch R4953168             |          |            |        |           |          |      |       |           |  |
| WG3247636-4 DUP            |          | L2393586-1 | -0.20  |           | nnh(1/1) | N1/A | 00    |           |  |
| 1,1,2,2 Totrachlorootha    | 200      | <0.20      | <0.20  |           | ppb(v)   | N/A  | 30    | 23-DEC-19 |  |
| 1,1,2,2-1 ettachioroethana |          | <0.20      | <0.20  | RPD-NA    | ppb(v)   | N/A  | 30    | 23-DEC-19 |  |
| 1,1,2-Thenloroethane       |          | <0.20      | <0.20  | RPD-NA    | ppb(v)   | N/A  | 30    | 23-DEC-19 |  |
| 1, 1-Dichloroethane        |          | <0.20      | <0.20  | RPD-NA    | ppb(v)   | N/A  | 30    | 23-DEC-19 |  |
| 1, 1-Dichloroethene        |          | <0.20      | <0.20  | RPD-NA    | ppb(v)   | N/A  | 30    | 23-DEC-19 |  |
| 1,2,4-Tricniorobenzene     |          | <0.20      | <0.20  | RPD-NA    | ppb(v)   | N/A  | 30    | 23-DEC-19 |  |
| 1,2,4-1 rimetnyibenzene    | ;        | <0.20      | <0.20  | RPD-NA    |          | N/A  | 30    | 23-DEC-19 |  |
| 1,2-Dibromoetnane          |          | <0.20      | <0.20  | RPD-NA    |          | N/A  | 30    | 23-DEC-19 |  |
| 1,2-Dichlorobenzene        |          | <0.20      | <0.20  | RPD-NA    | ppb(V)   | N/A  | 30    | 23-DEC-19 |  |
| 1,2-Dichloroethane         |          | <0.20      | <0.20  | RPD-NA    | ppb(V)   | N/A  | 30    | 23-DEC-19 |  |
| 1,2-Dichloropropane        |          | <0.20      | <0.20  | RPD-NA    | ppb(V)   | N/A  | 30    | 23-DEC-19 |  |
| 1,3,5-Trimethylbenzene     | )        | <0.20      | <0.20  | RPD-NA    | ppb(V)   | N/A  | 30    | 23-DEC-19 |  |
| 1,3-Butadiene              |          | <0.20      | <0.20  | RPD-NA    | ppb(V)   | N/A  | 30    | 23-DEC-19 |  |
| 1,3-Dichlorobenzene        |          | <0.20      | <0.20  | RPD-NA    | ppb(V)   | N/A  | 30    | 23-DEC-19 |  |
| 1,4-Dichlorobenzene        |          | <0.20      | <0.20  | RPD-NA    | ppb(V)   | N/A  | 30    | 23-DEC-19 |  |
| 1,4-Dioxane                |          | <0.20      | <0.20  | RPD-NA    | ppb(V)   | N/A  | 30    | 23-DEC-19 |  |
| 2-Hexanone                 |          | <1.0       | <1.0   | RPD-NA    | ppb(V)   | N/A  | 30    | 23-DEC-19 |  |
| 4-Ethyltoluene             |          | <0.20      | <0.20  | RPD-NA    | ppb(V)   | N/A  | 30    | 23-DEC-19 |  |
| Acetone                    |          | 1.97       | 1.94   |           | ppb(V)   | 1.5  | 30    | 23-DEC-19 |  |
| Allyl chloride             |          | <0.20      | <0.20  | RPD-NA    | ppb(V)   | N/A  | 30    | 23-DEC-19 |  |
| Benzene                    |          | <0.20      | <0.20  | RPD-NA    | ppb(V)   | N/A  | 30    | 23-DEC-19 |  |
| Benzyl chloride            |          | <0.20      | <0.20  | RPD-NA    | ppb(V)   | N/A  | 30    | 23-DEC-19 |  |
| Bromodichloromethane       | •        | <0.20      | <0.20  | RPD-NA    | ppb(V)   | N/A  | 30    | 23-DEC-19 |  |
| Bromoform                  |          | <0.20      | <0.20  | RPD-NA    | ppb(V)   | N/A  | 30    | 23-DEC-19 |  |
| Bromomethane               |          | <0.20      | <0.20  | RPD-NA    | ppb(V)   | N/A  | 30    | 23-DEC-19 |  |
| Carbon Disulfide           |          | 1.30       | 1.28   |           | ppb(V)   | 1.2  | 30    | 23-DEC-19 |  |
| Carbon Tetrachloride       |          | <0.20      | <0.20  | RPD-NA    | ppb(V)   | N/A  | 30    | 23-DEC-19 |  |
| Chlorobenzene              |          | <0.20      | <0.20  | RPD-NA    | ppb(V)   | N/A  | 30    | 23-DEC-19 |  |
| Chloroethane               |          | <0.20      | <0.20  | RPD-NA    | ppb(V)   | N/A  | 30    | 23-DEC-19 |  |
| Chloroform                 |          | <0.20      | <0.20  | RPD-NA    | ppb(V)   | N/A  | 30    | 23-DEC-19 |  |
| Chloromethane              |          | <0.20      | <0.20  | RPD-NA    | ppb(V)   | N/A  | 30    | 23-DEC-19 |  |
| cis-1,2-Dichloroethene     |          | 0.78       | 0.72   |           | ppb(V)   | 8.0  | 30    | 23-DEC-19 |  |
| cis-1,3-Dichloropropene    | e        | <0.20      | <0.20  |           | ppb(V)   |      |       | 23-DEC-19 |  |



Client:

Contact:

## **Quality Control Report**

 Workorder:
 L2393598
 Report Date:
 24-DEC-19
 Page
 5
 of
 13

 TETRA TECH CANADA INC.
 110, 140 Quarry Park Blvd SE
 Calgary AB
 T2C 3G3
 Value
 Value</td

| Test                    | Matrix   | Reference  | Result | Qualifier | Units   | RPD          | Limit | Analyzed  |
|-------------------------|----------|------------|--------|-----------|---------|--------------|-------|-----------|
| TO15-GCMS-WT            | Canister |            |        |           |         |              |       |           |
| Batch R4953168          |          |            |        |           |         |              |       |           |
| WG3247636-4 DUP         |          | L2393586-1 | .0.00  |           | nnh(1/) | <b>N</b> 1/A |       |           |
|                         | ;        | <0.20      | <0.20  | RPD-NA    | ppb(V)  | N/A          | 30    | 23-DEC-19 |
|                         |          | <0.20      | <0.20  | RPD-NA    | ppb(v)  | N/A          | 30    | 23-DEC-19 |
| Dipromochioromethane    | _        | <0.20      | <0.20  | RPD-NA    | ppb(v)  | N/A          | 30    | 23-DEC-19 |
| Dichlorodifiuoromethane | e        | 0.69       | 0.68   |           | ppb(v)  | 2.6          | 30    | 23-DEC-19 |
| Ethyl acetate           |          | <0.20      | <0.20  | RPD-NA    | ppb(V)  | N/A          | 30    | 23-DEC-19 |
| Ethylbenzene            |          | <0.20      | <0.20  | RPD-NA    | ppb(V)  | N/A          | 30    | 23-DEC-19 |
| Freon 113               |          | <0.20      | <0.20  | RPD-NA    | ppb(V)  | N/A          | 30    | 23-DEC-19 |
| Freon 114               |          | <0.20      | <0.20  | RPD-NA    | ppb(V)  | N/A          | 30    | 23-DEC-19 |
| Hexachlorobutadiene     |          | <0.20      | <0.20  | RPD-NA    | ppb(V)  | N/A          | 30    | 23-DEC-19 |
| Isooctane               |          | <0.20      | <0.20  | RPD-NA    | ppb(V)  | N/A          | 30    | 23-DEC-19 |
| Isopropyl alcohol       |          | <1.0       | <1.0   | RPD-NA    | ppb(V)  | N/A          | 30    | 23-DEC-19 |
| Isopropylbenzene        |          | <0.20      | <0.20  | RPD-NA    | ppb(V)  | N/A          | 50    | 23-DEC-19 |
| m&p-Xylene              |          | 0.72       | 0.70   |           | ppb(V)  | 3.4          | 30    | 23-DEC-19 |
| Methyl ethyl ketone     |          | <0.20      | <0.20  | RPD-NA    | ppb(V)  | N/A          | 30    | 23-DEC-19 |
| Methyl isobutyl ketone  |          | <0.20      | <0.20  | RPD-NA    | ppb(V)  | N/A          | 30    | 23-DEC-19 |
| Methylene chloride      |          | <0.20      | <0.20  | RPD-NA    | ppb(V)  | N/A          | 30    | 23-DEC-19 |
| MTBE                    |          | <0.20      | <0.20  | RPD-NA    | ppb(V)  | N/A          | 30    | 23-DEC-19 |
| n-Heptane               |          | <0.20      | <0.20  | RPD-NA    | ppb(V)  | N/A          | 30    | 23-DEC-19 |
| n-Hexane                |          | <0.20      | <0.20  | RPD-NA    | ppb(V)  | N/A          | 30    | 23-DEC-19 |
| o-Xylene                |          | <0.20      | <0.20  | RPD-NA    | ppb(V)  | N/A          | 30    | 23-DEC-19 |
| Propylene               |          | <0.20      | <0.20  | RPD-NA    | ppb(V)  | N/A          | 30    | 23-DEC-19 |
| Styrene                 |          | <0.20      | <0.20  | RPD-NA    | ppb(V)  | N/A          | 30    | 23-DEC-19 |
| Tetrachloroethylene     |          | <0.20      | <0.20  | RPD-NA    | ppb(V)  | N/A          | 30    | 23-DEC-19 |
| Tetrahydrofuran         |          | <0.20      | <0.20  | RPD-NA    | ppb(V)  | N/A          | 30    | 23-DEC-19 |
| Toluene                 |          | <0.20      | <0.20  | RPD-NA    | ppb(V)  | N/A          | 30    | 23-DEC-19 |
| trans-1,2-Dichloroethen | e        | 0.20       | <0.20  | RPD-NA    | ppb(V)  | N/A          | 30    | 23-DEC-19 |
| trans-1,3-Dichloroprope | ne       | <0.20      | <0.20  | RPD-NA    | ppb(V)  | N/A          | 30    | 23-DEC-19 |
| Trichloroethylene       |          | <0.20      | <0.20  | RPD-NA    | ppb(V)  | N/A          | 30    | 23-DEC-19 |
| Trichlorofluoromethane  |          | <0.20      | <0.20  | RPD-NA    | ppb(V)  | N/A          | 30    | 23-DEC-19 |
| Vinyl acetate           |          | <0.50      | <0.50  | RPD-NA    | ppb(V)  | N/A          | 30    | 23-DEC-19 |
| Vinyl bromide           |          | <0.20      | <0.20  | RPD-NA    | ppb(V)  | N/A          | 30    | 23-DEC-19 |
| Vinyl chloride          |          | <0.20      | <0.20  | RPD-NA    | ppb(V)  | N/A          | 30    | 23-DEC-19 |
| WG3247636-2 LCS         |          |            |        |           |         |              |       |           |



Test

### **Quality Control Report**

Workorder: L2393598 Report Date: 24-DEC-19 Page 6 of 13 TETRA TECH CANADA INC. Client: 110, 140 Quarry Park Blvd SE Calgary AB T2C 3G3 Contact: Darby Madalena Matrix Reference Result Qualifier Units RPD Limit Analyzed TO15-GCMS-WT Canister Batch R4953168 WG3247636-2 LCS 1,1,1-Trichloroethane 88.6 % 70-130 23-DEC-19 1,1,2,2-Tetrachloroethane 91.9 % 70-130 23-DEC-19 1,1,2-Trichloroethane 86.6 % 23-DEC-19 70-130 1,1-Dichloroethane 92.4 % 70-130 23-DEC-19 1,1-Dichloroethene % 90.6 70-130 23-DEC-19 1,2,4-Trichlorobenzene 108.3 % 70-130 23-DEC-19 1,2,4-Trimethylbenzene 92.4 % 70-130 23-DEC-19 1,2-Dibromoethane 90.8 % 70-130 23-DEC-19 1.2-Dichlorobenzene 92.5 % 70-130 23-DFC-19

| .,                      |      |   | 10 100 | 20 020 10 |
|-------------------------|------|---|--------|-----------|
| 1,2-Dichloroethane      | 90.4 | % | 70-130 | 23-DEC-19 |
| 1,2-Dichloropropane     | 90.0 | % | 70-130 | 23-DEC-19 |
| 1,3,5-Trimethylbenzene  | 90.6 | % | 70-130 | 23-DEC-19 |
| 1,3-Butadiene           | 89.8 | % | 70-130 | 23-DEC-19 |
| 1,3-Dichlorobenzene     | 91.1 | % | 70-130 | 23-DEC-19 |
| 1,4-Dichlorobenzene     | 94.2 | % | 70-130 | 23-DEC-19 |
| 1,4-Dioxane             | 92.9 | % | 70-130 | 23-DEC-19 |
| 2-Hexanone              | 92.2 | % | 70-130 | 23-DEC-19 |
| 4-Ethyltoluene          | 90.5 | % | 70-130 | 23-DEC-19 |
| Acetone                 | 91.2 | % | 70-130 | 23-DEC-19 |
| Allyl chloride          | 88.3 | % | 70-130 | 23-DEC-19 |
| Benzene                 | 92.1 | % | 70-130 | 23-DEC-19 |
| Benzyl chloride         | 87.4 | % | 70-130 | 23-DEC-19 |
| Bromodichloromethane    | 88.1 | % | 70-130 | 23-DEC-19 |
| Bromoform               | 88.4 | % | 70-130 | 23-DEC-19 |
| Bromomethane            | 92.9 | % | 70-130 | 23-DEC-19 |
| Carbon Disulfide        | 84.8 | % | 70-130 | 23-DEC-19 |
| Carbon Tetrachloride    | 87.6 | % | 70-130 | 23-DEC-19 |
| Chlorobenzene           | 90.8 | % | 70-130 | 23-DEC-19 |
| Chloroethane            | 90.9 | % | 70-130 | 23-DEC-19 |
| Chloroform              | 94.1 | % | 70-130 | 23-DEC-19 |
| Chloromethane           | 93.2 | % | 70-130 | 23-DEC-19 |
| cis-1,2-Dichloroethene  | 89.8 | % | 70-130 | 23-DEC-19 |
| cis-1,3-Dichloropropene | 89.0 | % | 70-130 | 23-DEC-19 |
|                         |      |   |        |           |



1,1,2,2-Tetrachloroethane

91.9

80.2

%

14

25

23-DEC-19

# **Quality Control Report**

|                                 |                                                                  | Workorder                | : L239359         | 98        | Report Date: 24 | -DEC-19 |        | Page 7 of 13 |
|---------------------------------|------------------------------------------------------------------|--------------------------|-------------------|-----------|-----------------|---------|--------|--------------|
| Client:                         | TETRA TECH CANADA<br>10, 140 Quarry Park B<br>Calgary AB T2C 3G3 | A INC.<br>Ivd SE         |                   |           |                 |         |        |              |
| Test                            | Matrix                                                           | Reference                | Result            | Qualifier | Units           | RPD     | Limit  | Analyzed     |
|                                 |                                                                  |                          | littouit          | quanto    | enne            |         |        | , indigiou   |
| TO15-GCMS-WT                    | Canister                                                         |                          |                   |           |                 |         |        |              |
| Batch R4                        | 1953168                                                          |                          |                   |           |                 |         |        |              |
| Cyclohexane                     | 200                                                              |                          | 92.0              |           | %               |         | 70-130 | 23-DEC-19    |
| Dibromochloro                   | methane                                                          |                          | 86.9              |           | %               |         | 70-130 | 23-DEC-19    |
| Dichlorodifluoro                | omethane                                                         |                          | 89.3              |           | %               |         | 70-130 | 23-DEC-19    |
| Ethyl acetate                   |                                                                  |                          | 89.3              |           | %               |         | 70-130 | 23-DEC-19    |
| Ethylbenzene                    |                                                                  |                          | 89.4              |           | %               |         | 70-130 | 23-DEC-19    |
| Freon 113                       |                                                                  |                          | 89.0              |           | %               |         | 70-130 | 23-DEC-19    |
| Freon 114                       |                                                                  |                          | 95.4              |           | %               |         | 70-130 | 23-DEC-19    |
| Hexachlorobuta                  | adiene                                                           |                          | 103.3             |           | %               |         | 70-130 | 23-DEC-19    |
| Isooctane                       |                                                                  |                          | 90.2              |           | %               |         | 70-130 | 23-DEC-19    |
| Isopropyl alcoh                 | ol                                                               |                          | 83.3              |           | %               |         | 70-130 | 23-DEC-19    |
| Isopropylbenze                  | ne                                                               |                          | 87.4              |           | %               |         | 50-150 | 23-DEC-19    |
| m&p-Xylene                      |                                                                  |                          | 91.2              |           | %               |         | 70-130 | 23-DEC-19    |
| Methyl ethyl ke                 | tone                                                             |                          | 89.5              |           | %               |         | 70-130 | 23-DEC-19    |
| Methyl isobutyl                 | ketone                                                           |                          | 89.1              |           | %               |         | 70-130 | 23-DEC-19    |
| Methylene chlo                  | ride                                                             |                          | 95.2              |           | %               |         | 70-130 | 23-DEC-19    |
| MTBE                            |                                                                  |                          | 90.7              |           | %               |         | 70-130 | 23-DEC-19    |
| n-Heptane                       |                                                                  |                          | 89.9              |           | %               |         | 70-130 | 23-DEC-19    |
| n-Hexane                        |                                                                  |                          | 90.8              |           | %               |         | 70-130 | 23-DEC-19    |
| o-Xylene                        |                                                                  |                          | 90.5              |           | %               |         | 70-130 | 23-DEC-19    |
| Propylene                       |                                                                  |                          | 88.6              |           | %               |         | 70-130 | 23-DEC-19    |
| Styrene                         |                                                                  |                          | 89.1              |           | %               |         | 70-130 | 23-DEC-19    |
| Tetrachloroethy                 | /lene                                                            |                          | 90.2              |           | %               |         | 70-130 | 23-DEC-19    |
| Tetrahydrofura                  | n                                                                |                          | 92.0              |           | %               |         | 70-130 | 23-DEC-19    |
| Toluene                         |                                                                  |                          | 91.9              |           | %               |         | 70-130 | 23-DEC-19    |
| trans-1,2-Dichle                | proethene                                                        |                          | 91.7              |           | %               |         | 70-130 | 23-DEC-19    |
| trans-1,3-Dichle                | propropene                                                       |                          | 87.5              |           | %               |         | 70-130 | 23-DEC-19    |
| Trichloroethyle                 | ne                                                               |                          | 91.3              |           | %               |         | 70-130 | 23-DEC-19    |
| Trichlorofluoror                | nethane                                                          |                          | 89.8              |           | %               |         | 70-130 | 23-DEC-19    |
| Vinyl acetate                   |                                                                  |                          | 89.2              |           | %               |         | 70-130 | 23-DEC-19    |
| Vinyl bromide                   |                                                                  |                          | 92.1              |           | %               |         | 70-130 | 23-DEC-19    |
| Vinyl chloride                  |                                                                  |                          | 89.8              |           | %               |         | 70-130 | 23-DEC-19    |
| WG3247636-3<br>1,1,1-Trichloroe | LCSD<br>ethane                                                   | <b>WG3247636</b><br>88.6 | <b>-2</b><br>77.4 |           | %               | 13      | 25     | 23-DEC-19    |



## **Quality Control Report**

Workorder:L2393598Report Date:24-DEC-19Page8of13TETRA TECH CANADA INC.110, 140 Quarry Park Blvd SE

Client: TETRA TECH CANADA INC. 110, 140 Quarry Park Blvd SE Calgary AB T2C 3G3

Contact: Darby Madalena

| Test                    | Matrix   | Reference   | Result | Qualifier | Units   | RPD | Limit | Analyzed  |
|-------------------------|----------|-------------|--------|-----------|---------|-----|-------|-----------|
| TO15-GCMS-WT            | Canister |             |        |           |         |     |       |           |
| Batch R4953168          |          |             |        |           |         |     |       |           |
| WG3247636-3 LCSD        |          | WG3247636-2 | 74.0   |           | 0/      |     | 05    |           |
| 1,1,2-1 nonioroethane   |          | 86.6        | 74.9   |           | %<br>0/ | 14  | 25    | 23-DEC-19 |
| 1,1-Dichloroethane      |          | 92.4        | 77.3   |           | 7o      | 18  | 25    | 23-DEC-19 |
| 1,1-Dichloroethene      |          | 90.6        | 75.4   |           | %<br>0/ | 18  | 25    | 23-DEC-19 |
| 1,2,4-Tricniorobenzene  |          | 108.3       | 91.8   |           | %<br>0/ | 16  | 25    | 23-DEC-19 |
| 1,2,4-1 rimetnyibenzene |          | 92.4        | 79.2   |           | %       | 15  | 25    | 23-DEC-19 |
| 1,2-Dibromoetnane       |          | 90.8        | 77.8   |           | %       | 15  | 25    | 23-DEC-19 |
| 1,2-Dichlorobenzene     |          | 92.5        | 79.7   |           | %       | 15  | 25    | 23-DEC-19 |
| 1,2-Dichloroethane      |          | 90.4        | 78.5   |           | %       | 14  | 25    | 23-DEC-19 |
| 1,2-Dichloropropane     |          | 90.0        | 78.6   |           | %       | 13  | 25    | 23-DEC-19 |
| 1,3,5-Trimethylbenzene  |          | 90.6        | 77.2   |           | %       | 16  | 25    | 23-DEC-19 |
| 1,3-Butadiene           |          | 89.8        | 79.7   |           | %       | 12  | 25    | 23-DEC-19 |
| 1,3-Dichlorobenzene     |          | 91.1        | 78.3   |           | %       | 15  | 25    | 23-DEC-19 |
| 1,4-Dichlorobenzene     |          | 94.2        | 81.2   |           | %       | 15  | 25    | 23-DEC-19 |
| 1,4-Dioxane             |          | 92.9        | 82.0   |           | %       | 12  | 25    | 23-DEC-19 |
| 2-Hexanone              |          | 92.2        | 81.0   |           | %       | 13  | 25    | 23-DEC-19 |
| 4-Ethyltoluene          |          | 90.5        | 78.4   |           | %       | 14  | 25    | 23-DEC-19 |
| Acetone                 |          | 91.2        | 77.4   |           | %       | 16  | 25    | 23-DEC-19 |
| Allyl chloride          |          | 88.3        | 77.2   |           | %       | 13  | 25    | 23-DEC-19 |
| Benzene                 |          | 92.1        | 78.2   |           | %       | 16  | 25    | 23-DEC-19 |
| Benzyl chloride         |          | 87.4        | 76.4   |           | %       | 13  | 25    | 23-DEC-19 |
| Bromodichloromethane    |          | 88.1        | 77.3   |           | %       | 13  | 25    | 23-DEC-19 |
| Bromoform               |          | 88.4        | 74.5   |           | %       | 17  | 25    | 23-DEC-19 |
| Bromomethane            |          | 92.9        | 79.7   |           | %       | 15  | 25    | 23-DEC-19 |
| Carbon Disulfide        |          | 84.8        | 73.4   |           | %       | 15  | 25    | 23-DEC-19 |
| Carbon Tetrachloride    |          | 87.6        | 77.2   |           | %       | 13  | 25    | 23-DEC-19 |
| Chlorobenzene           |          | 90.8        | 78.1   |           | %       | 15  | 25    | 23-DEC-19 |
| Chloroethane            |          | 90.9        | 79.4   |           | %       | 13  | 25    | 23-DEC-19 |
| Chloroform              |          | 94.1        | 80.5   |           | %       | 16  | 25    | 23-DEC-19 |
| Chloromethane           |          | 93.2        | 79.5   |           | %       | 16  | 25    | 23-DEC-19 |
| cis-1,2-Dichloroethene  |          | 89.8        | 79.2   |           | %       | 12  | 25    | 23-DEC-19 |
| cis-1,3-Dichloropropene |          | 89.0        | 76.0   |           | %       | 16  | 25    | 23-DEC-19 |
| Cyclohexane             |          | 92.0        | 77.5   |           | %       | 17  | 25    | 23-DEC-19 |
| Dibromochloromethane    |          | 86.9        | 76.1   |           | %       |     |       | 23-DEC-19 |



## **Quality Control Report**

Workorder:L2393598Report Date:24-DEC-19Page9of13TETRA TECH CANADA INC.110, 140 Quarry Park Blvd SECalgary ABT2C 3G3

Contact: Darby Madalena

Client:

| Test                    | Matrix   | Reference | Result | Qualifier | Units  | RPD | Limit | Analyzed  |
|-------------------------|----------|-----------|--------|-----------|--------|-----|-------|-----------|
| TO15-GCMS-WT            | Canister |           |        |           |        |     |       |           |
| Batch R4953168          |          |           |        |           |        |     |       |           |
| WG3247636-3 LCSD        |          | WG3247636 | -2     |           | 0(     |     |       |           |
| Dibromocniorometnane    |          | 86.9      | 76.1   |           | %      | 13  | 25    | 23-DEC-19 |
|                         | e        | 89.3      | 77.0   |           | %      | 15  | 25    | 23-DEC-19 |
| Ethyl acetate           |          | 89.3      | 75.4   |           | %      | 17  | 25    | 23-DEC-19 |
| Ethylbenzene            |          | 89.4      | 78.0   |           | %      | 14  | 25    | 23-DEC-19 |
| Freon 113               |          | 89.0      | 75.4   |           | %      | 17  | 25    | 23-DEC-19 |
| Freon 114               |          | 95.4      | 82.0   |           | %      | 15  | 25    | 23-DEC-19 |
| Hexachlorobutadiene     |          | 103.3     | 88.9   |           | %      | 15  | 25    | 23-DEC-19 |
| Isooctane               |          | 90.2      | 79.3   |           | %      | 13  | 25    | 23-DEC-19 |
| Isopropyl alcohol       |          | 83.3      | 72.3   |           | %      | 14  | 25    | 23-DEC-19 |
| Isopropylbenzene        |          | 87.4      | 76.3   |           | %      | 14  | 50    | 23-DEC-19 |
| m&p-Xylene              |          | 91.2      | 80.3   |           | %      | 13  | 25    | 23-DEC-19 |
| Methyl ethyl ketone     |          | 89.5      | 78.2   |           | %      | 13  | 25    | 23-DEC-19 |
| Methyl isobutyl ketone  |          | 89.1      | 75.6   |           | %      | 16  | 25    | 23-DEC-19 |
| Methylene chloride      |          | 95.2      | 76.9   |           | %      | 21  | 25    | 23-DEC-19 |
| MTBE                    |          | 90.7      | 77.2   |           | %      | 16  | 25    | 23-DEC-19 |
| n-Heptane               |          | 89.9      | 77.9   |           | %      | 14  | 25    | 23-DEC-19 |
| n-Hexane                |          | 90.8      | 78.3   |           | %      | 15  | 25    | 23-DEC-19 |
| o-Xylene                |          | 90.5      | 78.6   |           | %      | 14  | 25    | 23-DEC-19 |
| Propylene               |          | 88.6      | 74.1   |           | %      | 18  | 25    | 23-DEC-19 |
| Styrene                 |          | 89.1      | 76.4   |           | %      | 15  | 25    | 23-DEC-19 |
| Tetrachloroethylene     |          | 90.2      | 76.6   |           | %      | 16  | 25    | 23-DEC-19 |
| Tetrahydrofuran         |          | 92.0      | 79.5   |           | %      | 15  | 25    | 23-DEC-19 |
| Toluene                 |          | 91.9      | 79.4   |           | %      | 15  | 25    | 23-DEC-19 |
| trans-1,2-Dichloroethen | e        | 91.7      | 77.5   |           | %      | 17  | 25    | 23-DEC-19 |
| trans-1,3-Dichloroprope | ene      | 87.5      | 76.1   |           | %      | 14  | 25    | 23-DEC-19 |
| Trichloroethylene       |          | 91.3      | 77.8   |           | %      | 16  | 25    | 23-DEC-19 |
| Trichlorofluoromethane  |          | 89.8      | 77.5   |           | %      | 15  | 25    | 23-DEC-19 |
| Vinyl acetate           |          | 89.2      | 99.98  |           | %      | 11  | 25    | 23-DEC-19 |
| Vinyl bromide           |          | 92.1      | 78.8   |           | %      | 16  | 25    | 23-DEC-19 |
| Vinyl chloride          |          | 89.8      | 78.0   |           | %      | 14  | 25    | 23-DEC-19 |
| WG3247636-1 MB          |          |           |        |           |        |     |       |           |
| 1,1,1-Trichloroethane   |          |           | <0.20  |           | ppb(V) |     | 0.2   | 23-DEC-19 |
| 1,1,2,2-Tetrachloroetha | ne       |           | <0.20  |           | ppb(V) |     | 0.2   | 23-DEC-19 |



Client:

Contact:

TO15-GCMS-WT

Test

## **Quality Control Report**

Workorder: L2393598 Report Date: 24-DEC-19 Page 10 of 13 TETRA TECH CANADA INC. 110, 140 Quarry Park Blvd SE Calgary AB T2C 3G3 Darby Madalena Matrix Reference Result Qualifier Units RPD Limit Analyzed Canister

| Batch R4953168          |       |        |     |           |
|-------------------------|-------|--------|-----|-----------|
| WG3247636-1 MB          |       |        |     |           |
| 1,1,2-Trichloroethane   | <0.20 | ppb(V) | 0.2 | 23-DEC-19 |
| 1,1-Dichloroethane      | <0.20 | ppb(V) | 0.2 | 23-DEC-19 |
| 1,1-Dichloroethene      | <0.20 | ppb(V) | 0.2 | 23-DEC-19 |
| 1,2,4-Trichlorobenzene  | <0.20 | ppb(V) | 0.2 | 23-DEC-19 |
| 1,2,4-Trimethylbenzene  | <0.20 | ppb(V) | 0.2 | 23-DEC-19 |
| 1,2-Dibromoethane       | <0.20 | ppb(V) | 0.2 | 23-DEC-19 |
| 1,2-Dichlorobenzene     | <0.20 | ppb(V) | 0.2 | 23-DEC-19 |
| 1,2-Dichloroethane      | <0.20 | ppb(V) | 0.2 | 23-DEC-19 |
| 1,2-Dichloropropane     | <0.20 | ppb(V) | 0.2 | 23-DEC-19 |
| 1,3,5-Trimethylbenzene  | <0.20 | ppb(V) | 0.2 | 23-DEC-19 |
| 1,3-Butadiene           | <0.20 | ppb(V) | 0.2 | 23-DEC-19 |
| 1,3-Dichlorobenzene     | <0.20 | ppb(V) | 0.2 | 23-DEC-19 |
| 1,4-Dichlorobenzene     | <0.20 | ppb(V) | 0.2 | 23-DEC-19 |
| 1,4-Dioxane             | <0.20 | ppb(V) | 0.2 | 23-DEC-19 |
| 2-Hexanone              | <1.0  | ppb(V) | 1   | 23-DEC-19 |
| 4-Ethyltoluene          | <0.20 | ppb(V) | 0.2 | 23-DEC-19 |
| Acetone                 | <0.50 | ppb(V) | 0.5 | 23-DEC-19 |
| Allyl chloride          | <0.20 | ppb(V) | 0.2 | 23-DEC-19 |
| Benzene                 | <0.20 | ppb(V) | 0.2 | 23-DEC-19 |
| Benzyl chloride         | <0.20 | ppb(V) | 0.2 | 23-DEC-19 |
| Bromodichloromethane    | <0.20 | ppb(V) | 0.2 | 23-DEC-19 |
| Bromoform               | <0.20 | ppb(V) | 0.2 | 23-DEC-19 |
| Bromomethane            | <0.20 | ppb(V) | 0.2 | 23-DEC-19 |
| Carbon Disulfide        | <0.20 | ppb(V) | 0.2 | 23-DEC-19 |
| Carbon Tetrachloride    | <0.20 | ppb(V) | 0.2 | 23-DEC-19 |
| Chlorobenzene           | <0.20 | ppb(V) | 0.2 | 23-DEC-19 |
| Chloroethane            | <0.20 | ppb(V) | 0.2 | 23-DEC-19 |
| Chloroform              | <0.20 | ppb(V) | 0.2 | 23-DEC-19 |
| Chloromethane           | <0.20 | ppb(V) | 0.2 | 23-DEC-19 |
| cis-1,2-Dichloroethene  | <0.20 | ppb(V) | 0.2 | 23-DEC-19 |
| cis-1,3-Dichloropropene | <0.20 | ppb(V) | 0.2 | 23-DEC-19 |
| Cyclohexane             | <0.20 | ppb(V) | 0.2 | 23-DEC-19 |
| Dibromochloromethane    | <0.20 | ppb(V) | 0.2 | 23-DEC-19 |
|                         |       |        |     |           |



Test

#### **Quality Control Report**

Workorder: L2393598 Report Date: 24-DEC-19 Page 11 of 13 TETRA TECH CANADA INC. Client: 110, 140 Quarry Park Blvd SE Calgary AB T2C 3G3 Contact: Darby Madalena Matrix Reference Result Qualifier Units RPD Limit Analyzed TO15-GCMS-WT Canister R4953168 Batch WG3247636-1 MB Dichlorodifluoromethane <0.20 ppb(V) 0.2 23-DEC-19 0.2 Ethyl acetate <0.20 ppb(V) 23-DEC-19 Ethylbenzene <0.20 ppb(V) 0.2 23-DEC-19 Freon 113 <0.20 ppb(V) 0.2 23-DEC-19 Freon 114 0.2 <0.20 ppb(V) 23-DEC-19 Hexachlorobutadiene <0.20 ppb(V) 0.2 23-DEC-19 0.2 Isooctane ppb(V) < 0.20 23-DEC-19 Isopropyl alcohol <1.0 1 ppb(V) 23-DEC-19 Isopropylbenzene <0.20 ppb(V) 0.2 23-DEC-19 m&p-Xylene < 0.40 ppb(V) 0.4 23-DEC-19 Methyl ethyl ketone <0.20 ppb(V) 0.2 23-DEC-19 Methyl isobutyl ketone ppb(V) <0.20 0.2 23-DEC-19 Methylene chloride ppb(V) 0.2 < 0.20 23-DEC-19 MTBE <0.20 0.2 ppb(V) 23-DEC-19 n-Heptane <0.20 ppb(V) 0.2 23-DEC-19 0.2 n-Hexane <0.20 ppb(V) 23-DEC-19 o-Xylene ppb(V) 0.2 <0.20 23-DEC-19 Propylene <0.20 ppb(V) 0.2 23-DEC-19 0.2 Styrene < 0.20 ppb(V) 23-DEC-19 Tetrachloroethylene <0.20 ppb(V) 0.2 23-DEC-19 Tetrahydrofuran <0.20 ppb(V) 0.2 23-DEC-19 Toluene < 0.20 ppb(V) 0.2 23-DEC-19 trans-1,2-Dichloroethene <0.20 ppb(V) 0.2 23-DEC-19 trans-1,3-Dichloropropene < 0.20 ppb(V) 0.2 23-DEC-19 Trichloroethylene <0.20 ppb(V) 0.2 23-DEC-19 Trichlorofluoromethane <0.20 0.2 ppb(V) 23-DEC-19 Vinyl acetate <0.50 ppb(V) 0.5 23-DEC-19 Vinyl bromide 0.2 <0.20 ppb(V) 23-DEC-19 Vinyl chloride 0.2 <0.20 ppb(V) 23-DEC-19

94.2

%

50-150

23-DEC-19

Surrogate: 4-Bromofluorobenzene

SILOXANES-GCMS-WT Tube



## **Quality Control Report**

Workorder:L2393598Report Date:24-DEC-19Page12of13TETRA TECH CANADA INC.110,140 Quarry Park Blvd SECalgary ABT2C 3G3

Contact: Darby Madalena

Client:

| Test                         | Matrix   | Reference | Result             | Qualifier | Units    | RPD | Limit  | Analyzed  |
|------------------------------|----------|-----------|--------------------|-----------|----------|-----|--------|-----------|
| SILOXANES-GCMS-WT            | Tube     |           |                    |           |          |     |        |           |
| Batch R4945277               |          |           |                    |           |          |     |        |           |
| WG3242059-2 LCS              |          |           | 116.0              |           | 0/       |     | 70.400 |           |
|                              |          |           | 110.0              |           | 70       |     | 70-130 | 18-DEC-19 |
|                              |          |           | 117.6              |           | %        |     | 70-130 | 18-DEC-19 |
| D5(CVMS)                     |          |           | 127.7              |           | %        |     | 70-130 | 18-DEC-19 |
| D6(CVMS)                     |          |           | 121.6              |           | %        |     | 70-130 | 18-DEC-19 |
| MM(LVMS)                     |          |           | 122.0              |           | %        |     | 70-130 | 18-DEC-19 |
| MDM(LVMS)                    |          |           | 124.9              |           | %        |     | 70-130 | 18-DEC-19 |
| MD2M(LVMS)                   |          |           | 118.9              |           | %        |     | 70-130 | 18-DEC-19 |
| MD3M(LVMS)                   |          |           | 114.1              |           | %        |     | 70-130 | 18-DEC-19 |
| WG3242059-3 LCSD<br>D3(CVMS) |          | WG3242059 | <b>-2</b><br>118.1 |           | %        | 17  | 50     | 18-DEC-19 |
| D4(C)/MS)                    |          | 117.6     | 121.2              |           | %        | 3.0 | 50     | 18 DEC 10 |
|                              |          | 127.7     | 131 7              |           | %        | 3.0 | 50     | 18-DEC-19 |
|                              |          | 121.1     | 101.7              |           | 78<br>97 | 3.1 | 50     | 10-DEC-19 |
|                              |          | 121.0     | 120.0              |           | 70       | 3.2 | 50     | 18-DEC-19 |
|                              |          | 122.0     | 94.5               |           | %        | 25  | 50     | 18-DEC-19 |
| MDM(LVMS)                    |          | 124.9     | 123.7              |           | %        | 0.9 | 50     | 18-DEC-19 |
| MD2M(LVMS)                   |          | 118.9     | 116.5              |           | %        | 2.0 | 50     | 18-DEC-19 |
| MD3M(LVMS)                   |          | 114.1     | 106.2              |           | %        | 7.2 | 50     | 18-DEC-19 |
| WG3242059-1 MB<br>D3(CVMS)   |          |           | <10                |           | na       |     | 10     | 18-DEC-19 |
| D4(CVMS)                     |          |           | <10                |           | ng       |     | 10     | 18-DEC-19 |
| D5(CVMS)                     |          |           | <10                |           | ng       |     | 10     | 18-DEC-19 |
| D6(CV/MS)                    |          |           | ~10                |           | ng       |     | 10     | 18-DEC-19 |
| MM(LVMS)                     |          |           | <10                |           | ng       |     | 10     | 18-DEC-19 |
|                              |          |           | <10                |           | ng       |     | 10     | 18-DEC-19 |
|                              |          |           | <10                |           | ng       |     | 10     | 18-DEC-19 |
|                              |          |           | <10                |           | ng       |     | 10     | 18-DEC-19 |
|                              |          |           | <10                |           | ng       |     | 10     | 18-DEC-19 |
| Surrogate: 4-Bromofluor      | obenzene |           | 100.4              |           | %        |     | 50-150 | 18-DEC-19 |

Workorder: L2393598

Report Date: 24-DEC-19

| Client:  | TETRA TECH CANADA INC.       |
|----------|------------------------------|
|          | 110, 140 Quarry Park Blvd SE |
|          | Calgary AB T2C 3G3           |
| Contact: | Darby Madalena               |

Juniaul.

| Legend: |
|---------|
|---------|

| Limit | ALS Control Limit (Data Quality Objectives) |
|-------|---------------------------------------------|
| DUP   | Duplicate                                   |
| RPD   | Relative Percent Difference                 |
| N/A   | Not Available                               |
| LCS   | Laboratory Control Sample                   |
| SRM   | Standard Reference Material                 |
| MS    | Matrix Spike                                |
| MSD   | Matrix Spike Duplicate                      |
| ADE   | Average Desorption Efficiency               |
| MB    | Method Blank                                |
| IRM   | Internal Reference Material                 |
| CRM   | Certified Reference Material                |
| CCV   | Continuing Calibration Verification         |
| CVS   | Calibration Verification Standard           |
| LCSD  | Laboratory Control Sample Duplicate         |

#### Sample Parameter Qualifier Definitions:

| Qualifier | Description                                                                                 |
|-----------|---------------------------------------------------------------------------------------------|
| J         | Duplicate results and limits are expressed in terms of absolute difference.                 |
| RPD-NA    | Relative Percent Difference Not Available due to result(s) being less than detection limit. |

#### Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.



# **Batch Proof Report**

| Batch ID           | Conjetor ID  | Davamatars                | 1<br>Value    | Unite          | Data               | Amplust |
|--------------------|--------------|---------------------------|---------------|----------------|--------------------|---------|
|                    | Carrister ID | Parameters                | value         | Units          |                    | Analyst |
| B191119.112        | 01400-0480   | I,I,I-Irichloroethane     | <0.02         | ppb(V)         | 21-Nov-19          | DTI     |
| B191119.112        | 01400-0480   | 1,1,1,2-Tetrachloroethane | <0.02         | ppb(V)         | 21-Nov-19          | DT1     |
| B191119.112        | 01400-0480   | 1,1,2,2-Tetrachloroethane | <0.02         | ppb(V)         | 21-Nov-19          | DT1     |
| B191119 112        | 01400-0480   | 1 1 2-Trichloroethane     | <0.02         | ppb(V)         | 21-Nov-19          | DT1     |
| R101110 112        | 01400-0480   | 1 1-Dichloroethane        | <0.02         | nnh(V)         | 21-Nov-19          | DT1     |
| D101110 112        | 01400 0400   | 1 1 Dichloroethane        | <0.02         | ppb(v)         | 21 Nov 10          |         |
| BI91119.112        | 01400-0480   | I, I-Dichloroethene       | <0.02         | ppp(v)         | 21-INOV-19         | DTI     |
| B191119.112        | 01400-0480   | 1,2,4-Trichlorobenzene    | <0.20         | ppb(V)         | 21-Nov-19          | DT1     |
| B191119.112        | 01400-0480   | 1,2,4-Trimethylbenzene    | <0.20         | ppb(V)         | 21-Nov-19          | DT1     |
| B191119.112        | 01400-0480   | 1.2-Dibromoethane         | < 0.01        | (V)dqq         | 21-Nov-19          | DT1     |
| R101110 112        | 01400-0480   | 1.2-Dichlorobenzene       | <0.02         | nnh(V)         | 21-Nov-19          | DT1     |
| D101110 112        | 01400 0400   | 1.2 Dichloroothana        | <0.02         | ppb(v)         | 21 Nov 10          |         |
| BI91119.112        | 01400-0480   | 1,2-Dichloroethane        | <0.01         | ppp(v)         | 21-1000-19         |         |
| B191119.112        | 01400-0480   | l ,2-Dichloropropane      | <0.02         | ppb(V)         | 21-Nov-19          | DTT     |
| B191119.112        | 01400-0480   | 1,3,5-Trimethylbenzene    | <0.20         | ppb(V)         | 21-Nov-19          | DT1     |
| B191119.112        | 01400-0480   | 1,3-Butadiene             | <0.20         | (V)dqq         | 21-Nov-19          | DT1     |
| B191119 112        | 01400-0480   | 1 3-Dichlorobenzene       | <0.02         | ppb(V)         | 21-Nov-19          | DT1     |
| P101110 112        | 01400-0480   | 1 4-Dichlorobonzono       | <0.02         | ppb(v)         | 21-Nov-10          |         |
| D191119.112        | 01400-0400   |                           | <0.02<br>0.20 | ppp(v)         | 21-100-19          | DTI     |
| BI91119.112        | 01400-0480   | I,4-Dioxane               | <0.20         | ppb(v)         | 21-NOV-19          | DTI     |
| B191119.112        | 01400-0480   | 2-Chlorophenol            | <0.20         | ppb(V)         | 21-Nov-19          | DT1     |
| B191119.112        | 01400-0480   | 2-Hexanone                | <1.0          | ppb(V)         | 21-Nov-19          | DT1     |
| B191119.112        | 01400-0480   | 4-Ethvltoluene            | <0.20         | (V)dqq         | 21-Nov-19          | DT1     |
| R101110 112        | 01400-0480   | Acetone                   | <0.50         | nnh(V)         | 21-Nov-19          | DT1     |
| D101110 112        | 01400 0400   | Allyl Chlorida            | <0.30         | ppb(v)         | 21 Nov 10          |         |
| DI91119.112        | 01400-0480   | Allyr Chloride            | <0.20         | hhn(s)         | 21-100-19          |         |
| B191119.112        | 01400-0480   | Benzene                   | <0.02         | ppb(V)         | 21-Nov-19          | DT1     |
| B191119.112        | 01400-0480   | Benzyl Chloride           | <0.20         | ppb(V)         | 21-Nov-19          | DT1     |
| B191119.112        | 01400-0480   | Bromodichloromethane      | <0.20         | (V)dqq         | 21-Nov-19          | DT1     |
| R191119 112        | 01400-0480   | Bromobenzene              | <0.20         | nnh(V)         | 21-Nov-19          | DT1     |
| P101110 112        | 01400-0480   | Bromoform                 | <0.20         | ppb(v)         | 21-Nov-10          | DTI     |
| DI91119.112        | 01400-0460   |                           | <0.02         | ppp(v)         | 21-NOV-19          | DTI     |
| BI91119.112        | 01400-0480   | Bromomethane              | <0.20         | ppb(v)         | 21-NOV-19          | DTI     |
| B191119.112        | 01400-0480   | Carbon Disulfide          | <0.20         | ppb(V)         | 21-Nov-19          | DT1     |
| B191119.112        | 01400-0480   | Carbon Tetrachloride      | <0.02         | ppb(V)         | 21-Nov-19          | DT1     |
| B191119.112        | 01400-0480   | Chlorobenzene             | <0.20         | ppb(V)         | 21-Nov-19          | DT1     |
| R101110 112        | 01400-0480   | Chloroethane              | <0.02         | nnh(V)         | 21-Nov-19          | DTI     |
| D191119.112        | 01400-0480   | Chloroform                | <0.02         | ppb(v)         | 21-Nov-19          | DTI     |
| B191119.112        | 01400-0480   | Chloroform                | <0.02         | ppp(v)         | 21-INOV-19         |         |
| B191119.112        | 01400-0480   | Chloromethane             | <0.20         | ppb(V)         | 21-Nov-19          | DTT     |
| B191119.112        | 01400-0480   | cis-1,2-Dichloroethene    | <0.02         | ppb(V)         | 21-Nov-19          | DT1     |
| B191119.112        | 01400-0480   | cis-1,3-Dichloropropene   | <0.02         | (V)dqq         | 21-Nov-19          | DT1     |
| R191119 112        | 01400-0480   | Cyclohexane               | <0.20         | nnh(V)         | 21-Nov-19          | DT1     |
| P101110 112        | 01400-0480   | Dibromochloromothano      | <0.20         | ppb(v)         | 21-Nov-10          |         |
| D191119.112        | 01400-0480   | Diplomochioromethane      | <0.20         | ppb(v)         | 21-Nov-19          | DTI     |
| B191119.112        | 01400-0480   | Dichlorodinuoromethane    | <0.20         | ppp(v)         | 21-INOV-19         |         |
| B191119.112        | 01400-0480   | Ethyl Acetate             | <0.20         | ppb(V)         | 21-Nov-19          | DTT     |
| B191119.112        | 01400-0480   | Ethyl Benzene             | <0.02         | ppb(V)         | 21-Nov-19          | DT1     |
| B191119.112        | 01400-0480   | Freon 113                 | <0.20         | (V)daa         | 21-Nov-19          | DT1     |
| B191119 112        | 01400-0480   | Freon 114                 | <0.20         | nnh(V)         | 21-Nov-19          | DT1     |
| P101110 112        | 01400-0480   | Hexachlorobutadiono       | <0.20         | ppb(t)         | 21-Nov-10          | DTI     |
| D191119.112        | 01400-0400   |                           | <0.02<br>0.20 | ppp(v)         | 21-100-19          | DTI     |
| BI91119.112        | 01400-0480   | Isooctane                 | <0.20         | ppb(v)         | 21-NOV-19          | DTI     |
| B191119.112        | 01400-0480   | Isopropyl Alcohol         | <1.0          | ppb(V)         | 21-Nov-19          | DT1     |
| B191119.112        | 01400-0480   | Isopropylbenzene          | <0.20         | ppb(V)         | 21-Nov-19          | DT1     |
| B191119.112        | 01400-0480   | m&p-Xvlene                | < 0.04        | (V)daa         | 21-Nov-19          | DT1     |
| R191119 112        | 01400-0480   | Methyl Ethyl Ketone       | <0.20         | nnh(V)         | 21-Nov-19          | DT1     |
| P101110 112        | 01400-0480   | Mothylcycloboxano         | <0.20         | ppb(v)         | 21-Nov-10          |         |
| D191119.112        | 01400-0400   | MethylleebutylKetere      | <0.20         |                | 21-Nov-19          | DTI     |
| B191119.112        | 01400-0480   | Methyl Isobutyl Ketone    | <0.20         | ppb(v)         | 21-NOV-19          | DTT     |
| B191119.112        | 01400-0480   | Methylene Chloride        | <0.02         | ppb(V)         | 21-Nov-19          | DT1     |
| B191119.112        | 01400-0480   | MTBE                      | <0.20         | ppb(V)         | 21-Nov-19          | DT1     |
| B191119.112        | 01400-0480   | Naphthalene               | < 0.05        | ppb(V)         | 21-Nov-19          | DT1     |
| R101110 112        | 01400-0480   | n-Decane                  | <0.20         | nnh(V)         | 21-Nov-19          | DTI     |
| D101110 112        | 01400 0400   | n Hentana                 | <0.20         | ppb(v)         | 21 Nov 10          |         |
| DI91119.112        | 01400-0460   | п-пертапе                 | <0.20         | hhn(s)         | 21-100-19          |         |
| B191119.112        | 01400-0480   | n-Hexane                  | <0.02         | ppb(V)         | 21-Nov-19          | DTT     |
| B191119.112        | 01400-0480   | o-Xylene                  | <0.02         | ppb(V)         | 21-Nov-19          | DT1     |
| B191119.112        | 01400-0480   | Propylene                 | <0.20         | (V)dqq         | 21-Nov-19          | DT1     |
| B191119 112        | 01400-0480   | Styrene                   | <0.02         | nnh(\/)        | 21-Nov-19          | DT1     |
| R101110 112        | 01/00-0/80   | Tetrachloroethylono       | ~0.02         | $nnh(\Lambda)$ | 21  Nov = 10       | ודם     |
|                    | 01400-0460   |                           | <0.02         | hhn(A)         | 21-INUV-19         |         |
| ы 91119.112        | 01400-0480   | Tetranyarofuran           | <0.20         | (V)aqq         | 21-NOV-19          | ווט     |
| B191119.112        | 01400-0480   | Toluene                   | <0.02         | ppb(V)         | 21-Nov-19          | DT1     |
| B191119.112        | 01400-0480   | trans-1,2-Dichloroethene  | <0.02         | ppb(V)         | 21-Nov-19          | DT1     |
| B191119 112        | 01400-0480   | trans-1.3-Dichloropropene | <0.02         | pph(V)         | 21-Nov-19          | DT1     |
| R101110 112        | 01400-0480   | Trichloroethyleno         | ~0.02         | $nnh(\Lambda)$ | $21 - N_{OV} = 10$ | ידח     |
|                    | 01400-0400   |                           | <u>\0.02</u>  | hhn(h)         | 21-1100-19         |         |
| <b>БІУІІІУ.  2</b> | 01400-0480   | inchiorofluoromethane     | <0.20         | (V)aqq         | 21-NOV-19          |         |
| B191119.112        | 01400-0480   | Vinyl Acetate             | <0.50         | ppb(V)         | 21-Nov-19          | DT1     |
| B191119.112        | 01400-0480   | Vinyl Bromide             | <0.20         | ppb(V)         | 21-Nov-19          | DT1     |

ADDRESS 60 Northland Rd, Unit 1 Waterloo, ON, N2V 2B8 Canada PHONE +1 519 886-6910 FAX +1 519 886-9047 ALS CANADA LTD. Part of the ALS Group A Campbell Brothers Limited Company

#### www.alsglobal.com



| 01400-0480 | Vinyl Chloride       | <0.02 | ppb(V) | 21-Nov-19 | DT1 |
|------------|----------------------|-------|--------|-----------|-----|
| 01400-0480 | 4-Bromofluorobenzene | 103.1 | %      | 21-Nov-19 | DT1 |



| 60 NORTHLAI |  |
|-------------|--|
| WATERLOO, C |  |

L2393598-COFC

#### AIR QUALITY CHAIN OF CUSTODY FORM - Canister/Tube/Gas Bag

Page\_ 1\_of \_1\_\_

| Phone: (519) 800 0010 Environmental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           | Note: all TAT Quoted material is in business days which exclude |                                    |                                                  | Sp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ecify d      | ate      | Service Requested |           |                  |                  | ed            | Rush <u>3 day (100%</u> ) |                            |                 |                                                                 |               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------------------------------------------------------|------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------|-------------------|-----------|------------------|------------------|---------------|---------------------------|----------------------------|-----------------|-----------------------------------------------------------------|---------------|
| Fax: (519) 886-9047                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |                                                                 |                                    |                                                  | statutory holidays and weekends. TAT of samples received past                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |          | required          |           |                  | 10 day (regular) |               |                           | )                          | D               | Rush 2 day (200%)                                               |               |
| Toll Free: 1-800-668-9878                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |                                                                 |                                    | 3:00 pm or Saturday / Sunday begin the next day. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |          |                   |           | Rush 5 day (50%) |                  | %)            |                           | Rush 1 day (300%)- Enquire |                 |                                                                 |               |
| COMPANY NAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | T                         | Tetra Tech Canad                                                | la Inc.                            |                                                  | SAMPLE TYPE/REGULATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |          | A                 | NALY      | SIS RI           | QUES             | т             |                           |                            |                 | All rush work requires la                                       | b approval    |
| OFFICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 110,14                    | 10 Quarry Park Blvd SE, C                                       | algary, AB T2C                     | 3G3                                              | Reg 419/05 Soil Vapor Intrusion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |          |                   |           |                  |                  | Τ             |                           |                            |                 | before sample subm                                              | ission        |
| PROJECT MANAGER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | Darby Madale                                                    | na                                 | _                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |          |                   |           |                  |                  |               | ê                         | 6                          |                 | SUBMISSION #:                                                   |               |
| PROJECT #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           | SWM.SWOP04071-<br>(McKenzle <u>Trails Recre</u>                 | 01.003<br>atlon Area)              |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |          | 5                 | ¥         | 3                |                  |               | Ē                         | ΗIJ                        |                 |                                                                 |               |
| PHONE<br>403-723-6867                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           | FAX<br>403-203-3301                                             |                                    |                                                  | REPORT FORMAT/DISTRIBUTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | а<br>        | Ę        |                   | +NAP      | s, c             |                  |               | Illa                      | mplin                      |                 | ENTERED BY:                                                     |               |
| ACCOUNT #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           | <u>.</u>                                                        |                                    |                                                  | EMAIL FAX BOTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1            | 5-60     | SES.              | SFRA      | CH               |                  |               | Pre-S                     | st Sar                     | ر<br>آن         | DATE/TIME ENTERED                                               |               |
| QUOTATION # Q71650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           | PO # SWM.SWOP04071-0                                            | 01.003                             |                                                  | SELECT: PDFDIGITALBOTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <br>         | 5        | Ŭ<br>G            | EIE.      | ل<br>ل           |                  |               | BE                        | 6. Po                      | E (HR           |                                                                 |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SAMPLING                  | INFORMATION                                                     |                                    |                                                  | EMAIL 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | WI           |          | Ξ.                | 15        |                  | -                |               | ន្ល                       | SURI                       | WLL             | BIN #                                                           |               |
| Sample Date/Ti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | me                        |                                                                 | Regulator                          | e                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -            |          |                   | -         | Š                |                  |               | R                         | ŝ                          | NO              |                                                                 |               |
| Date (dd-mmm-yy)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Time<br>(24hr)<br>(hh:mm) | Canister or Tube ID#<br>(e.g. 060000-XXXX<br>or G0XXXXXX SVI)   | Serial #<br>CSI 200-XXXX<br>or GXX | Matrix Typ                                       | SAMPLE DESCRIPTION TO APPEAR ON REPORT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TUBE AIR     |          |                   |           | Siloxa           | ,  <br>,         |               | STARTING                  | ENDING P                   | соггест         | Field Conditions<br>(Rain/Wind/Dust/Odour)<br>Field PID Reading | LABID         |
| 03-Dec-19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1503                      | 01056                                                           | G169                               | SG                                               | VW-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              | x        | x                 | x         |                  |                  | -             | 51                        | -8                         | З               |                                                                 |               |
| 03-Dec-19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                         | 9198                                                            | G169                               | 66                                               | 19DUPG1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | X        | X                 | $ \times$ |                  |                  | -             | <b>a</b> 7                | ~E                         | З               |                                                                 |               |
| 03-Dec-19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1720                      | G01506365VI                                                     |                                    | SG                                               | 10WV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |          |                   |           | Х                |                  |               | ~                         | 1                          | /               |                                                                 |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | -                                                               |                                    |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |          |                   |           |                  |                  |               |                           |                            |                 |                                                                 | de la com     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                 |                                    |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |          |                   |           |                  |                  |               |                           |                            |                 |                                                                 |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                 |                                    |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |          |                   |           |                  |                  |               |                           |                            |                 |                                                                 |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                 |                                    |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |          | Γ                 |           |                  |                  |               |                           |                            |                 |                                                                 |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                 |                                    |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              | 1        |                   |           |                  |                  |               |                           |                            |                 |                                                                 |               |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                         | -                                                               |                                    |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1            |          |                   |           |                  |                  |               |                           |                            |                 |                                                                 |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                 |                                    |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1            |          | 1                 |           |                  |                  |               |                           |                            |                 |                                                                 |               |
| an and an and a set of the set of | CIAL INSTR                | UCTIONS/COMMENTS WW                                             |                                    | -                                                | Interesting the second se | s only to be | used fi  | or Air            | Qualit    | y Sam            | phes was         |               |                           |                            | - 200 - 11      | SAMPLE CONDITION AS R                                           | ECEIVED       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                 |                                    | УР                                               | Soil Gas Vapour = \$G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Indoor A     | lir = l/ | A                 |           |                  |                  |               |                           |                            |                 | FROZEN                                                          | MEAN          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                 |                                    | atrix T                                          | Amblent Air = AA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Industria    | al Hy    | jiene             | e = 1H    |                  |                  |               |                           |                            |                 |                                                                 | $\mathcal{D}$ |
| SAMPLED BY:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Me                        | Son Pous                                                        | e                                  | DATE &                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |          |                   |           |                  | DATE (           | S TIME        | ,                         |                            |                 | OBSERVATIONS                                                    | INIT          |
| RELINQUISHED BY:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | · //                      | 1/20                                                            |                                    | DATE &                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              | h        |                   | W.        |                  |                  | TIME          | 67                        | P                          | 7/2             | Yes Mo No                                                       |               |
| Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           | 6 <del>-</del> -                                                |                                    |                                                  | 1 - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | W            | 0        | 1                 |           |                  | 127              | $\mathcal{T}$ | -7                        | $\square$                  | <del>لا م</del> |                                                                 |               |

1. Quote number must be provided to ensure proper pricing

TAT may vary dependent on complexity of analysis and lab workload at time of submission. Please contact the lab to confirm TATs. 3. Any known or suspected hazards relating to a sample must be noted on the chain of custody in comments section. REV4-2012



| 60 NORTHLAI |  |
|-------------|--|
| WATERLOO, C |  |

L2393598-COFC

#### AIR QUALITY CHAIN OF CUSTODY FORM - Canister/Tube/Gas Bag

Page\_ 1\_of \_1\_\_

| Phone: (519) 800 0010 Environmental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           | Note: all TAT Quoted material is in business days which exclude |                                    |                                                  | Sp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ecify d      | ate      | Service Requested |           |                  |                  | ed            | Rush <u>3 day (100%</u> ) |                            |                 |                                                                 |               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------------------------------------------------------|------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------|-------------------|-----------|------------------|------------------|---------------|---------------------------|----------------------------|-----------------|-----------------------------------------------------------------|---------------|
| Fax: (519) 886-9047                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |                                                                 |                                    |                                                  | statutory holidays and weekends. TAT of samples received past                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |          | required          |           |                  | 10 day (regular) |               |                           | )                          | D               | Rush 2 day (200%)                                               |               |
| Toll Free: 1-800-668-9878                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |                                                                 |                                    | 3:00 pm or Saturday / Sunday begin the next day. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |          |                   |           | Rush 5 day (50%) |                  | %)            |                           | Rush 1 day (300%)- Enquire |                 |                                                                 |               |
| COMPANY NAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ι                         | Tetra Tech Canad                                                | la Inc.                            |                                                  | SAMPLE TYPE/REGULATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |          | A                 | NALY      | SIS RI           | QUES             | т             |                           |                            |                 | All rush work requires la                                       | b approval    |
| OFFICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 110,14                    | 10 Quarry Park Blvd SE, C                                       | algary, AB T2C                     | 3G3                                              | Reg 419/05 Soil Vapor Intrusion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |          |                   |           |                  |                  | Τ             |                           |                            |                 | before sample subm                                              | ission        |
| PROJECT MANAGER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | Darby Madale                                                    | na                                 | _                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |          |                   |           |                  |                  |               | ê                         | 6                          |                 | SUBMISSION #:                                                   |               |
| PROJECT #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           | SWM.SWOP04071-<br>(McKenzle <u>Trails Recre</u>                 | 01.003<br>atlon Area)              |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |          | 5                 | ¥         | 3                |                  |               | Ē                         | H L G                      |                 |                                                                 |               |
| PHONE<br>403-723-6867                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           | FAX<br>403-203-3301                                             |                                    |                                                  | REPORT FORMAT/DISTRIBUTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | а<br>        | Ę        |                   | +NAP      | s, c             |                  |               | Illa                      | mplin                      |                 | ENTERED BY:                                                     |               |
| ACCOUNT #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           | <u>.</u>                                                        |                                    |                                                  | EMAIL FAX BOTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1            | 5-6      | SES.              | SFRA      | CH               |                  |               | Pre-S                     | st Sar                     | ر<br>ا          | DATE/TIME ENTERED                                               |               |
| QUOTATION # Q71650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           | PO # SWM.SWOP04071-0                                            | 01.003                             |                                                  | SELECT: PDFDIGITALBOTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <br>         | 5        | Ŭ<br>G            | EIE.      | ل<br>ل           |                  |               | BE                        | 6. Po                      | E (HR           |                                                                 |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SAMPLING                  | INFORMATION                                                     |                                    |                                                  | EMAIL 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | WI           |          | Ξ.                | 15        |                  | -                |               | ន្ល                       | SURI                       | WLL             | BIN #                                                           |               |
| Sample Date/Ti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | me                        |                                                                 | Regulator                          | e                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -            |          |                   | -         | Š                |                  |               | R                         | ŝ                          | NO              |                                                                 |               |
| Date (dd-mmm-yy)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Time<br>(24hr)<br>(hh:mm) | Canister or Tube ID#<br>(e.g. 060000-XXXX<br>or G0XXXXXX SVI)   | Serial #<br>CSI 200-XXXX<br>or GXX | Matrix Typ                                       | SAMPLE DESCRIPTION TO APPEAR ON REPORT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TUBE AIR     |          |                   |           | Siloxa           | ,  <br>,         |               | STARTING                  | ENDING P                   | соггест         | Field Conditions<br>(Rain/Wind/Dust/Odour)<br>Field PID Reading | LABID         |
| 03-Dec-19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1503                      | 01056                                                           | G169                               | SG                                               | VW-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              | x        | x                 | x         |                  |                  | -             | 51                        | -8                         | З               |                                                                 |               |
| 03-Dec-19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                         | 9198                                                            | G169                               | 66                                               | 19DUPG1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | X        | X                 | $ \times$ |                  |                  | -             | <b>a</b> 7                | ~E                         | З               |                                                                 |               |
| 03-Dec-19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1720                      | G01506365VI                                                     |                                    | SG                                               | 10WV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |          |                   |           | Х                |                  |               | ~                         | 1                          | /               |                                                                 |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | -                                                               |                                    |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |          |                   |           |                  |                  |               |                           |                            |                 |                                                                 | de la com     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                 |                                    |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |          |                   |           |                  |                  |               |                           |                            |                 |                                                                 |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                 |                                    |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |          |                   |           |                  |                  |               |                           |                            |                 |                                                                 |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                 |                                    |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |          | Γ                 |           |                  |                  |               |                           |                            |                 |                                                                 |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                 |                                    |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              | 1        |                   |           |                  |                  |               |                           |                            |                 |                                                                 |               |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                         | -                                                               |                                    |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1            |          |                   |           |                  |                  |               |                           |                            |                 |                                                                 |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                 |                                    |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1            |          | 1                 |           |                  |                  |               |                           |                            |                 |                                                                 |               |
| an and an and a set of the set of | CIAL INSTR                | UCTIONS/COMMENTS WW                                             |                                    | -                                                | Interesting the second se | s only to be | used fi  | or Air            | Qualit    | y Sam            | phes was         |               |                           |                            | - 200 - 11      | SAMPLE CONDITION AS R                                           | ECEIVED       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                 |                                    | УР                                               | Soil Gas Vapour = \$G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Indoor A     | lir = l/ | A                 |           |                  |                  |               |                           |                            |                 | FROZEN                                                          | MEAN          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                 |                                    | atrix T                                          | Amblent Air = AA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Industria    | al Hy    | jiene             | e = 1H    |                  |                  |               |                           |                            |                 |                                                                 | $\mathcal{D}$ |
| SAMPLED BY:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Me                        | Son Pous                                                        | e                                  | DATE &                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |          |                   |           |                  | DATE (           | S TIME        | ,                         |                            |                 | OBSERVATIONS                                                    | INIT          |
| RELINQUISHED BY:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | · //                      | 1/20                                                            |                                    | DATE &                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              | h        |                   | W.        |                  |                  | TIME          | 67                        | P                          | 7/2             | Yes Mo No                                                       |               |
| Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           | <u> </u>                                                        |                                    |                                                  | 1 - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | W            | 0        | 1                 |           |                  | 127              | $\mathcal{T}$ | -7                        | $\square$                  | <del>لا م</del> |                                                                 |               |

1. Quote number must be provided to ensure proper pricing

TAT may vary dependent on complexity of analysis and lab workload at time of submission. Please contact the lab to confirm TATs. 3. Any known or suspected hazards relating to a sample must be noted on the chain of custody in comments section. REV4-2012



SOLD TO:

TETRA TECH CANADA INC. **ATTN: Accounts Payable** Suite 110, 140 Quarry Park Blvd SE Calgary AB T2C 3G3

**REPORTED TO:** 

10175

**TETRA TECH CANADA INC. ATTN:Darby Madalena** 110, 140 Quarry Park Blvd SE Calgary AB T2C 3G3 JOB #: SWM.SWOP04071-01.003 (MCKENZIE TRAILS RECREATION AREA) Quote #: Q71650

| Date        | Account # | Terms       | Due Date    | PO Number/Reference  |
|-------------|-----------|-------------|-------------|----------------------|
| 24-Dec-2019 | 10175     | Net 30 Days | 23-Jan-2020 | SWM.SWOP04071-01.003 |

| Matrix   | Analysis             | Description                              | Surcharge Qty | <b>Unit Price</b> | <b>Total Price</b> |
|----------|----------------------|------------------------------------------|---------------|-------------------|--------------------|
| Canister | C1-C5-FID-WT         | Select list of 7 C1-C5 hydrocarbon gases | 2             | \$150.00          | \$300.00           |
| Canister | FIXED GASES-TCD-WT   | High Level Fixed Gases by TCD            | 2             | \$120.00          | \$240.00           |
| Canister | PREP-CANISTER-WT     | Canister Prep Charge                     | 2             | \$95.00           | \$190.00           |
| Canister | TO15,F1F2SFRA+NAP-WT | TO15, F1-F2, SFRACT+NAPH                 | 2             | \$450.00          | \$900.00           |
| Misc.    | SAMPLE-DISPOSAL-CL   | Sample Handling and Disposal Fee         | 3             | \$2.00            | \$6.00             |
| Tube     | PREP-TD-TUBE-WT      | Tube Prep and Supply Charge              | 1             | \$45.00           | \$45.00            |
| Tube     | SILOXANES-GCMS-WT    | Linear & Cyclic Methyl Siloxanes         | 1             | \$350.00          | \$350.00           |
| ALS W    | ork Order Numbers    | and Receive Dates:                       | Sub-total:    |                   | \$2,031.00         |
| L2393598 | 06-DEC-2019          |                                          | GST (5%):     |                   | \$101.55           |

GST/HST BN 100938885

Total (CAD): \$2,132.55 PRICES REFLECT DISCOUNT

#### **Contact Information:**

Inayat Dhaliwal Phone #: (403) 407-1800 Fax #: (403) 291-0298 CALGARY

Please remit payment to ALS Canada Ltd. at the address below. We accept Visa and Mastercard.

ADDRESS: 2103 Dollarton Hwy. North Vancouver BC V7H 0A7 Canada

ALS CANADA LTD Part of the ALS Group An ALS Limited Company

**RIGHT SOLUTIONS RIGHT PARTNER** 

# APPENDIX E

#### HISTORICAL ANALYTICAL DATA



#### 12-435 Phase II ESA - McKenzie Trails Recreation Area Historic Waste Disposal Sites, The City of Red Deer

| Monitoring | pН   | Electrical Conductivity | Temperature | Dissolved Oxygen | Total Dissolved Solid | Redox  |
|------------|------|-------------------------|-------------|------------------|-----------------------|--------|
| Well       |      | (µg/cm)                 | (°C)        | ( <b>mg/L</b> )  | ( <b>mg/L</b> )       | (±mV)  |
|            |      |                         |             |                  |                       |        |
| MW-01      | 7.50 | 449.5                   | 12.9        | 0.58             | 379.60                | -121.2 |
| MW-02      | 7.59 | 423.3                   | 13.7        | 3.87             | 347.75                | -21.9  |
| MW-03      | 7.97 | 1,078                   | 7.9         | 3.24             | 1,040.00              | -133.4 |
| MW-04      |      |                         |             |                  |                       |        |
| MW-05      | 7.22 | 1,585                   | 9.7         | 3.53             | 1,438.50              | -139.3 |
|            |      |                         |             |                  | ,                     |        |

 Table 4A

 Groundwater Indices Measured at Time of Sampling

Notes:

1) Measurement of groundwater indices by YSI Pro Plus.

2) Groundwater sampled on Monday, August 19, 2013.

12-435

Phase II ESA - McKenzie Trails Recreation Area

Historic Waste Disposal Sites, The City of Red Deer

| Analytical Results - Groundwater - General Water Quanty |          |                |       |        |       |       |           |
|---------------------------------------------------------|----------|----------------|-------|--------|-------|-------|-----------|
| Parameter                                               | Unit     | Detection      | MW-01 | MW-02  | MW-03 | MW-05 | Tier 1    |
|                                                         |          | Limit          |       | 08/19  | /2013 | -     | Guideline |
|                                                         |          |                |       |        |       |       |           |
| General Water Quality                                   | /*       | 2              | 1.4   | 2.0    |       | 20    |           |
| Biochemical Oxygen Demand (BOD)                         | mg/L     | 2              | 14    | 3.8    | ND    | 38    |           |
| Chemical Oxygen Demand (COD)                            | mg/L     | 5.0 - 25       | 150   | 32     | 47    | 200   |           |
| Conductivity                                            | μS/cm    | 1              | 590   | 560    | 1,700 | 2,200 |           |
| pH                                                      | Unitless | N/A            | 7.88  | 7.82   | 8.07  | 7.89  | 6.5-8.5   |
| Total Organic Carbon (C)                                | mg/L     | 0.50 - 2.5     | 15    | 13     | 21    | 38    |           |
| Dissolved Cadmium (Cd)                                  | μg/L     | 0.005          | 0.012 | NT     | 0.037 | 0.097 |           |
| Total Cadmium (Cd)                                      | μg/L     | 0.005          | 0.73  | 0.33   | 0.98  | 0.79  | 0.060*    |
| Alkalinity (Total as CaCO <sub>3</sub> )                | mg/L     | 0.5            | 280   | 260    | 800   | 740   |           |
| Bicarbonate (HCO <sub>3</sub> )                         | mg/L     | 0.5            | 340   | 320    | 980   | 910   |           |
| Carbonate (CO <sub>3</sub> )                            | mg/L     | 0.5            | ND    | ND     | ND    | ND    |           |
| Hydroxide (OH)                                          | mg/L     | 0.5            | ND    | ND     | ND    | ND    |           |
| Sulphate $(SO_4)$                                       | mg/L     | 1.0 - 5.0      | 17    | 27     | 32    | 450   |           |
| Chloride (Cl)                                           | mg/L     | 1              | 9.3   | 7.2    | 70    | 62    |           |
| Total Ammonia (N)                                       | mg/L     | 0.050 - 0.50   | 0.47  | ND     | 6.3   | 30    | 1.37*     |
| Total Phosphorus (P)                                    | mg/L     | 0.0030 - 0.030 | 1.5   | 0.068  | 0.38  | 2.1   |           |
| Total Nitrogen (N)                                      | mg/L     | 0.05           | 2.1   | 0.58   | 6.9   | 35    |           |
| Total Kjeldahl Nitrogen                                 | mg/L     | 0.050 - 1.3    | 2.1   | 0.57   | 6.9   | 35    |           |
| Nitrite (as N)                                          | mg/L     | 0.003          | ND    | ND     | 0.010 | 0.018 |           |
| Nitrate (as N)                                          | mg/L     | 0.003          | 0.015 | 0.0079 | 0.017 | 0.054 |           |
| Nitrate plus Nitrite (N)                                | mg/L     | 0.0003         | 0.015 | 0.0080 | 0.027 | 0.072 |           |
| Trace Organics                                          |          |                |       |        |       |       |           |
| Acetic Acid                                             | mg/L     | 50             | ND    | NT     | ND    | ND    |           |
| Formic Acid                                             | mg/L     | 50             | ND    | NT     | ND    | ND    |           |
| Propionic Acid                                          | mg/L     | 50             | ND    | NT     | ND    | ND    |           |
| Adsorbable Organic halogens                             | mg/L     | 0.02           | 0.03  | NT     | 0.07  | 0.04  |           |
|                                                         |          |                |       |        |       |       |           |

| Table 4B                                             |      |
|------------------------------------------------------|------|
| Analytical Results - Groundwater - General Water Qua | lity |

Notes:

1) Tier 1 Guideline - Alberta Tier 1 Soil and Groundwater Remediation Guidelines, December 2010 and amendments. Coarse-grained criteria for residential/parkland land use.

2) \* Surface Water Quality Guidelines for Use in Alberta (AENV, 1999) on aquatic life pathway. Canadian Council of Ministers of the Environment (CCME) guidelines are referenced.

3) ND - Not Detected, less than the limit of method detection.

4) NT - Not Tested

5) -- No value established in the reference criteria.

6) Bold & Shaded - Exceeds the referenced Alberta Tier 1 Guidelines and CCME guidelines.

7) For further laboratory information, refer to the specific laboratory report in Appendix A.

|                  | Analytical | Results - C   | roundwa    | ater - Met   | als           |           |
|------------------|------------|---------------|------------|--------------|---------------|-----------|
| Parameter        | Detection  | MW-01         | MW-02      | MW-03        | MW-05         | Tier 1    |
|                  | Limit      |               | 08/19      | /2013        |               | Guideline |
| Total Metals     |            |               |            |              |               |           |
| Aluminum (Al)    | 0.0030     | 10            | 0.73       | 7.9          | 0.37          | 0.1*      |
| Antimony (Sb)    | 0.00060    | 0.00063       | ND         | ND           | 0.0017        | 0.006     |
| Arsenic (As)     | 0.00020    | 0.015         | 0.0011     | 0.0071       | 0.0089        | 0.005     |
| Barium (Ba)      | 0.010      | 0.72          | 0.015      | 0.5          | 0.37          | 1         |
| Beryllium (Be)   | 0.0010     | ND            | ND         | ND           | ND            |           |
| Boron (B)        | 0.020      | 0.041         | 0.022      | 0.43         | 1.8           | 1.5       |
| Calcium (Ca)     | 0.30       | 120           | 78         | 150          | 240           |           |
| Chromium (Cr)    | 0.0010     | 0.018         | 0.0035     | 0.014        | 0.003         | 0.001*    |
| Cobalt (Co)      | 0.00030    | 0.011         | 0.00087    | 0.008        | 0.012         |           |
| Copper (Cu)      | 0.00020    | 0.042         | 0.0043     | 0.023        | 0.026         | 0.003*    |
| Iron (Fe)        | 0.060      | 25            | 1.6        | 19           | 22            | 0.3       |
| Lead (Pb)        | 0.00020    | 0.019         | 0.0017     | 0.012        | 0.11          | 0.004*    |
| Lithium (Li)     | 0.020      | 0.025         | ND         | 0.075        | 0.031         |           |
| Magnesium (Mg)   | 0.20       | 46            | 22         | 40           | 91            |           |
| Manganese (Mn)   | 0.0040     | 1.4           | 0.1        | 0.9          | 0.6           | 0.05      |
| Molybdenum (Mo)  | 0.00020    | 0.004         | 0.0025     | 0.0017       | 0.0021        |           |
| Nickel (Ni)      | 0.00050    | 0.0340        | 0.0035     | 0.025        | 0.012         | 0.11*     |
| Phosphorus (P)   | 0.10       | 1.10          | ND         | 1.2          | 0.94          |           |
| Potassium (K)    | 0.30       | 6.8           | 3.5        | 6.2          | 45            |           |
| Selenium (Se)    | 0.00020    | 0.00074       | ND         | 0.00076      | 0.0004        | 0.001     |
| 6.1. (6.)        | 0.10       | 22            |            | 20           | 0.4           |           |
| Silicon (Si)     | 0.10       | 22            | 5.6        | 20           | 8.4<br>ND     |           |
| Silver (Ag)      | 0.00010    | 0.0002        | ND 20      | 210          | ND<br>110     | 0.0001*   |
| Strontium (Sr)   | 0.30       | 43            | 0.38       | 11           | 13            |           |
| Sulphur (S)      | 0.020      | 5.1           | 7.8        | 1.1          | 130           |           |
| ()               |            |               | ,          |              |               |           |
| Thallium (Tl)    | 0.00020    | ND            | ND         | ND           | ND            |           |
| Tin (Sn)         | 0.0010     | 0.0015        | 0.003      | 0.0021       | 0.0065        |           |
| Titanium (Ti)    | 0.0010     | 0.14          | 0.025      | 0.0174       | 0.007         |           |
| Uranium (U)      | 0.00010    | 0.0018        | 0.0012     | 0.0022       | 0.0017        | 0.02      |
| vanadium (v)     | 0.0010     | 0.05          | 0.0024     | 0.021        | 0.0015        |           |
| Zinc (Zn)        | 0.0030     | 0.11          | 0.078      | 0.25         | 0.12          | 0.03      |
|                  |            |               |            |              |               |           |
| Dissolved Metals | 0.0020     | 0.00(7        | NT         | 0.040        | 0.0052        |           |
| Aluminum (Al)    | 0.0030     | 0.0067<br>ND  | NT NT      | 0.040<br>ND  | 0.0052        |           |
| Anumony (30)     | 0.00000    | 0.0062        | NT         | 0.0021       | 0.00070       |           |
| Barium (Ba)      | 0.00020    | 0.0002        | NT         | 0.0021       | 0.33          |           |
| Bervllium (Be)   | 0.0010     | ND            | NT         | ND           | ND            |           |
|                  |            |               |            |              |               |           |
| Boron (B)        | 0.020      | 0.044         | NT         | 0.64         | 1.9           |           |
| Calcium (Ca)     | 0.30       | 49            | NT         | 110          | 230           |           |
| Chromium (Cr)    | 0.0010     | ND            | NI         | ND<br>0.0012 | ND<br>0.0048  |           |
| Copper (Cu)      | 0.00030    | 0.00000       | NT         | 0.0013       | 0.0048        |           |
| copper (cu)      | 0.00020    | 0.00027       | 141        | 0.00078      | 0.00044       |           |
| Iron (Fe)        | 0.060      | 3             | NT         | 0.52         | 17            |           |
| Lead (Pb)        | 0.00020    | ND            | NT         | ND           | 0.00027       |           |
| Lithium (Li)     | 0.020      | ND            | NT         | 0.062        | 0.03          |           |
| Magnesium (Mg)   | 0.20       | 24            | NT         | 34           | 92            |           |
| Manganese (Mn)   | 0.0040     | 0.84          | NT         | 0.63         | 0.67          |           |
| Molybdenum (Mo)  | 0.00020    | 0.0042        | NT         | 0.0025       | 0.00088       |           |
| Nickel (Ni)      | 0.00050    | 0.0014        | NT         | 0.0032       | 0.0042        |           |
| Phosphorus (P)   | 0.10       | ND            | NT         | 0.16         | ND            |           |
| Potassium (K)    | 0.30       | 4.5           | NT         | 7.0          | 40            |           |
| Selenium (Se)    | 0.00020    | 0.00047       | NT         | ND           | 0.0002        |           |
| Silicon (Si)     | 0.10       | 5             | NT         | 6            | 8             |           |
| Silver (Ag)      | 0.00010    | ND            | NT         | ND           | ND            |           |
| Sodium (Na)      | 0.50 - 2.5 | 43            | NT         | 280          | 120           |           |
| Strontium (Sr)   | 0.020      | 0.34          | NT         | 1.3          | 1.40          |           |
| Sulphur (S)      | 0.20 -1.0  | 4.5           | NT         | 17           | 150           |           |
| TI 11: (T)       | 0.00000    |               |            | 100          |               |           |
| Thallium (Tl)    | 0.00020    | ND            | NT         | ND           | ND<br>0.0018  |           |
| Titonium (Ti)    | 0.0010     | ND            | IN I<br>NT | ND<br>ND     | 0.0018<br>ND  |           |
| Uranium (11)     | 0.0010     | 0.00049       | IN I<br>NT | 0.0024       | 0.00085       |           |
| Vanadium (V)     | 0.0010     | 0.00048<br>ND | NT         | 0.0024       | 0.00085<br>ND |           |
|                  | 0.0010     |               | .,,        | 0.0011       |               |           |
| Zinc (Zn)        | 0.0030     | ND            | NT         | ND           | 0.02          |           |
| Notos            | I          | I             |            |              |               |           |
| INDICS.          |            |               |            |              |               |           |

#### Table 4C

1) Tier 1 Guideline - Alberta Tier 1 Soil and Groundwater Remediation Guidelines, December 2010 and amendments. Coarse-grained criteria for residential/parkland land use.
2) \* Surface Water Quality Guidelines for Use in Alberta (AENV, 1999) on aquatic life pathway. Canadian Council of Ministers of the Environment (CCME) guidelines are referenced.
3) ND - Not Detected, less than the limit of method detection.

4) NT - Not Tested.

5) Unless specified all units are mg/L.
6) - - No value established in the reference criteria.

7) Bold & Shaded - Exceeds the referenced Alberta Tier 1 and CCME guidelines.

8) For further laboratory information, refer to the specific laboratory report in Appendix A.

|                                       | Anarytical Result | s - Groun | uwater - v |        |         |           |
|---------------------------------------|-------------------|-----------|------------|--------|---------|-----------|
| Parameter                             | Detection         | MW-01     | MW-02      | MW-03  | MW-05   | Tier 1    |
|                                       | Limit             |           | 08/19      | /2013  | 1       | Guideline |
|                                       |                   |           |            |        |         |           |
| Volatile Organic Compounds            |                   |           |            |        |         |           |
| Benzene                               | 0.00040           | ND        | ND         | ND     | 0.0014  | 0.005     |
| Toluene                               | 0.00040           | ND        | ND         | 0.0011 | 0.00063 | 0.024     |
| Ethylbenzene                          | 0.00040           | ND        | ND         | ND     | ND      | 0.0024    |
| Xylenes (Total)                       | 0.00080           | ND        | ND         | ND     | ND      | 0.3       |
| F1 (C <sub>2</sub> -C <sub>10</sub> ) | 0.10              | ND        | ND         | ND     | ND      | 0.81      |
| $F^2 (C_{10} - C_{10})$               | 0.10              | ND        | ND         | ND     | ND      | 11        |
|                                       | 0.10              | T(D)      | ПЪ         | ПЪ     | ПЪ      | 1.1       |
| Total Trihalomethanes                 | 0.0020            | ND        | ND         | ND     | ND      | 0.1       |
| Bromodichloromethane                  | 0.00050           | ND        | ND         | ND     | ND      |           |
| Bromoform                             | 0.00050           | ND        | ND         | ND     | ND      |           |
| Bromomethane                          | 0.0020            | ND        | ND         | ND     | ND      |           |
| Carbon tetrachloride                  | 0.00050           | ND        | ND         | ND     | ND      | 0.00056   |
| Chlorobenzene                         | 0.00050           | ND        | ND         | ND     | ND      | 0.0013    |
| Chlorodibromomethane                  | 0.0010            | ND        | ND         | ND     | ND      |           |
| Chloroethane                          | 0.0010            | ND        | ND         | ND     | ND      |           |
| Chloroform                            | 0.00050           | ND        | ND         | ND     | ND      | 0.0018    |
| Chloromethane                         | 0.0020            | ND        | ND         | ND     | ND      | 0.0010    |
| emotomentane                          | 0.0020            | ND        | ND         | ND     | ND      |           |
| 1,2-dibromoethane                     | 0.00050           | ND        | ND         | ND     | ND      |           |
| 1,2-dichlorobenzene                   | 0.00050           | ND        | ND         | ND     | ND      | 0.0007    |
| 1,3-dichlorobenzene                   | 0.00050           | ND        | ND         | ND     | ND      |           |
| 1,4-dichlorobenzene                   | 0.00050           | ND        | ND         | ND     | ND      | 0.001     |
| 1,1-dichloroethane                    | 0.00050           | ND        | ND         | ND     | ND      |           |
| 1.2-dichloroethane                    | 0.00050           | ND        | ND         | ND     | ND      | 0.005     |
| 1 1-dichloroethene                    | 0.00050           | ND        | ND         | ND     | ND      | 0.014     |
| cis-1 2-dichloroethene                | 0.00050           | ND        | ND         | 0.0012 | 0.0037  |           |
| trans-1 2-dichloroethene              | 0.00050           | ND        | ND         | ND     | ND      |           |
| Dichloromethane                       | 0.00000           | ND        | ND         | ND     | ND      | 0.05      |
| Demoromentale                         | 0.0020            | nD        | ND         | ПЪ     | ЦЪ      | 0.05      |
| 1,2-dichloropropane                   | 0.00050           | ND        | ND         | ND     | ND      |           |
| cis-1,3-dichloropropene               | 0.00050           | ND        | ND         | ND     | ND      |           |
| trans-1,3-dichloropropene             | 0.00050           | ND        | ND         | ND     | ND      |           |
| Methyl methacrylate                   | 0.00050           | ND        | ND         | ND     | ND      | 0.47      |
| Methyl-tert-butylether (MTBE)         | 0.00050           | ND        | ND         | ND     | ND      | 0.015     |
| Styrene                               | 0.00050           | ND        | ND         | ND     | ND      | 0.072     |
| 1,1,1,2-tetrachloroethane             | 0.0020            | ND        | ND         | ND     | ND      |           |
| 1.1.2.2-tetrachloroethane             | 0.0020            | ND        | ND         | ND     | ND      |           |
| Tetrachloroethene                     | 0.00050           | ND        | ND         | ND     | 0.0033  | 0.03      |
| 1,2,3-trichlorobenzene                | 0.0010            | ND        | ND         | ND     | ND      | 0.008     |
|                                       |                   |           |            |        |         |           |
| 1,2,4-trichlorobenzene                | 0.0010            | ND        | ND         | ND     | ND      | 0.015     |
| 1,3,5-trichlorobenzene                | 0.00050           | ND        | ND         | ND     | ND      | 0.014     |
| 1,1,1-trichloroethane                 | 0.00050           | ND        | ND         | ND     | ND      |           |
| 1,1,2-trichloroethane                 | 0.00050           | ND        | ND         | ND     | ND      |           |
| Trichloroethene                       | 0.00050           | ND        | ND         | ND     | ND      | 0.005     |
| Trichlorofluoromethane                | 0.00050           | ND        | ND         | ND     | ND      |           |
| 1,2,4-trimethylbenzene                | 0.00050           | ND        | ND         | ND     | ND      |           |
| 1,3,5-trimethylbenzene                | 0.00050           | ND        | ND         | ND     | ND      |           |
| Vinyl chloride                        | 0.00050           | ND        | ND         | ND     | 0.0007  | 0.0011    |
| -                                     |                   |           |            |        |         |           |

 Table 4D

 Analytical Results - Groundwater -VOCs

Notes:

1) Tier 1 Guideline - Alberta Tier 1 Soil and Groundwater Remediation Guidelines, December 2010

and amendments. Coarse-grained criteria for residential/parkland land use.

2) ND - Not Detected, less than the limit of method detection.

3) Unless specified all units are mg/L

- 4) -- No value established in the reference criteria.
- 5) Bold & Shaded Exceeds the referenced Alberta Tier 1 Guidelines.

6) For further laboratory information, refer to the specific laboratory report in Appendix A.

#### 12-435 Phase II ESA - McKenzie Trails Recreation Area Historic Waste Disposal Sites, The City of Red Deer

 Table 5A

 Summary of Monitoring Parameters During Sampling of Soil Vapour

| Parameter | Well Diameter | Well Depth   | Headspace Volume           | Purge Rate             | Purge Time | P             | ressure           |
|-----------|---------------|--------------|----------------------------|------------------------|------------|---------------|-------------------|
| Unit      | ( <b>mm</b> ) | ( <b>m</b> ) | ( <b>cm</b> <sup>3</sup> ) | (cm <sup>3</sup> /min) | (min)      | Ambient (psi) | Vapour Well (psi) |
| VW-01     | 25            | 5.5          | 2,700.0                    | 943.3                  | 5          | 15.00         | 15.00             |

Notes:

1) Measurement of pressure by digital Cole-Parmer absolute pressure gauge.

2) Purge time is elapsed time prior to the collection of a soil vapour sample.

3) Soil Vapour sampling was completed on August 19, 2013.

#### 12-435 Phase II ESA - McKenzie Trails Recreation Area Historic Waste Disposal Sites, The City of Red Deer

| Analytical Results - Soil Vapour - General Indices |       |                 |              |  |  |
|----------------------------------------------------|-------|-----------------|--------------|--|--|
| Parameter                                          | Unit  | Detection Limit | <b>VW-01</b> |  |  |
|                                                    |       |                 |              |  |  |
| Gauge Pressure                                     |       |                 |              |  |  |
| Following sampling                                 | psi   |                 |              |  |  |
| Reported by laboratory                             | psi   |                 | (-4.0)       |  |  |
| Fixed Gases                                        |       |                 |              |  |  |
| Oxygen                                             | % v/v | 0.2             | 5.8          |  |  |
| Nitrogen                                           | % v/v | 0.2             | 84.7         |  |  |
| Carbon monoxide                                    | % v/v | 0.2             | ND           |  |  |
| Methane                                            | % v/v | 0.2             | ND           |  |  |
| Carbon dioxide                                     | % v/v | 0.2             | 9.5          |  |  |
|                                                    |       |                 |              |  |  |

| Table 5B                                           |  |
|----------------------------------------------------|--|
| Analytical Results - Soil Vapour - General Indices |  |

Notes:

1) Soil vapour sample collected on Saturday, August 17, 2013.

2) ND - Not Detected, less than the limit of method detection.

3) - - No value established in the detection limit and reference criteria.

4) For further information, the reader should refer to the laboratory report in Appendix A.

| Analytical Result                                                                                                                                         | s - Soil V                                           | apour - VOCs                                                        |                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------|
| Parameter                                                                                                                                                 | Unit                                                 | Detection Limit                                                     | VW-01<br>08/17/2013                            |
|                                                                                                                                                           |                                                      |                                                                     | 08/17/2013                                     |
| Hydrocarbon Fractions                                                                                                                                     | . 3                                                  |                                                                     |                                                |
| Aliphatic $>C_5-C_6$                                                                                                                                      | µg/m <sup>2</sup>                                    | 5.0                                                                 | 6.3                                            |
| Aliphatic $>C_6-C_8$                                                                                                                                      | µg/m <sup>°</sup>                                    | 5.0                                                                 | 37.4                                           |
| Aliphatic $>C_8$ - $C_{10}$                                                                                                                               | µg/m'                                                | 5.0                                                                 | 36.9                                           |
| Aliphatic >C10-C12                                                                                                                                        | µg/m <sup>3</sup>                                    | 5.0                                                                 | 55.2                                           |
| Aliphatic >C12-C16                                                                                                                                        | µg/m3                                                | 5.0                                                                 | 18.4                                           |
| Aromatia >C C (TEX Evaluded)                                                                                                                              | ug/m <sup>3</sup>                                    | 5.0                                                                 | ND                                             |
| Aromatic >C <sub>7</sub> =C <sub>8</sub> (TEX Excluded)                                                                                                   | μg/m <sup>3</sup>                                    | 5.0                                                                 | 10.2                                           |
| Aromatic $\sim C_8 - C_{10}$                                                                                                                              | μg/m                                                 | 5.0                                                                 | 10.2                                           |
| Aromatic $> C_{10}$                                                                                                                                       | μg/m                                                 | 5.0                                                                 | 10.0                                           |
| Aromatic $>C_{12}$ - $C_{16}$                                                                                                                             | µg/m                                                 | 5.0                                                                 | ND                                             |
| Select Volatile Gases                                                                                                                                     |                                                      |                                                                     |                                                |
| Acetylene                                                                                                                                                 | ppm                                                  | 0.2                                                                 | ND                                             |
| Emane<br>Ethylene                                                                                                                                         | ppm                                                  | 0.2                                                                 | ND                                             |
| Methane                                                                                                                                                   | ppm                                                  | 4.1                                                                 | ND                                             |
| n-Butane                                                                                                                                                  | ppm                                                  | 0.41                                                                | ND                                             |
| n-Pentane                                                                                                                                                 | nnm                                                  | 0.2                                                                 | ND                                             |
| Propane                                                                                                                                                   | ppm                                                  | 0.2                                                                 | ND                                             |
| Propene                                                                                                                                                   | ppm                                                  | 0.2                                                                 | ND                                             |
| Propyne                                                                                                                                                   | ppm                                                  | 0.41                                                                | ND                                             |
| Volatile Organic Compounds                                                                                                                                |                                                      |                                                                     |                                                |
| Dichlorodifluoromethane (FREON 12)                                                                                                                        | ppbv                                                 | 0.20                                                                | 0.74                                           |
| 1,2-Dichlorotetrafluoroethane                                                                                                                             | ppbv                                                 | 0.17                                                                | ND                                             |
| Chloromethane                                                                                                                                             | ppbv                                                 | 0.30                                                                | 0.92                                           |
| v inyi chloride                                                                                                                                           | ppbv                                                 | 0.18                                                                | ND<br>ND                                       |
| Cinoroeutane                                                                                                                                              | ppov                                                 | 0.50                                                                | ND                                             |
| 1,3-Butadiene                                                                                                                                             | ppbv                                                 | 0.50                                                                | ND                                             |
| Trichlorofluoromethane (FREON 11)                                                                                                                         | ppbv                                                 | 0.20                                                                | 0.31                                           |
| Etnanoi (etnyi aiconoi)<br>Trichlorotrifluoroethane                                                                                                       | ppbv                                                 | 2.3                                                                 | 0.18                                           |
| 2-propanol                                                                                                                                                | ppbv                                                 | 3.0                                                                 | ND                                             |
|                                                                                                                                                           |                                                      |                                                                     |                                                |
| 2-Propanone<br>Mathyl athyl katona (MEK) (2 Butanona)                                                                                                     | ppbv                                                 | 0.80                                                                | 26<br>ND                                       |
| Methyl isobutyl ketone                                                                                                                                    | ppbv                                                 | 3.2                                                                 | ND                                             |
| Methyl butyl ketone (MBK) (2-Hexanone)                                                                                                                    | ppbv                                                 | 2.0                                                                 | ND                                             |
| Methyl t-butyl ether (MTBE)                                                                                                                               | ppbv                                                 | 0.20                                                                | ND                                             |
| Ethyl acetate                                                                                                                                             | ppby                                                 | 2.2                                                                 | ND                                             |
| 1,1-Dichloroethylene                                                                                                                                      | ppbv                                                 | 0.25                                                                | ND                                             |
| cis-1,2-Dichloroethylene                                                                                                                                  | ppbv                                                 | 0.19                                                                | ND                                             |
| trans-1,2-Dichloroethylene                                                                                                                                | ppbv                                                 | 0.20                                                                | ND                                             |
| Methylene chloride(Dichloromethane)                                                                                                                       | рроу                                                 | 0.80                                                                | ND                                             |
| Chloroform                                                                                                                                                | ppbv                                                 | 0.15                                                                | 0.24                                           |
| Carbon tetrachloride                                                                                                                                      | ppbv                                                 | 0.30                                                                | ND                                             |
| 1.2-Dichloroethane                                                                                                                                        | ppbv                                                 | 0.20                                                                | ND                                             |
| Ethylene dibromide                                                                                                                                        | ppbv                                                 | 0.17                                                                | ND                                             |
| 1.1.1 Trichloroathana                                                                                                                                     | nnhu                                                 | 0.30                                                                | ND                                             |
| 1.1.2-Trichloroethane                                                                                                                                     | ppbv                                                 | 0.15                                                                | ND                                             |
| 1,1,2,2-Tetrachloroethane                                                                                                                                 | ppbv                                                 | 0.20                                                                | ND                                             |
| cis-1,3-Dichloropropene                                                                                                                                   | ppbv                                                 | 0.18                                                                | ND                                             |
| trans-1,3-Dichloropropene                                                                                                                                 | ppbv                                                 | 0.17                                                                | ND                                             |
| 1,2-Dichloropropane                                                                                                                                       | ppbv                                                 | 0.40                                                                | ND                                             |
| Bromomethane                                                                                                                                              | ppbv                                                 | 0.18                                                                | ND                                             |
| Bromoform                                                                                                                                                 | ppbv                                                 | 0.20                                                                | ND                                             |
| Dibromochloromethane                                                                                                                                      | ppbv                                                 | 0.20                                                                | ND<br>ND                                       |
|                                                                                                                                                           | PPOV                                                 | 0.20                                                                | 110                                            |
| Trichloroethylene (TCE)                                                                                                                                   | ppbv                                                 | 0.30                                                                | ND                                             |
| reuachioroetnyiene (PCE)<br>Benzene                                                                                                                       | ppbv                                                 | 0.20                                                                | ND<br>2.42                                     |
| Toluene                                                                                                                                                   | ppbv                                                 | 0.20                                                                | 7.53                                           |
| Ethylbenzene                                                                                                                                              | ppbv                                                 | 0.20                                                                | 0.94                                           |
| n+m-xvlene                                                                                                                                                | nphy                                                 | 0.37                                                                | 4 38                                           |
| o-xylene                                                                                                                                                  | ppbv                                                 | 0.20                                                                | 1.5                                            |
| Styrene                                                                                                                                                   | ppbv                                                 | 0.20                                                                | 0.21                                           |
| 4-ethyltoluene                                                                                                                                            | ppbv                                                 | 2.2                                                                 | ND                                             |
| 1,3,5-Trimethylbenzene                                                                                                                                    | ppbv                                                 | 0.50                                                                | ND                                             |
| 1,2,4-Trimethylbenzene                                                                                                                                    | ppbv                                                 | 0.50                                                                | 0.58                                           |
| Chlorobenzene                                                                                                                                             | ppbv                                                 | 0.20                                                                | ND                                             |
| Benzyl chloride                                                                                                                                           | ppbv                                                 | 1.0                                                                 | ND                                             |
| 1,4-Dichlorobenzene                                                                                                                                       | ppbv                                                 | 0.40                                                                | ND                                             |
|                                                                                                                                                           | 1101                                                 | 0.40                                                                |                                                |
| 1,2-Dichlorobenzene                                                                                                                                       | ppbv                                                 | 0.40                                                                | ND<br>ND                                       |
| Hexachlorobutadiene                                                                                                                                       | ppbv                                                 | 3.0                                                                 | ND                                             |
| Hexane                                                                                                                                                    | ppbv                                                 | 0.30                                                                | 1.99                                           |
| Heptane                                                                                                                                                   | ppbv                                                 | 0.30                                                                | 1.88                                           |
|                                                                                                                                                           |                                                      |                                                                     | 0.36                                           |
| Cvclohexane                                                                                                                                               | ppby                                                 | 0,20                                                                |                                                |
| Cyclohexane<br>Fetrahydrofuran                                                                                                                            | ppbv<br>ppbv                                         | 0.20<br>0.40                                                        | 4.46                                           |
| Cyclohexane<br>Fetrahydrofuran<br>1,4-Dioxane                                                                                                             | ppbv<br>ppbv<br>ppbv                                 | 0.20<br>0.40<br>2.0                                                 | 4.46<br>ND                                     |
| Cyclohexane<br>Tetrahydrofuran<br>1,4-Dioxane<br>Xylene (Total)                                                                                           | ppbv<br>ppbv<br>ppbv<br>ppbv                         | 0.20<br>0.40<br>2.0<br>0.60                                         | 4.46<br>ND<br>5.88                             |
| Cyclohexane<br>Tetrahydrofuran<br>1,4-Dioxane<br>Xylene (Total)<br>Vinyl bromide                                                                          | ppbv<br>ppbv<br>ppbv<br>ppbv<br>ppbv                 | 0.20<br>0.40<br>2.0<br>0.60<br>0.20                                 | 4.46<br>ND<br>5.88<br>ND                       |
| Cyclohexane<br>Tetrahydrofuran<br>1,4-Dioxane<br>Xylene (Total)<br>Vinyl bromide<br>Propene                                                               | ppbv<br>ppbv<br>ppbv<br>ppbv<br>ppbv                 | 0.20<br>0.40<br>2.0<br>0.60<br>0.20<br>0.30                         | 4.46<br>ND<br>5.88<br>ND<br>ND                 |
| Cyclohexane<br>Tetrahydrofuran<br>14Dioxane<br>Xylene (Total)<br>Vinyl bromide<br>Propene<br>2.2.4-Trimethylpentane                                       | ppbv<br>ppbv<br>ppbv<br>ppbv<br>ppbv<br>ppbv         | 0.20<br>0.40<br>2.0<br>0.60<br>0.20<br>0.30<br>0.20                 | 4.46<br>ND<br>5.88<br>ND<br>ND<br>0.41         |
| Cyclohexane<br>Tetrahydrofuran<br>[4-Dioxane<br>Xylene (Total)<br>Vinyl bromide<br>Propene<br>2,2,4-Trimethylpentane<br>Carbon disulfide<br>Vinul acetate | ppbv<br>ppbv<br>ppbv<br>ppbv<br>ppbv<br>ppbv<br>ppbv | 0.20<br>0.40<br>2.0<br>0.60<br>0.20<br>0.30<br>0.20<br>0.50<br>0.50 | 4.46<br>ND<br>5.88<br>ND<br>ND<br>0.41<br>8.70 |

Table 5C

Results are from sampling performed on Saturday, August 17, 2013.
 ND - Not Detected, less than the limit of method detection.
 - No value established in the detection limit and reference criteria.
 For further information, the reader should refer to the laboratory report in Appendix A.
## 12-435 Phase II ESA - McKenzie Trails Recreation Area Historic Waste Disposal Sites, The City of Red Deer

|                                     | Detection Limit   |        | VW-01             |        |
|-------------------------------------|-------------------|--------|-------------------|--------|
| Parameter                           |                   |        | 08/17/2013        |        |
|                                     | mg/m <sup>3</sup> | ppm    | mg/m <sup>3</sup> | ppm    |
|                                     |                   |        |                   |        |
| Trimethylsilyl Fluoride             |                   |        | 0.0007            | 0.0002 |
| Tetramethylsilane                   | 0.0001            | 0.0001 | ND                | ND     |
| Methoxytrimethylsilane              | 0.0018            | 0.0004 | ND                | ND     |
| Ethoxytrimethylsilane               | 0.0017            | 0.0004 | ND                | ND     |
| Trimethylsilanol                    |                   |        | 0.0394            | 0.0107 |
| Isopropoxytrimethylsilane           | 0.0007            | 0.0001 | ND                | ND     |
| Trimethoxymethyl Silane #           |                   |        | ND                | ND     |
| Hexamethyl Disiloxane - L2          |                   |        | 0.0005            | 0.0001 |
| Propoxytrimethylsilane              | 0.002             | 0.0004 | ND                | ND     |
| 1-Methylbutoxytrimethylsilane *     |                   |        | ND                | ND     |
| Butoxytrimethylsilane *             |                   |        | ND                | ND     |
| Trimethoxyvinyl Silane #            |                   |        | ND                | ND     |
| Hexamethyl Cyclotrisiloxane - D3    |                   |        | 0.0074            | 0.0008 |
| Octamethyl Trisiloxane - L3         | 0.0001            | 0.0001 | ND                | ND     |
| Triethoxyvinyl Silane #             |                   |        | ND                | ND     |
| Triethoxyethyl Silane #             |                   |        | ND                | ND     |
| Octamethyl Cyclotetrasiloxane - D4  |                   |        | 0.0071            | 0.0006 |
| Decamethyl Tetrasiloxane - L4       | 0.0002            | 0.0001 | ND                | ND     |
| Tetraethylsilicate #                |                   |        | ND                | ND     |
| Decamethyl Cyclopentasiloxane - D5  |                   |        | 0.0160            | 0.0011 |
| Dodecamethyl Pentasiloxane - L5     | 0.0017            | 0.0006 | ND                | ND     |
| Dodecamethyl Cyclohexasiloxane - D6 |                   |        | 0.1747            | 0.0096 |
| Sum                                 |                   |        | 0.2541            | 0.0245 |
|                                     |                   |        |                   |        |

Table 5DAnalytics Results - Soil Vapour - Siloxanes

Notes:

1) Soil vapour samples collected on Saturday, August 17, 2013.

2) ND - Not Detected, less than the limit of method detection.

3) - - No value established in the detection limit and reference criteria.

4) V=200 mL, where V is volume of air/gas sampled.

5) \* - Semiquanititative (response factor set at 5).

6) # - Unstable, poor detectability, commercial standards tested.

7) For further information, the reader should refer to the laboratory report in Appendix A.