

2019 Groundwater and Soil Vapour Monitoring Report Red Deer Motors Site SE 08-038-27 W4M

PRESENTED TO

City of Red Deer

OCTOBER 27, 2020 ISSUED FOR USE

FILE: SWM.SWOP04071-01.006

This page intentionally left blank.

EXECUTIVE SUMMARY

The City of Red Deer (The City) retained Tetra Tech Canada Inc. (Tetra Tech) to conduct the 2019 groundwater and vapour monitoring program at a former landfill located at legal location Lot 3MR, Block 2, Plan 842 2279 within the southeast quarter of Section 08-038-27 W4M. The site is known as the Red Deer Motors (RDM) historic waste disposal site, hereafter referred to as the site. The objective of the monitoring program is to identify potential environmental concerns related to former operations at the site.

Tetra Tech's scope of work for the 2019 monitoring and sampling program at the RDM site included conducting semi-annual events of groundwater and vapour monitoring, annual groundwater sampling, updating the hazard quotients, reviewing and updating previous recommendations for the site, and preparing an annual report.

The current groundwater monitoring network at the site consists of four monitoring wells (MW-01, MW-04A/B and MW-05). Of the three wells (MW-01, MW-02 and MW-03) that were installed during a previous assessment in 2013 only MW-01 could be located in 2019. MW-02 and MW-03 are suspected to have been destroyed when a paved area east of site was extended to the west. In December 2019, Tetra Tech personnel located three monitoring wells on the west side of the site near Waskasoo Creek. These wells were presumably installed by Alberta Environmental Protection in the 1980s and have been labelled as MW-04A/B and MW-05. Completion details for these three wells are not known.

The current vapour monitoring network consists of two vapour monitoring wells (VW-01 and VW-02) that were installed in 2013. Vapour monitoring well VW-03 was likely destroyed when the area east of the site was paved.

Based upon the results of the groundwater and vapour monitoring and sampling conducted in 2019 and previous years, Tetra Tech has developed the following conclusions:

- The groundwater elevations in 2019 were not contoured due to inadequate data. MW-02 and MW-03 were not located during either monitoring event and the additional monitoring wells MW-04A, MW-04B, and MW-05 did not have available elevation data to calculate and interpret contours for the elevations. Historically, groundwater flow was indicated to be to the northwest, towards Waskasoo Creek.
- Parameters that exceeded the Alberta Tier 1 Soil and Groundwater Remediation Guidelines (Tier 1 Guidelines) at one or more monitoring wells in 2019 included total dissolved solids (TDS), sodium, chloride, ammonia, dissolved arsenic, copper, iron, manganese, and uranium, and vinyl chloride. The measured concentrations of one or more of these parameters suggest leachate has impacted the groundwater quality at MW-01, MW-04A, and MW-05. The measured concentrations of these parameters were generally consistent with previous results.
- During the December 2019 sampling events, chloride concentrations greater than the Tier 1 Guidelines (120 mg/L) were measured at monitoring wells MW-01, MW-04A, and MW-05. The highest chloride concentration was 450 mg/L at MW-04A.
- Concentrations of toluene, ethylbenzene, xylenes, petroleum hydrocarbons (PHC) fractions F1 to F2, adsorbable organic halides (AOX), and volatile fatty/carboxylic acids in 2019 were less than the analytical detection limits at all monitoring wells. Benzene concentrations were detected at MW-01 (0.0006 mg/L) and MW-05 (0.00189 mg/L), but were less than the Tier 1 Guidelines value of 0.005 mg/L.
- Concentrations of vinyl chloride in the groundwater exceeded Tier 1 Guidelines at MW-01 and MW-05 in December 2019. In addition, detectable concentrations of a chlorinated volatile organic compound (VOC) for which no Tier 1 Guidelines is established (1,2-dichloroethene) were measured at MW-01, MW-04A, and MW-05.

- Concentrations of benzene, toluene, ethylbenzene, and xylenes (BTEX), PHCs, and VOCs were less than the soil vapour screening criteria in sample VW-02.
- 1,2-dichloroethane and vinyl chloride in soil gas were greater than the soil vapour screening criteria in sample VW-01 and its duplicate.
- Siloxanes were not detected in the samples collected.
- The estimated individual and cumulative risks and hazards associated with the soil vapour sample collected in December 2019 did not exceed the corresponding target risk and hazard levels for sample VW-02. The estimated individual and / or cumulative risks and hazards associated with the soil vapour sample collected in December 2019 did exceed the corresponding target risk and hazard levels for sample VW-01.
- Based on the above, the groundwater at interpreted hydraulically down-gradient locations (MW-01, MW-04A, and MW-05) was identified to exhibit leachate impacts. The groundwater at the fourth well (MW-04B), which is installed slightly deeper and adjacent to MW-04A, did not appear to exhibit impacts. One of the two vapour wells (VW-01, situated in the northwest corner of the site) exhibited impacts by LFG, as evidenced by elevated methane and VOCs. However, this is not identified as a concern related to current developments near the site. Should a change in development be contemplated, this conclusion may need to be revised.

Based upon the results of the groundwater and vapour monitoring program in 2019 and previous years, there are residual impacts to groundwater and vapours and buried landfill waste remains in place beneath the site and therefore ongoing risk management is required. Risk management is recommended to include additional assessment; ongoing monitoring; and administrative actions. The following recommendations are made according to these risk management elements:

Ongoing Monitoring:

- Continue the current semi-annual groundwater monitoring and annual sampling program at the site for another year to confirm concentrations measured to date and to monitor trends.
- Monitoring wells MW-01, MW-04A, and MW-05 should be sampled for routine groundwater chemistry parameters, dissolved metals, BTEX, PHC fractions F1 and F2, and VOCs. Deeper monitoring well MW-04B does not exhibit obvious groundwater quality impacts and may be omitted from the program.
- Survey the elevations of monitoring wells MW-04A, MW-04B, and MW-05 to establish the inferred groundwater flow direction.
- Continued vapour monitoring including methane and pressures is considered warranted to confirm conditions. The suggested monitoring would include manual measurements of headspace pressures and methane concentrations, measured semi-annually (in conjunction with groundwater monitoring) in both groundwater and vapour wells; if an additional well is installed as recommended below, it should be included in this monitoring.
- Based on the results of the soil vapour sample from VW-01, there is a potential vapour intrusion risk in the northwest corner of the site from VOCs. Continued vapour sampling of VW-01 in conjunction with the groundwater monitoring program should be conducted, and the additional well along the east boundary, if installed, should also be sampled. Further sampling of vapours in VW-02 is not considered warranted.

Additional Assessment:

- Install a vapour well along east site boundary is warranted, approximately halfway between former VW-03 and existing VW-02 to assess potential vapour migration to the east.
- Replace background groundwater monitoring well MW-02 to provide additional groundwater data.
- The extent and migration of leachate impacted groundwater is poorly defined to the west and northwest. Because Waskasoo Creek is considered to be a receptor, it is recommended to collect upstream and downstream surface water samples during a spring/summer monitoring event for analysis of BTEX, PHC fractions F1 and F2, total metals, routine water chemistry, and VOCs. If the surface water sampling results exceed FAL guidelines and are interpreted to be related to municipal solid waste (MSW) leachate impacts, additional sampling or assessment may be recommended.
- Based on the nature of thin soil cover identified in the earlier work by Tiamat, we suggest that during field monitoring events, a basic site walkover be conducted to evaluate for potential erosion, cracking, and/or exposed wastes. This information could be used to document whether potential repairs to the cap are warranted.

Administrative Actions:

- Utilize the revised generic mitigative measures when evaluating applications for development within the setback.
- Ensure that the site is clearly identified within The City's Land Use Bylaw and appropriate administrative requirements are met for the site in accordance with City policies.
- Ensure that the site is clearly identified within The City's utility mapping system. Elevated gas concentrations are present in the subsurface proximate to the 32 Street road right-of-way. Future activities in this vicinity (e.g., utility work, repairs, paving, etc.) should consider the potential presence of gas and a site-specific safety plan should be developed for work undertaken to limit the potential for exposure to site workers.

Further to the above recommendations, as noted the site remains an historical landfill. It presently appears to be well maintained and capped. The City should review this status on an ongoing basis to ensure that the cover remains intact and drainage remains positive; repairs or maintenance should be undertaken as required to maintain the site.

TABLE OF CONTENTS

EXE	CUTI	VE SUN	MMARY				
4.0		200110	ATION.				
1.0		INTRODUCTION					
	1.1	•	e of Work				
	1.2	Pre-19	972 Landfill Program	1			
2.0	BACKGROUND INFORMATION						
	2.1	2.1 General Information					
	2.2	Site History					
	2.3	Historical Groundwater Monitoring and Investigation Summary					
	2.4	Monitoring Well Network					
3.0	SITE	SITE SETTING					
	3.1	Geolog	gy	5			
		3.1.1	Geological Setting and Stratigraphy	5			
		3.1.2	Local Geology	5			
	3.2	Hydrog	geology	6			
		3.2.1	Regional Hydrogeology	6			
		3.2.2	Local Hydrogeology	6			
	3.3 Groundwater Resource Usage						
4.0	CON	ICEPTI	UAL SITE MODEL	7			
	4.1						
	4.2						
	4.3	Grain Size Designation					
	4.4		sure Pathways and Receptors for Soil and Groundwater				
		4.4.1	Human Receptors and Pathways	8			
		4.4.2	Ecological Receptors and Pathways	9			
		4.4.3	Exposure Pathway Summary	9			
	4.5	Soil Va	apour	9			
		4.5.1	Indoor Air Risk Calculations	10			
		4.5.2	Methane and Explosive Risks	10			
	4.6	Overal	Il Guidelines	10			
5.0	GROUNDWATER MONITORING AND SAMPLING PROGRAM11						
	5.1	5.1 Field Program					
	5.2	Analytical Program1					
6.0	VAF	OUR M	MONITORING AND SAMPLING PROGRAM	12			
	6.1 Field Program						
	6.2						
7.0	RES	SULTS A	AND DISCUSSION	13			
	7.1		dwater Well Headspace Monitoring				
	7.2		dwater Elevations				

7.				
7.	· · · · · · · · · · · · · · · · · · ·			
7.	, ,			
7.	,			
7.	, , ,			
	7.7.1 Methods			
	7.7.2 Results	17		
8.0 H	AZARD QUOTIENT CALCULATIONS	18		
9.0 E	VALUATION OF SITE CONDITIONS			
9.	, -			
9.	2 Review of Mitigative Measures from Risk Management Plan	20		
10.0 C	ONCLUSIONS AND RECOMMENDATIONS	22		
11.0 C	LOSURE	25		
DEEED		00		
KEFEK	ENCES	26		
APPE	NDIX SECTIONS			
TABLE	S			
IADLL				
Table 1	Groundwater Elevations			
Table 2	Groundwater Analytical Results			
Table 3	Soil Vapour Monitoring Results			
Table 4	1 7			
Table 5				
Table 6	, , ,			
Table 7	· · · · · · · · · · · · · · · · · · ·			
Table 8				
Table 9	!			
Table 1	0 Soil Vapour Risk Evaluation			
FIGURE	ES			
Figure 1	1 Site Location Plan			
Figure 2	Site Plan and Surrounding Land Use			
Figure 3	•			
Figure 4	` ,			
Figure 5				

APPENDICES

Appendix B Cross-sections (Tiamat 2014a)

Appendix C Water Well Data

Appendix D Laboratory Analytical Reports
Appendix E Historical Analytical Results

LIMITATIONS OF REPORT

This report and its contents are intended for the sole use of The City of Red Deer and their agents. Tetra Tech Canada Inc. (Tetra Tech) does not accept any responsibility for the accuracy of any of the data, the analysis, or the recommendations contained or referenced in the report when the report is used or relied upon by any Party other than The City of Red Deer, or for any Project other than the proposed development at the subject site. Any such unauthorized use of this report is at the sole risk of the user. Use of this document is subject to the Limitations on the Use of this Document attached in Appendix A or Contractual Terms and Conditions executed by both parties.

1.0 INTRODUCTION

The City of Red Deer (The City) retained Tetra Tech Canada Inc. (Tetra Tech) to conduct the 2019 groundwater and vapour monitoring program at a former landfill located at legal location Lot 3MR, Block 2, Plan 842 2279 within the southeast quarter of Section 08-038-27 W4M. The site is known as the Red Deer Motors (RDM) historic waste disposal site, hereafter referred to as the site. The objective of the monitoring program is to identify potential environmental concerns related to former operations at the site.

1.1 Scope of Work

Tetra Tech's scope of work for the 2019 monitoring and sampling program included the following activities:

- Conducting semi-annual events of groundwater and vapour monitoring, including, measuring headspace vapours and groundwater levels within each monitoring well and observing monitoring well integrity.
- Conducting groundwater sampling:
 - Purging shallow monitoring wells and deep monitoring wells until practically dry or until a minimum of three
 well volumes had been removed and allowing the water levels in the wells to recover.
 - Measuring field parameters (pH, electrical conductivity [EC], and water temperature) at the time of sampling.
 - Collecting groundwater samples from each well and submitting the samples for laboratory chemical analyses.
- Conducting vapour sampling:
 - Collecting vapour samples into Summa canisters for analysis.
 - Collecting vapour samples for siloxanes analysis into thermal desorption (TD) tubes.
 - Collecting one duplicate vapour sample for quality assurance/quality control (QA/QC) purposes.
- Conducting monitoring well repairs, as required.
- Updating the hazard quotients prepared during the previous reporting using the 2019 monitoring and sampling results.
- Preparing an annual report summarizing the field activities undertaken for the year and interpreting the groundwater and soil vapour analytical results.

The report was completed under Tetra Tech's Limitations on the Use of this Document for conducting environmental work. A copy of these conditions is provided in Appendix A. Cross-sections that were prepared using the wells previously installed at the site in 2013 are included in Appendix B (from Tiamat Environmental Consultants Ltd. [Tiamat] 2014a).

1.2 Pre-1972 Landfill Program

The scope of work for the monitoring program was based on the proposal submitted by Tetra Tech on January 11, 2019 to The City to conduct environmental monitoring services for the pre-1972 landfill sites in accordance with the Request for Proposal (RFP) No. 1090-2018-261 issued by The City on November 30, 2018, and Addendum 01 issued by The City on January 7, 2019. This report documents the scope and findings for the RDM site.

The objectives of the project were to:

- Confirm and implement the prior recommendations, as per the RFP;
- Consult with the regulator on amendments to the program, as required;
- Conduct environmental monitoring and sampling for each of the eight sites, as outlined in the RFP recommendations, while incorporating any approved recommendations;
- Update the hazard quotients for each site; and
- Prepare an environmental monitoring report for each site.

The eight pre-1972 landfill sites include:

- Great West Adventure Park;
- Lindsay Thurber Comprehensive High School;
- McKenzie Trails Recreation Area;
- Montfort;
- Red Deer College;
- Red Deer Motors;
- Riverside Heavy Dry Waste site; and
- Riverside Light Industrial Park.

Each site is summarized in a separate report. This report is focused on the RDM site. It includes a description of the site geology and hydrogeology, the results of the 2019 monitoring activities at the site, and an interpretation and evaluation of the collected data.

2.0 BACKGROUND INFORMATION

2.1 General Information

The site is located within SE 08-038-27 W4M, at Lot 3 MR Block 2 Plan 8422279. The site location is shown on Figure 1. The site is zoned A2 – Environmental Preservation District and is across Taylor Drive from Red Deer College. The site is located east of Taylor Drive and Waskasoo Creek, south of 32 Street and south and west of commercial buildings. A general site plan is shown on Figure 2. The site is undeveloped and consists of natural areas including, grasses, trees, and shrubs with power lines extending north to south on the west side.

2.2 Site History

Municipal records indicate that the waste disposal at the site occurred between approximately 1967 and 1968. This would indicate that the estimated age of the waste material would be approximately 53 years old. Records indicate the waste as being municipal solid waste (MSW) consisting of plastics, cans, paper, metal, wire, glass, and rubber.

Some construction debris was also identified in areas consisting of bricks, wood and concrete. The former landfill is listed as inactive and closed.

Historical waste disposal was identified during the Phase II Environmental Site Assessment (ESA) (Tiamat 2014a) throughout the entire site up to 32 Street at the north end. Estimated waste areas are identified on Figure 2. The Phase II ESA estimated the total area of buried waste at approximately 9,600 m² on the site and approximately 1,580 m² off site (south of the 32 Street roadway).

Results of the Phase II ESA conducted by Tiamat indicated a thin surficial layer of sod, sand, and loam was overlying a sand and clay fill. The fill ranged from 3.0 m to 4.6 m deep in the areas of the site without MSW. Within the waste footprint, MSW was observed beneath the sod and loam layer to a depth of 4.6 m. The testholes along the east boundary of site had large amounts of MSW waste up to 3 m deep. MSW was overlying native clay. The investigation was conducted to depths of up to 7.6 m and bedrock was not encountered at any locations (Tiamat 2014a).

The Red Deer College historical landfill is situated west of the site, immediately west of Taylor Drive (refer to Appendix B for location).

2.3 Historical Groundwater Monitoring and Investigation Summary

Previous reports prepared by Tiamat for the site include:

- Phase I Environmental Site Assessment, Historic Waste Disposal Site, Red Deer Motors, The City of Red Deer.
 September 24, 2013 (Tiamat 2013).
- Phase II Environmental Site Assessment, Historic Waste Disposal Site, Red Deer Motors, The City of Red Deer.
 February 26, 2014 (Tiamat 2014a).
- Environmental Risk Management Plan, Historic Waste Disposal Sites, Red Deer College & Red Deer Motors, The City of Red Deer. November 27, 2014 (Tiamat 2014b).

The Phase I ESA (Tiamat 2013) indicated that a sanitary waste permit existed for the site and environmental concerns could include the following listed below. The status of the permit is unknown and it was not reviewed.

- Generation of leachate from infiltration and percolation of precipitation into the first water bearing zone.
- Generation of landfill gas (LFG), which may contain methane and other volatile organic compounds (VOCs) with the decomposition of the biomass materials and petroleum derived products.
- Differential ground settlement as waste material decompose and consolidate.

Six testholes (TH-03, TH-05, TH-06, TH-07, TH-08, and TH-09) were advanced in 2013 as part of the Phase II ESA, three vapour wells (VW-01 to VW-03) and three monitoring wells (MW-01 to MW-03) were installed. Tiamat noted that two previously installed Alberta Environmental Protection¹ monitoring wells were on the west boundary of the site prior to conducting the Phase II ESA. No information regarding the Alberta Environmental Protection wells was included in the Phase I ESA or Phase II ESA, and a report was not available for review.

¹ Currently Alberta Environment and Parks (AEP).

The results of the Phase II ESA (Tiamat 2014a) indicated the following:

- Waste material on site is located on native sand or clay till.
- In 2013, the average groundwater depth was 4.2 m, which is situated within the waste material. The estimated horizontal hydraulic gradient was 2% to the northwest. Tiamat presented an estimated horizontal groundwater flow velocity of 4.7 m/year; however, it is unclear whether these calculations were for the adjacent Red Deer College site or for the subject site.
- VOCs and other petroleum hydrocarbons (PHCs) had detectable concentrations in 2013 at the monitoring wells at the down-gradient end of the site. These parameters were indicative of leachate. The leachate was characterized showing negative redox potentials and near anoxic conditions for dissolved oxygen.
- Several commercial businesses and residential developments are nearby the RDM site.
- Differential settlement of cap material had occurred at the site. No activities located on adjacent lands were interpreted to be contributing environmental concerns.
- Light petroleum gases were detected at vapour wells on site and PHCs were detected at the northwest portion
 of site.
- The vapour wells at RDM detected volatile PHCs to carbon chain 12 and semi-volatile, oxygenated, and halogenated volatile hydrocarbons and ketones were detected in the soil vapour samples.

The recommendations of the program were as follows:

- Monitor groundwater elevations and soil vapour data bi-annually for one hydrogeological cycle.
- Determine if surface water sampling should be included with groundwater sampling to determine exposure from leachate contaminants in Waskasoo Creek.
- Collect an additional set of soil vapour and groundwater analytical data, groundwater elevations, and volatile headspace measurement during the winter months to determine seasonal changes in soil vapour concentrations.
- Develop a risk management plan (RMP) to consider future land uses and address environmental concerns.
- Review all data to update the RMP with new information.

The RMP conducted by Tiamat in 2014 stated "the outcome of the RMP confirm the identified chemicals of concern and relevant risk are manageable to facilitate future developments which may lie within the regulated setback distance to the historic waste disposal site" (Tiamat 2014b).

The following recommendations were made:

- Information in the preliminary quantitative risk assessment (PQRA) should be updated as new site information is obtained.
- A review of the RMP should be completed when the PQRA information is updated, if there are changes to the chemicals of potential concern (COPCs).
- The RMP should be reviewed and updated at five-year intervals.

2.4 Monitoring Well Network

The current groundwater monitoring network at the site consists of four monitoring wells (MW-01, MW-04A/B and MW-05). Of the three wells (MW-01, MW-02 and MW-03) that were installed during a previous assessment in 2013 only MW-01 could be located in 2019. MW-02 and MW-03 are suspected to have been destroyed when a paved area east of site was extended to the west. In December 2019, Tetra Tech personnel located three monitoring wells on the west side of the site near Waskasoo Creek. These wells were presumably installed by Alberta Environmental Protection in the 1980s and have been labelled as MW-04A/B and MW-05. Completion details for these three wells are not known.

The current vapour monitoring network consists of two vapour monitoring wells (VW-01 and VW-02) that were installed in 2013. Vapour monitoring well VW-03 was likely destroyed when the area east of the site was paved.

Groundwater and vapour monitoring well locations are shown on Figure 2.

3.0 SITE SETTING

The following section presents an overview of the regional and local setting for the site.

3.1 Geology

The following sections summarize the regional and local geology.

3.1.1 Geological Setting and Stratigraphy

The City and the site are located within the Red Deer River drainage basin with principal drainage via the Red Deer River located northwest of the site. The river has incised the uplands with gentle slopes to the east and west of the river, south of the site, aligned with Waskasoo Creek. The geology in the river valley is characterized by fluvial surficial sediments deposited by the Red Deer River, overlying shale and sandstone bedrock of the Paskapoo Formation. Key elements of the geological setting are presented below from Tiamat's 2013 Phase I ESA report (Tiamat 2013):

"The fertile black soil in the region (Penhold Loam) is of alluvial lacustrine origin. The Penhold Loam is a well-drained fine sandy loam classified as Chernozemic. It is generally stone free and in natural areas, is typically 1.5 m thick, more or less.

The Quaternary deposits consist of drift deposits of clay, silt, gravel and sand.

The Tertiary bedrock consists of sequences of alternating shales and sandstones of the Paskapoo Formation. This non-marine bedrock is composed of mudstone, siltstone and sandstone."

3.1.2 Local Geology

Based on borehole logs from the Phase II ESA conducted by Tiamat, the site is underlain by sand, loam and clay fill, underlain by clay till and/or native sands. Within the waste footprint, waste was encountered immediately below surface and was mixed with sand fill material. Fill material extended to maximum depths of approximately 7.6 m below grade (mbg) and waste was identified to a maximum depth of approximately 4.3 mbg. Bedrock was not encountered during the Phase II ESA.

3.2 Hydrogeology

The following sections summarize the regional and local hydrogeology.

3.2.1 Regional Hydrogeology

The regional hydrogeology is most influenced by the presence of the river sediments situated within the valley along the Red Deer River and a buried channel trending north-northeast in the vicinity of the site. Key elements of the hydrogeological setting are presented below from Tiamat's 2013 Phase I ESA report (Tiamat 2013):

"The dominant type of near-surface groundwater in the Paskapoo Formation in the area of assessment is sodium bicarbonate. Notable concentrations of sodium sulphate type groundwater have also been reported. The quality of groundwater for potable use is generally suitable to depths of 300 m on the west side of Red Deer and decreases to 90 m, more or less in the east.

Areas of recharge (downward flow) in unsaturated heterogeneous sediments include most areas above the river and creek valleys, whereas; the river valleys will generally exhibit discharge. The distribution of groundwater in the area can also be influenced by the local geology, topographic relief, areas of artesian flow, springs and reasonable yielding water source wells."

There are two significant buried valleys and aquifer resources beneath the city, Mapping by the Alberta Geological Survey (Andriashek 2018) indicates that a north-northeast trending valley is situated east of the site, and a northeast trending valley (which connects to the first) is situated south of the site. The valleys could influence the geology and hydrogeology beneath the site, however the width of the valleys are not defined.

Waskasoo Creek is the primary surface water feature near the site. The creek historically meandered in the area of the site, but since the construction of Taylor Drive, circa late 1980s, follows a constructed drainage channel in a northerly direction. The regional groundwater flow is expected to follow the bedrock topography and may be influenced by the buried channels in the area that are trending in a northeasterly direction."

3.2.2 Local Hydrogeology

Waskasoo Creek is located on the west side of the site and extends to the north beneath 32 Street. It flows along the east side of Taylor Drive past the site, and discharges into the Red Deer River. Waskasoo Creek is located adjacent to the west of the site, and the Red Deer River is located approximately 1.8 km north of the site. The site is within a groundwater recharge zone and has a downward flow component (Tiamat 2013). Shallow groundwater flow is assumed to flow towards the creek.

3.3 Groundwater Resource Usage

A search of the Alberta Water Well Database conducted in January 2020 for groundwater users within a 1 km radius of the RDM site identified 13 groundwater wells; 6 of the wells are listed as domestic use, 2 are listed as domestic and stock use, 2 are listed as industrial use, 2 as "other" use, and 1 as observation use (AEP 2019b).

The nearest water well to site is located approximately 650 m east of the site. The proposed well use is domestic and stock. The water wells within a 1 km radius of the site range from 5.8 m to 120 m depths. The status and use of the surrounding groundwater wells were not confirmed and they were not field verified.

Information for groundwater wells within 1 km of RDM is provided in Appendix C.

4.0 CONCEPTUAL SITE MODEL

The selection of remediation guidelines is based on the conceptual site model (CSM), which outlines the rationale for the selection of applicable exposure pathways and indicates which soil and groundwater exposure-specific remediation guidelines should apply. This evaluation is based on guidance presented in the Alberta Tier 1 Soil and Groundwater Remediation Guidelines (Tier 1 Guidelines; AEP 2019a).

A CSM was developed for the site and included the following items:

- Description of any identified environmental issues including a description of processes or activities undertaken at or near the site and a listing of COPCs identified in earlier investigations.
- Description of known and reported historical releases, including locations and status of any subsequent ESAs and remediation.
- Identification of applicable exposure pathways and receptors.

4.1 Chemicals of Potential Concern

Based on the information provided in historical reporting, and on typical COPCs in an MSW setting such as this, the COPCs for the groundwater component of the site include:

- Inorganic parameters and nutrients (e.g., ammonia, chloride, and total dissolved solids [TDS]);
- Metals:
- PHCs:
- VOCs; and
- Other indicator parameters, such as biological oxygen demand (BOD) and chemical oxygen demand (COD).

The COPCs for the soil vapour component of the site include:

- VOCs;
- Methane:
- Benzene, toluene, ethylbenzene, and xylenes (BTEX) and PHCs; and
- Siloxanes.

Amongst these COPCs, the soluble ones are expected to leach towards the groundwater table (e.g., BTEX, PHC fractions F1 and F2, chloride) while others will bind to the soil particles and are expected to migrate less (i.e., most metals).

4.2 Land Use

The Tier 1 Guidelines are subdivided by land use: natural area, agricultural, residential/parkland, and commercial/industrial. The site is currently zoned as Commercial Corridor 2 (C-COR). The site is surrounded by commercial land to the east and south, Waskasoo Creek and Red Deer College to the west, and greenspace and commercial buildings to the north. Groundwater samples were compared to residential/parkland use guidelines.

4.3 Grain Size Designation

The Tier 1 Guidelines are developed for both coarse-grained and fine-grained soils. Fine-grained soils are defined as having a median-grain size of less than or equal to 75 μ m; coarse-grained soils have a median-grain size of greater than 75 μ m. Where both fine- and coarse-grained strata are present, the dominant soil particle size is determined by the stratum governing horizontal and vertical migration to a receptor.

Particle size analyses was determined from the Phase II ESA completed by Tiamat. Samples were compared to coarse-grained criteria.

4.4 Exposure Pathways and Receptors for Soil and Groundwater

4.4.1 Human Receptors and Pathways

Human receptors assumed to be present on commercial and residential/parkland areas include adult workers, adult and child visitors, adult and child residents, and park users. The following human exposure pathways were considered when developing and implementing remediation guidelines:

- Direct soil contact.
- Groundwater ingestion (drinking water).
- Vapour inhalation.
- Off-site surface migration (wind or water erosion).

These pathways are briefly discussed individually below.

4.4.1.1 Direct Soil Contact – Human Pathway

The direct soil contact pathway is considered to be applicable to all land uses except in natural areas. Direct contact implies that humans can come in direct contact with contaminated soil via incidental ingestion, dermal contact, or inhalation of airborne soil particles. Since the land use for this site is considered parkland, this pathway is considered to be applicable.

4.4.1.2 Drinking Water (Groundwater Ingestion)

Water bearing units with a saturated hydraulic conductivity of greater than 1.0 x 10⁻⁶ m per second (m/sec) are considered to comprise a potential domestic use aquifer (DUA) (AEP 2019a). To eliminate this pathway, the presence of greater than 5 m of unimpacted, unfractured, saturated, fine-grained material with an assumed bulk (vertical) hydraulic conductivity of less than 1.0 x 10⁻⁷ m/sec must exist below the proven depth of contaminated material. This is required to ensure that the impacted material is isolated from potential underlying DUAs.

A search was conducted of the Alberta Water Well Database. No potable groundwater wells were identified within 500 m of the site. Groundwater at the site is not presently used as drinking water.

The DUA pathway is not considered to be active relative to the site. However, an investigation to eliminate the DUA pathway has not been completed; therefore, it is included for the site.

4.4.1.3 Inhalation

The inhalation pathway considers the migration of volatile contaminants (e.g., BTEX, PHC fractions F1 to F2, and VOCs) released from the soil and/or groundwater into living or working spaces of buildings where humans may be exposed through inhalation. The inhalation pathway is applicable to all land uses except natural areas. Since the current land use is considered residential/parkland, there is a potential for the infiltration of vapours into buildings and subsequent inhalation by the inhabitants. Therefore, the inhalation pathway is applicable in this assessment.

4.4.1.4 Off-site Surface Migration by Wind or Water Erosion

The off-site surface migration pathway considers migration of contaminated soil from the site to an adjacent site of more sensitive land use via wind or water erosion. This pathway applies to commercial and industrial sites only and is not applicable to the site as it is considered residential/parkland.

4.4.2 Ecological Receptors and Pathways

Ecological receptors at a typical contaminated site span a range of trophic levels, including soil-dependent organisms (e.g., plants and soil invertebrates) and higher-order consumers (e.g., terrestrial and avian wildlife and livestock). This pathway is applicable to the land use for this assessment.

4.4.2.1 Direct Soil Contact – Ecological Pathway

Plants and soil invertebrates may come into direct contact with contaminants in soil or shallow groundwater. This pathway is applicable to all land uses; therefore, it is considered for evaluation in this assessment.

4.4.2.2 Freshwater Aquatic Life

The freshwater aquatic life (FAL) pathway is applicable if a surface waterbody is present less than 300 m from the site. The nearest surface waterbody is Waskasoo Creek located adjacent to the west side of the site. This pathway is applicable to the land use for this assessment.

4.4.2.3 Nutrient and Energy Cycling

The nutrient and energy cycling pathway consider the microbial functioning of the soil including carbon nitrogen cycling and is, therefore, applicable to all land uses.

4.4.3 Exposure Pathway Summary

To establish the appropriate guidelines for the site, the most sensitive land use was used. The receptors are a combination of the degree of potential exposure, the exposure pathway, and the contaminant of concern. Human receptor exposures applicable to the site include direct soil contact and inhalation pathway. The ecological receptor exposures applicable to the site include direct soil contact, FAL, and nutrient and energy cycling.

4.5 Soil Vapour

As recommended by Alberta Environment and Parks, the soil vapour results obtained during this investigation were compared to the Canadian Council of Minister of the Environment (CCME) document *A Protocol for the Derivation of Soil Vapour Quality Guidelines for Protection of Human Exposures Via Inhalation of Vapours* (CCME 2014). Generic soil vapour guidelines, that could indicate whether there are potential risks to indoor air from vapours in the soil, have been prepared using the default parameters outlined in the 2014 CCME protocol. The parameters used

in the calculation of the generic soil vapour guidelines can be found in Table 6 to Table 9. The equations and model assumptions were taken directly from the CCME 2014 document. While CCME does not publish soil vapour screening criteria, the approach used to calculate soil guidelines for the vapour inhalation pathway is used to derive the soil vapour screening criteria.

4.5.1 Indoor Air Risk Calculations

The Alberta Tier 2 Guidelines (AEP 2019c) include human toxicity reference values (TRVs) for inhalation (Table A-7). For non-carcinogens, the inhalation TRV represents the concentration of the chemical of concern considered unlikely to cause adverse human health effects after a lifetime of continuous exposure, referred to as the inhalation tolerable concentration (ITC). For carcinogens, the inhalation TRV is referred to as the inhalation unit risk (IUR) and can be used to determine a risk-specific concentration (RSC). To ensure that the incremental lifetime cancer risk of an individual does not exceed 1 in 100,000 (1 x 10⁻⁵) after a lifetime of continuous exposure, the RSC is calculated (as per Health Canada 2012, Preliminary Quantitative Risk Assessment [PQRA] Guidance) as follows:

RSC (mg/m³) =
$$1 \times 10^{-5}$$
/IUR

Continuous exposure is expressed as an exposure term (ET), which is unitless. The ET for residential land use is 1 (AEP 2019c) based on 24 hours/day, 7 days/week, and 52 weeks/year. The ET is used to determine appropriate soil vapour screening levels. Soil vapour screening levels were calculated (as per Health Canada 2012, PQRA Guidance) using the equation below:

Vapour Screening Level (mg/m³) = (ITC or RSC)/ET

4.5.2 Methane and Explosive Risks

LFG can be generated from the degradation of wastes under anaerobic conditions. Methane gas can migrate through the ground and enter structures through porous concrete, joints, or fractures in foundations. When present, methane is considered a safety concern due to its explosive risk when it is in an atmosphere at concentrations between 5% and 15% by volume in air, in the presence of an ignition source. At concentrations less than 5% (the lower explosive limit [LEL]) and greater than 15% (the upper explosive limit), methane is not explosive. Methane on its own is not considered a health risk, although it can represent a concern if it is present at very high concentrations which could displace oxygen and present a risk of asphyxiation. There are no guidelines for methane as part of the Alberta Tier 1 framework. However, for reference, the Standards for Landfills in Alberta identify maximum methane concentrations proximate to approved landfills, and Alberta Health Services have provided guidance for methane (in conjunction with well headspace pressures that would constitute a driving force); however, that document has not been issued in a final format.

4.6 Overall Guidelines

The analytical results were compared to the Tier 1 Guidelines (AEP 2019a) under residential and parkland land uses for coarse-grained soils with the FAL pathway included.

Soil vapour analytical results were compared to A Protocol for the Derivation of Soil Vapour Quality Guidelines for Protection of Human Exposures Via Inhalation of Vapours (CCME 2014) under residential land use for both slab-on-grade and basement for coarse-grained soils.

5.0 GROUNDWATER MONITORING AND SAMPLING PROGRAM

A discussion of the methods used for the fieldwork, laboratory testing, and data evaluation is presented in the following sections. In 2019, Tetra Tech conducted groundwater monitoring on June 26 and December 5. Groundwater sampling was conducted on December 6, 2019.

5.1 Field Program

Groundwater monitoring consisted of measuring combustible vapour concentrations (CVCs) and VOCs in monitoring well headspace, and static groundwater levels in each monitoring well using an electronic water level indicator semi-annually (June and December).

The methodology for groundwater monitoring and sampling included the following:

- Observing the integrity of each well and noting drainage and site conditions near the well that may have an
 effect on monitoring results or groundwater quality.
- Measuring the CVC and VOC headspace concentrations in each well using an RKI Eagle II calibrated to hexane
 and isobutylene and operated in methane elimination mode.
- Measuring liquid levels in each monitoring well with an interface probe and recording total depths confirming absence of non-aqueous phase liquids (NAPL).
- Recording of field data on standardized forms as documented in Tetra Tech standard operating practices.
- Purging each monitoring requiring sampling using dedicated polyethylene bailers or Waterra tubing with inertial pump foot valves, or until the well was practically dry.

Following the completion of groundwater monitoring and purging, groundwater samples were collected from the required wells using the procedures identified below:

- Groundwater samples were collected from four monitoring wells (MW-01, MW-04A, MW-04B, and MW-05) and
 placed into appropriate laboratory supplied, sterile glass and plastic vials and bottles for the required analytical
 package and, if required, samples were filtered and/or preserved in the field.
- Field measurements were taken for pH, EC, and temperature at the time of sampling.
- Samples were submitted in coolers with ice to ALS Laboratories (ALS) in Calgary, Alberta for laboratory analysis
 under a chain-of-custody (COC) documentation.

More information on the analytical program is provided in Section 5.2. The groundwater monitoring well locations are shown on Figure 2.

5.2 Analytical Program

The analytical program for the groundwater monitoring wells was developed based on the requirements of the RFP and is summarized below:

- BTEX and PHC fractions F1 and F2.
- VOCs.
- Total Kjeldahl nitrogen (TKN).

- Routine and dissolved metals.
- Dissolved organic carbon (DOC).
- Ammonia.
- Phosphorus.
- Adsorbable Organic Halides (AOX).
- Volatile fatty acids.

6.0 VAPOUR MONITORING AND SAMPLING PROGRAM

A discussion of the methods used for the fieldwork, laboratory testing, and data evaluation is presented in the following sections. In 2019, Tetra Tech conducted vapour monitoring on June 26 and December 5. Vapour sampling was conducted on December 5, 2019.

6.1 Field Program

Vapour monitoring consisted of measuring and recording soil gas pressure, composition (methane, carbon dioxide, oxygen, hydrogen sulphide, and balance) on a percent volumetric basis and groundwater elevation, semi-annually (June and December).

Each soil vapour probe was inspected for visible signs of damage and the position of the sampling labcock was noted. Soil gas pressure was recorded using a digital manometer. Once the soil gas pressure measurement was recorded, the soil gas probe was purged of three well volumes of air, or until readings stabilized. Small diameter soil gas probes (25 mm wells) were purged directly with the GEM LFG analyzer.

After purging, gas composition measurements for methane, carbon dioxide, oxygen, balance gas, and hydrogen sulphide were recorded using the GEM analyzer. After recording soil gas concentrations, the probe/well depths and water levels were measured and recorded to confirm the water level within the probe was beneath the screen portion of the soil gas probe (i.e., the probe was not blinded).

A leak detection test was completed to ensure the vapour probe was sealed properly. The test was completed using a helium gas tracer to inspect the testing probe and apparatus for any leaks. If there was a leak beyond the acceptable range (2% of helium concentration), the connections were tightened, and the leak test was conducted again.

Sampling of the soil vapour probes (VW-01 and VW-02) was based on the methodology of the CCME sampling guidelines, which are summarized as follows:

- Prior to collecting the soil vapour probe samples, the well was purged of three well volumes, or until headspace readings stabilized.
- A 1.4 L Summa vacuum canister was used for sample collection at the soil vapour probe monitoring location.
- Sample data was recorded on the provided sample tag for each canister.
- Sample tubing that was used to connect the canister to the soil vapour probe was low in VOCs and only used once to prevent sample contamination.

- When beginning sample collection, the end cap was removed, and a 60-minute flow controller was attached to the canister. Start time was recorded on the sample tag.
- When sampling was complete, the valve was closed, and the flow controller was removed. The end time was recorded on the sample tag.
- The protective end cap was replaced back on the canister.
- Canisters, flow controllers, and pressure gauges were placed in the original shipping container and returned to the laboratory with a COC.
- The soil vapour probe sampling port was returned to the closed position and the well was securely locked.

The vapour samples were submitted to ALS for chemical analysis. A duplicate sample was collected during the vapour sampling event for QA/QC purposes. More information on the analytical program is provided in Section 6.2.

The vapour monitoring well locations are shown on Figure 2.

6.2 Analytical Program

The analytical program for the vapour monitoring probes is summarized below:

- VOCs.
- Matrix gases including oxygen, carbon dioxide, methane, and nitrogen.
- BTEX and PHCs.
- Siloxanes.

7.0 RESULTS AND DISCUSSION

This section presents the results of the fieldwork conducted in 2019 at RDM and discussions of these results.

7.1 Groundwater Well Headspace Monitoring

Tetra Tech monitored the groundwater monitoring wells for measurements of CVCs and VOCs in well headspace using an RKI Eagle 2. During the June 2019 monitoring event, MW-01 was the only well monitored. CVCs were 190 parts per million (ppm) and VOCs were 12 ppm.

In December 2019, MW-04A, MW-04B, and MW-05 were added to the monitoring program. CVCs ranged from non-detect at most wells to 10 ppm at MW-01. VOCs were non-detect at most wells and 1 ppm at MW-01.

The volatile and combustible headspace concentrations for 2019 are presented in Table 1.

7.2 Groundwater Elevations

The measured groundwater levels and calculated groundwater elevations for 2019 are presented in Table 1.

Figure 3 presents the groundwater elevation trends (hydrographs) for the groundwater monitoring well. Overall, the groundwater elevation in 2019 at MW-01 slightly decreased from 2013.

In June 2019, water levels were only taken from MW-01 and the depth to groundwater was 3.96 mbg. The average depth to groundwater in December 2019 was 2.68 mbg, which included MW-01, MW-04A, MW-04B, and MW-05.

The groundwater elevations could not be contoured in June 2019 due to groundwater elevation data only being collected at MW-01. In December 2019, additional monitoring wells MW-04A, MW-04B, and MW-05 were added to the groundwater monitoring program; however, elevation survey data was not available for these wells, and groundwater elevations could not be contoured. Historically, the groundwater flow direction was indicated to be towards the northwest, towards Waskasoo Creek.

The groundwater elevations for MW-01 are shown on Figure 4 and Figure 5.

7.3 Groundwater Field Parameters

Field measurements for temperature, pH, and EC in December 2019 are shown in Table 2. A discussion of the results of the field tests is summarized in this section.

Groundwater temperatures ranged from 2.2°C (MW-05) to 6.6°C (MW-01).

Field pH values ranged from 7.81 (MW-05) to 8.40 (MW-04B) in 2019. Field pH differed from laboratory pH; the difference between field recorded and laboratory pH values may be due to limitations of the field equipment and differences in sample temperature.

In 2019, field EC measurements ranged from 1,282 μ S/cm (MW-04B) to 2,213 μ S/cm (MW-01). Field EC results were less than the laboratory measured EC results at MW-01 and MW-05, which may be due to limitations of the field equipment.

7.4 Groundwater Analytical Results

The groundwater analytical data for 2019 is summarized in Table 2. The 2019 laboratory analytical reports are included in Appendix D and historical tables are included in Appendix E.

Background Groundwater Quality

Monitoring well MW-02 was historically located on the upgradient portion of the site but could not be located in 2019 and is suspected to have been destroyed when a paved area east of the site was extended to the west.

The concentration of dissolved manganese in 2013 was 1.8 mg/L, greater than the 2019 Tier 1 Guidelines (0.05 mg/L). The concentration of manganese may be related to natural groundwater quality. The concentration of dissolved iron in 2013 was 0.11 mg/L, which is an order of magnitude less than most concentrations in 2019 (except for MW-04B). The concentration of chloride was 36 mg/L, and the concentration of sodium was 16 mg/L, which are an order of magnitude less than most wells at the site in 2019. Concentrations of BTEX, PHC fractions F1 and F2, and VOCs were less than the laboratory analytical detection limits.

Overall, the groundwater analytical results for MW-02 in 2013 do not suggest groundwater quality impacts related to MSW landfill leachate at the former background monitoring well location.

Routine Water Chemistry Parameters

In 2019, TDS concentrations ranged from 1,040 mg/L (MW-04B) to 1,840 mg/L (MW-04A). TDS concentrations were not available for 2013. TDS concentrations at all monitoring wells were greater than the Tier 1 Guidelines (500 mg/L).

Chloride is often considered a useful parameter to assess groundwater quality impacts associated with landfills, as chloride is generally present in elevated concentrations in leachate, and due to the mobile and conservative (non-reactive) nature of the ion. Chloride concentrations ranged from 6.8 mg/L at MW-04B to 450 mg/L at MW-04A. Concentrations of chloride exceeded the Tier 1 Guidelines (120 mg/L) at MW-01 (423 mg/L), MW-04A (450 mg/L), and MW-05 (167 mg/L).

Sodium concentrations were greater than guideline (200 mg/L) at monitoring wells MW-04A and MW-04B. Concentrations ranged from 177 mg/L at MW-05 to 284 mg/L at MW-04A. Historically, in 2013, sodium concentrations were less than the guideline.

Ammonia concentrations at the site in 2019 ranged from 0.306 mg/L at MW-04B to 7.1 mg/L and 7.2 mg/L at MW-01 and MW-05, respectively, in December 2019. These elevated concentrations of ammonia at MW-01 and MW-05 suggest groundwater quality impacts by MSW landfill leachate.

The two monitoring wells with the highest ammonia concentrations (MW-01 and MW-05) exhibit the lowest sulphate concentrations. This is expected to be an indication of anoxic (sulphate reducing) redox conditions, which are often observed in leachate impacted groundwater.

Dissolved Metals

Concentrations of dissolved arsenic were greater than the Tier 1 Guidelines (0.005 mg/L) at all monitoring wells in December 2019. Arsenic is known to be strongly adsorbed onto iron(hydr)oxides, and when these minerals dissolve, arsenic will also go into solution (Hem 1992). The concentrations of arsenic are likely correlated to the presence of dissolved iron and anoxic conditions due to leachate impacts. It should be noted that deep monitoring well MW-04B exhibited only a marginal arsenic exceedance and also exhibited low dissolved iron concentrations.

Iron and manganese are redox-sensitive parameters that naturally occur in groundwater under anoxic conditions and can help determine whether the groundwater quality is affected by biodegradation reactions, for instance related to landfill leachate. The dissolved manganese concentrations were greater than the Tier 1 Guidelines (0.05 mg/L) at all monitoring wells during the sampling event in 2019. The dissolved iron concentrations were greater than the Tier 1 Guidelines (0.30 mg/L) at most monitoring wells in 2019, with the exception of MW-04B.

Concentrations of dissolved copper in 2019 were marginally greater than the Tier 1 Guidelines (0.007 mg/L) at monitoring well MW-05 (0.00753 mg/L). Historically, dissolved copper concentrations have been less than the guideline.

The dissolved uranium concentration was greater than the guideline of 0.015 mg/L at MW-04A (0.0391 mg/L). Dissolved uranium concentrations may be naturally occurring and not necessarily of concern.

Organic Parameters

Concentrations of toluene, ethylbenzene, xylenes and PHC fractions F1 to F2 were less than the analytical detection limits at all monitoring wells. Benzene concentrations were detected at MW-01 (0.0006 mg/L) and MW-05 (0.00189 mg/L), but were less than the Tier 1 Guideline value of 0.005 mg/L. All other BTEX and PHCs results were less than the analytical detection limits.

Concentrations of AOX, volatile fatty/carboxylic acids were less than the analytical detection limits at all locations in December 2019.

In 2019, monitoring wells MW-01 (0.0124 mg/L) and MW-05 (0.0132 mg/L) had concentrations of vinyl chloride one order of magnitude greater than the Tier 1 Guidelines (0.0011 mg/L). Both monitoring wells that exhibited exceedances for vinyl chloride also had detectable concentrations of one or more other (chlorinated) VOCs for which Tier 1 Guidelines have not been established (e.g., the cis and trans isomers of 1,2-dichloroethene; 1,2-DCE). MW-04A also had a detectable concentration of 1,2-DCE (cis). Vinyl chloride and 1,2-DCE are breakdown products of dry-cleaning solvents and are commonly present in MSW leachate.

7.5 Soil Vapour Monitoring Results

The soil vapour monitoring results are presented in Table 3.

Pressures at all vapour wells were negligible during the monitoring events in 2019.

Concentrations of methane ranged from non-detect for all monitoring events in 2013 and 2019 at VW-02 to 26.0% in August 2013 and 11.7% in June 2019 at VW-01. The much lower concentration at VW-01 in December 2019 (non-detect) may be due to instrument detection errors and the concentrations at VW-01 should be confirmed in 2020. The elevated methane concentration is located in the northwest corner of the site, within the waste footprint, and an elevated reading was also detected at this well during monitoring in 2013.

The soil vapour wells were dry during the monitoring events in 2019; therefore, they were not considered to be blinded.

7.6 Soil Vapour Analytical Results

The attached Table 4 summarizes the soil vapour analytical results collected for 2019 and compares them to the soil vapour screening criteria protective of vapour intrusion into indoor air. The 2019 laboratory analytical reports are included in Appendix C.

BTEX and PHC fractions F1 and F2 (parameters with a TRV for inhalation) were compared against the screening criteria for residential land use, coarse-grained soil. BTEX, and/or PHC aliphatic and aromatic fractions that comprise F1 and F2 were detected at concentrations greater than the analytical detection limits in sample VW-01 and its duplicate (19DUP01). Soil vapour concentrations for sample VW-01 were between 2 and 13 times less than the soil vapour screening criteria, which are protective of vapour intrusion into indoor air. BTEX, and/or PHC aliphatic and aromatic fractions that comprise F1 and F2 were detected at concentrations greater than the analytical detection limits in samples VW-02; however, soil vapour concentrations were between 55 and 94,800 times less than the soil vapour screening criteria, which are protective of vapour intrusion into indoor air.

Siloxanes do not have TRV values for inhalation and were, therefore, not compared against the vapour screening criteria. Concentrations of siloxanes in samples VW-01 and VW-02 were not detected greater than the analytical detection limit.

Naphthalene was not detected at concentrations greater than the analytical detection limit.

VOCs (parameters with a TRV for inhalation) were compared against the screening criteria for residential land use, coarse-grained soil. 1,2-Dichloroethane and vinyl chloride were detected at concentrations exceeding the soil vapour screening criteria in sample VW-01 and its duplicate 19DUP01. Several parameters were detected greater than the analytical detection limits in sample VW-02. However, soil vapour concentrations were between 11 and

226,000 times less than the soil vapour screening criteria at VW-02, which are protective of vapour intrusion into indoor air.

Methane concentrations in the gas samples suggest that there may have been a field instrument error during the December event; at VW-01, methane concentrations in the sample (5.26%) were greater than the field measured value (non-detect) but were also detectable during the June field event (11.7%). The methane concentrations at VW-02 were consistent between the field sample and the monitoring events.

7.7 Quality Assurance/Quality Control

7.7.1 Methods

Tetra Tech's QA/QC procedures include reviewing the data collected for precision and accuracy and following the appropriate field protocols.

The field procedures for QA/QC involved:

- Changing nitrile gloves between sample collections;
- Using sample containers provided by the laboratory;
- Cleaning monitoring and sampling tools between sample locations;
- Filling sample containers for PHC analysis with no headspace (air) when the containers were closed;
- Collecting duplicate vapour sample during each event of the sampling program; and
- Documenting field procedures and sampling activities.

7.7.2 Results

The QA/QC results for vapour sampling are included in Table 5. The duplicate samples were submitted for analysis of the same parameters as the original samples.

The duplicate analysis is compared by relative percent difference (RPD). The RPD is calculated using the following equation:

$$RPD = \left[\frac{(V_1 - V_2)}{\frac{(V_1 + V_2)}{2}} \right] * 100\%$$

Where:

V₁ = Parent Sample

 V_2 = Duplicate Sample

Chemical parameters were considered as having passed the QA/QC reproducibility procedure if the RPD was less than or equal to 20%, indicating a close correlation between the sample-duplicate pair.

RPD values were not calculated if one or both of the sample-duplicate concentrations were between the reportable detection limit (RDL) and five times the RDL. In these cases, chemical parameters were still considered as having passed the QA/QC reproducibility procedure if the sample-duplicate concentration difference was less than one RDL value.

Several duplicate RPDs were greater than 20%; the differences are assumed to be based on the duplicate collection methods, which involve two separate flow regulators for the Summa canisters, which may lead to different flow rates into the canister at times. Based on the QA/QC results, the sample methods and results are considered acceptable.

8.0 HAZARD QUOTIENT CALCULATIONS

Using the soil vapour screening levels described above and the soil vapour sampling results, estimated cancer risks (for carcinogens) and estimated hazard quotients (for non-carcinogens) were calculated for the site.

Estimated risks were calculated by dividing the soil vapour concentration by the corresponding soil vapour screening level for carcinogenic effects and multiplying the ratio by the target risk level of 1 x 10⁻⁵. Similarly, the estimated hazard quotients (HQ) represent the soil vapour concentration divided by the corresponding soil vapour screening level for non-carcinogenic effects.

Risk estimates for non-carcinogenic COPCs are defined as HQ. Hazard quotients are calculated based on a ratio of the estimated exposure and the toxicity reference values identified as the tolerable daily intake (TDI) or tolerable concentration (TC) according to the following equation:

Non-carcinogenic risk characterization in the assessment was completed for all COPCs.

When the HQ is greater than the target risk value, the scenario poses a potential concern and requires further evaluation or risk management. It is important to note that HQs greater than the target risk value do not necessarily indicate that adverse health effects will occur. This is because of the conservative assumptions used in estimating concentrations and in setting the target values. HQ that are less than the target risk value indicate that exposure is within acceptable levels and no further risk management is necessary. HQ greater than the target risk value suggest that further investigation or risk management (e.g., remediation) may be warranted.

For non-carcinogens, the individual target risk value used is 0.2 and the cumulative target risk value used is 1.0. This cumulative target risk value accounts for additional exposure to the chemicals of concern from sources other than the site. Therefore, the cumulative target risk value of 1.0 represents an allocation of 20% (the 0.2 target risk value from the individual compound) of a person's daily exposure from site sources and the remaining 80% would come from other sources. Other sources of exposure include ambient air, household products, and soil and water contact from locations other than the site.

For carcinogens, the risk of cancer is assumed to be proportional to dose with the assumption that any exposure results in a nonzero probability of risk. Carcinogenic risk probabilities were calculated by multiplying the estimated exposure level by the route-specific cancer slope factor (SF) or unit risk factor (URF) for each carcinogen:

$$R = EXSF (or URF)$$

Where:

R = Estimated individual excess lifetime cancer risk;

E = Exposure level for each chemical of potential concern (mg/kg/day or mg/m³); and

SF = Route- and chemical-specific SF (mg/kg/day)⁻¹ or URF ((mg/m³)⁻¹).

Risk probabilities determined for each carcinogen were also considered to be additive over all exposure pathways so that an overall risk of cancer was estimated for each group of potentially exposed receptors.

When assessing risks posed by exposure to carcinogenic substances, Health Canada and other regulatory agencies assume that any level of exposure is associated with some hypothetical cancer risk. As a result, it is necessary for regulatory agencies to specify an acceptable risk level. Per Health Canada guidance (2010a, 2010b), cancer risks are deemed essentially negligible where the estimated cumulative incremental lifetime cancer risk is less than or equal to 1 in 100,000 (1 x 10⁻⁵).

For this evaluation, cumulative target risk and hazard levels were determined in accordance with Alberta Tier 2 Guidelines. For carcinogens, the target risk level is 1 x 10⁻⁵, as this value is considered by Health Canada to represent a negligible risk. This risk level applies to both individual compounds and a summation (i.e. cumulative) of individual compounds risks. For non-carcinogens a cumulative target hazard level of 1.0 is used as potential exposures that result in cumulative hazard indices equal to or less than 1.0 signify negligible potential for adverse health effects. For individual compounds, a hazard index of 0.2 was used. Each sampling location was screened individually for every chemical detected, and the results evaluated relative to both individual and cumulative risks and hazard levels.

The cumulative risk level for carcinogens in sample VW-02 was 1.8×10^{-6} . The cumulative risk levels for carcinogens in sample VW-01 and its duplicate ranged between 6.1×10^{-5} and 8.5×10^{-5} , which are greater than the target risk level of 1×10^{-5} . Chemical-specific risks greater than 1×10^{-5} for sample VW-01 included 1.9×10^{-5} for 1,2-dichloroethane and 6.6×10^{-5} for vinyl chloride.

The cumulative hazard level identified in sample VW-02 collected for the non-carcinogens was 0.082 and no individual hazard levels were greater than 0.2. The cumulative hazard level identified in sample VW-01 and its duplicate, collected for the non-carcinogens was between 2 and 3, which is greater than the cumulative target hazard level of 1. Several individual chemical hazards were also greater than 0.2. Table 6 summarizes the properties of the compounds being assessed. Table 7 summarizes the soil properties used for calculations. Table 8 summarizes the building properties used for the calculations and Table 9 presents the generic soil vapour criteria calculated. Table 10 presents the estimated risk and hazard for the volatile compounds that were detected in soil vapour.

1,1,2-Trichloroethane, bromodichloromethane, and 1,1,2,2,-tetrachloroethane at sampling location VW-01 were less than the detection limit but were associated with a detection limit greater than the screening level. As noted in the laboratory results, some detection limits were elevated due to matrix interference from the PHCs in the sample. It is not suspected that any of these chemicals are present at concentrations in excess of screening criteria.

As shown in Table 10, the estimated individual and cumulative risks and hazards associated with soil vapour sample VW-02 collected in December 2019 did not exceed the corresponding target risk and hazard levels. Table 10 also demonstrates that the estimated individual and cumulative risks and hazards associated with soil vapour sample VW-01 indicate a potential risk from vapour intrusion to indoor air. Soil vapour well VW-01 is located in the northwest corner of the site and is bounded by roads on the north and west. It is approximately 315 m from the nearest residential building and approximately 115 m from the nearest commercial building; however, utility corridors are present along the road rights-of-way, which could be a preferential pathway for the soil vapour. The distance to existing buildings would presumably result in a decrease in concentrations from this location.

9.0 EVALUATION OF SITE CONDITIONS

9.1 Summary of Site Conditions

Based on the 2019 and historical data for the site, there are concerns related to the former landfill operations at RDM. With respect to the groundwater quality, monitoring wells that are considered to be hydraulically down-gradient exhibit elevated concentrations of parameters that are typical of MSW leachate, including chloride, ammonia, and VOCs. Due to the proximity of Waskasoo Creek, the groundwater is expected to discharge to the west into Waskasoo Creek. Conversely, groundwater analytical results collected in 2013 for monitoring well MW-02, formerly located to the east and hydraulically upgradient, did not suggest MSW leachate impacts. However, upgradient monitoring well MW-02 should be replaced for comparison to the proposed surface water samples.

The concentrations identified in 2019 should be confirmed with an additional round of groundwater sampling, and a qualitative risk assessment should be conducted. In addition, the creek should be sampled at upstream and downstream locations to determine if the surface water quality is adversely impacted. It is recommended to collect upstream and downstream surface water samples during a spring/summer monitoring event for analysis of BTEX, PHC fractions F1 and F2, total metals, routine water chemistry, and VOCs. If the surface water sampling results exceed FAL guidelines and are interpreted to be related to MSW leachate impacts, additional sampling or assessment may be recommended.

Previous results from 2013 did not identify elevated landfill gas concentrations at the east side of the property (VW-02 and VW-03); however, elevated concentrations of methane were identified at VW-01 in 2013 and 2019. Further, elevated concentrations of several VOCs above the soil vapour screening criteria were measured at VW-01 in 2019. This well is located on the northwest corner of the property and the closest buildings to VW-01 are located approximately 80 m north, across 32 Street. Landfill gas concentrations at VW-01 should continue to be monitored and risk management measures as recommended below should be considered.

Based on monitoring results in 2013 for VW-03 (located at the northeast corner of the site) and VW-02 (located on the south portion of the site near the Northland Apartments building), and monitoring results for VW-02 in 2019, the potential risk associated with LFG to adjacent buildings to the east is considered low. The building nearest to VW-03 is a commercial building at a distance of approximately 100 m to the east that already existed in 2013; however, more recently a new commercial building was constructed south of that building and closer (approximately 50 m) to the historical waste disposal area.

Confirmation of vapour concentrations along this portion of the eastern site boundary is recommended. It is recommended to install a vapour well along east site boundary, approximately halfway between former VW-03 and existing VW-02 and assess potential vapour migration to the east.

The site does contain buried landfill waste and some risk management measures are required. Further, there are several elements of the site assessment data requiring further confirmation as detailed below.

9.2 Review of Mitigative Measures from Risk Management Plan

The 2014 RMP presented a proposed site-specific environmental risk management plan as a tool to assist with the review of future subdivision applications on lands lying within the regulated setback distance from the site (300 m). The focus was on potential ingress of soil gas for COPCs with a HQ greater than 1.0. Residential land use was considered most sensitive, and exposure ratings for other land uses (e.g. school, public institutions, commercial complexes) were considered to not be greater than residential; however, unique exceptions would have to be

reviewed and addressed on a site-specific basis (Tiamat, 2014). Further, underground utility workers and subsurface utility infrastructure were considered relevant to potential exposure.

The RMP applied a 10x factor of safety to the hazard quotients to address uncertainties. Hazard quotients from the RMP ranged up to 588,280 (including the 10x factor of safety). Based on these, the RMP then provided recommended generic mitigative measures based on the calculated HQs, ranging from passive to active measures, recognizing that the ultimate approach would require a design professional for the proposed development.

Following the 2014 RMP, CCME released the document "A Protocol for the Derivation of Soil Vapour Quality Guidelines for Protection of Human Exposures Via Inhalation of Vapours" (CCME 2014), designed to provide guidance for developing site-appropriate soil vapour quality guidelines. The guidelines developed using the methods outlined in the CCME document were used for this current study and are included with the vapour sampling results in Table 4. Hazard quotients were calculated using estimated dose (based on concentrations measured at the site) and divided by tolerable daily intake. Soil vapour concentrations from the Phase II ESA conducted in 2013 were not compared to soil vapour quality guidelines, however spot checks of five target compounds with the highest HQs in the 2013 work (benzene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, cis-1,2-dichloroethene, and trans-1,2-dichloroethene) identified that the 2013 concentrations for soil vapour wells VW-02 and VW-03 would not have unacceptable HQs using the updated CCME methodology. Soil vapour well VW-01 would have unacceptable HQs using the updated CCME methodology for cis-1,2-dichloroethene, hexane, and vinyl chloride.

The 2014 RMP was prepared concurrent to RMPs at several other former City landfills, and a common set of mitigative measures was applied based on the HQs. Subsequent to the 2014 RMP and to the release of the CCME Protocol document, The City undertook additional assessment at another former City Landfill (Montfort); as part of that work, their consultant XCG Consulting Limited (XCG) revised the 2014 RMP criteria ranges for each generic mitigative measure category to include a Cancer Risk range to allow comparison of the 2014 RMP ranges with the HQ and Cancer Risks calculated by XCG². From that work, XCG identified the following generic mitigative measures for developments within a 300 m setback of these landfills (based on Tiamat, 2014), and these have been adopted for this site:

Passive Measures

- Passive Measures Level A: for Cancer Risk of > 1E⁻⁵ and < 5E⁻⁵ and/or HQ >0.2 and <1.
 Compacted clay liner with a minimum thickness of 1m and confirmed maximum hydraulic conductivity of 10⁻⁶ cm/sec.
- Passive Measures Level B: for Cancer Risk of > 5E⁻⁵ and < 5E⁻⁴ and/or HQ >1 and <5.
 Synthetic liner with type of material, thickness and installation details dependent on the design professional.
- Passive Measures Level C: for Cancer Risk of > 5E⁻⁴ and < 1E⁻³ and/or HQ >5 and <50.
 Passive sub-slab depressurization (SSD) system with a minimum depressurization of 4 to 10 Pa. In some instances (such as a pervious subgrade), the actual depressurization necessary may require an active SSD or alternative active ventilation system.

² XCG Consulting Limited, 2018. Vapour Intrusion Assessment and Environmental Monitoring Report, prepared for the City of Red Deer's Montfort Landfill.

Active Measures

Field verify the presence of the identified chemicals of concern and other potential chemicals in the soil gas state at the development site. If confirmed, determine the most appropriate manner to prevent soil vapour intrusion.

- Active Measures Level D: for Cancer Risk of > 1E⁻³ and < 2E⁻³ and/or HQ values >50 and <100.
 Active SSD must be configured to compensate for depressurization of the building and have adequate negative pressure gradients across the entire footprint of the foundation.
- Active Measures Level E: for Cancer Risk of >2E⁻³ and/or HQ values >100.
 Installation of geomembrane and active soil vapour extraction with system fault notification alarm.

For consistency with XCG's approach from 2017, we compared individual hazard quotients with the individual target hazard level (0.2). Based on the 2019 program, the greatest individual hazard quotient calculated for the site was 0.62 (vs target hazard level of 0.2), the greatest cumulative hazard quotient was 3.2 (vs target hazard level of 1.0), and the greatest estimated cancer risk was 6.6 x 10⁻⁵ (vs target Risk of 1.0 x 10⁻⁵). While development at the site is not currently proposed, for illustrative purposes, based on these hazard quotients and cancer risk levels calculated from the 2019 vapour data, passive Level B measures would be required for development within the setback area. We note that the above is based on data collected at VW-01, and further recommendations for additional data collection on the east site perimeter are provided in Section 10.0.

Future applications for development within the setback are subject to review by The City. The developer's team would be responsible for reviewing and verifying the available data relative to their proposed development. The mitigative measures presented above are generic and can be used as a general guide for expectations by The City; ultimately, the developer's design engineer would be responsible for developing measures specific to the intended development based on the above or an appropriate equivalent. Protection of workers (e.g. construction and utility) should form part of any development plan.

10.0 CONCLUSIONS AND RECOMMENDATIONS

Based upon the results of the groundwater and vapour monitoring and sampling conducted in 2019 and previous years, Tetra Tech has developed the following conclusions:

- The groundwater elevations in 2019 were not contoured due to inadequate data. MW-02 and MW-03 were not located during either monitoring event and the additional monitoring wells MW-04A, MW-04B, and MW-05 did not have available elevation data to calculate and interpret contours for the elevations. Historically groundwater flow was indicated to be to the northwest, towards Waskasoo Creek.
- Parameters that exceeded the Tier 1 Guidelines at one or more monitoring wells in 2019 included TDS, sodium, chloride, ammonia, and dissolved arsenic, copper, iron, manganese, and uranium. The VOC vinyl chloride was also greater than the Tier 1 Guideline. The measured concentrations of one or more of these parameters suggest leachate has impacted the groundwater quality at MW-01, MW-04A, and MW-05. The measured concentrations of these parameters were generally consistent with previous results.
- During the December 2019 sampling events, dissolved chloride concentrations greater than the Tier 1 Guidelines (120 mg/L) were measured at monitoring wells MW-01, MW-04A, and MW-05. The highest chloride concentration was 450 mg/L at MW-04A.
- Concentrations of toluene, ethylbenzene, xylenes, PHC fractions F1 to F2, AOX and volatile fatty/carboxylic
 acids in 2019 were less than the analytical detection limits at all groundwater monitoring wells. Benzene

concentrations were detected at MW-01 (0.0006 mg/L) and MW-05 (0.00189 mg/L) at concentrations less than the Tier 1 Guidelines value of 0.005 mg/L.

- Concentrations of vinyl chloride in the groundwater exceeded the Tier 1 Guidelines at MW-01 and MW-05 in December 2019. In addition, detectable concentrations of chlorinated VOCs for which no Tier 1 Guidelines is established (1,2-dichloroethene) were measured at MW-01, MW-04A, and MW-05.
- Concentrations of BTEX, PHCs, and VOCs in soil gas were less than the soil vapour screening criteria in sample VW-02.
- 1,2-dichloroethane and vinyl chloride in soil gas were greater than the soil vapour screening criteria in sample VW-01 and its duplicate.
- Siloxanes were not detected in the vapour samples collected.
- The estimated individual and / or cumulative risks and hazards associated with the soil vapour samples
 collected in December 2019 exceeded the corresponding target risk and hazard levels for sample VW-01.
 Further, methane concentrations greater than the lower explosive limit were measured in the headspace of this
 well during one event.
- The estimated individual and cumulative risks and hazards associated with the soil vapour sample collected from VW-02 in December 2019 did not exceed the corresponding target risk and hazard levels.
- Based on the above, the groundwater at interpreted hydraulically down-gradient locations (MW-01, MW-04A, and MW-05) was identified to exhibit leachate impacts. The groundwater at the fourth well (MW-04B), which is installed slightly deeper and adjacent to MW-04A, did not appear to exhibit impacts. One of the two vapour wells (VW-01, situated in the northwest corner of the site) exhibited impacts by LFG, as evidenced by elevated methane and VOCs. However, this is not identified as a concern related to current developments near the site. Should a change in development be contemplated, this conclusion may need to be revised.

Based upon the results of the groundwater and vapour monitoring program in 2019 and previous years, there are residual impacts to groundwater and vapours and buried landfill waste remains in place beneath the site and therefore ongoing risk management is required. Risk management is recommended to include additional assessment; ongoing monitoring; and administrative actions. The following recommendations are made according to these risk management elements:

Ongoing Monitoring:

- Continue the current semi-annual groundwater monitoring and annual sampling program at the site for another year to confirm concentrations measured to date and to monitor trends.
- Monitoring wells MW-01, MW-04A, and MW-05 should be sampled for routine groundwater chemistry parameters, dissolved metals, BTEX, PHC fractions F1 and F2, and VOCs. Deeper monitoring well MW-04B does not exhibit obvious groundwater quality impacts and may be omitted from the program.
- Survey the elevations of monitoring wells MW-04A, MW-04B, and MW-05 to establish the inferred groundwater flow direction.
- Continued vapour monitoring including methane and pressures is considered warranted to confirm conditions. The suggested monitoring would include manual measurements of headspace pressures and methane concentrations, measured semi-annually (in conjunction with groundwater monitoring) in both groundwater and vapour wells; if an additional well is installed as recommended below, it should be included in this monitoring.

Based on the results of the soil vapour sample from VW-01, there is a potential vapour intrusion risk in the northwest corner of the site from VOCs. Continued vapour sampling of VW-01 in conjunction with the groundwater monitoring program should be conducted, and the additional well along the east boundary, if installed, should also be sampled. Further sampling of vapours in VW-02 is not considered warranted.

Additional Assessment:

- Install a vapour well along east site boundary, approximately halfway between former VW-03 and existing VW-02 to assess potential vapour migration to the east.
- Replace background groundwater monitoring well MW-02 to provide additional groundwater data.
- The extent and migration of leachate impacted groundwater is poorly defined to the west and northwest. Because Waskasoo Creek is considered to be a receptor, it is recommended to collect upstream and downstream surface water samples during a spring/summer monitoring event for analysis of BTEX, PHC fractions F1 and F2, total metals, routine water chemistry, and VOCs. If the surface water sampling results exceed FAL guidelines and are interpreted to be related to MSW leachate impacts, additional sampling or assessment may be recommended.
- Based on the nature of thin soil cover identified in the earlier work by Tiamat, we suggest that during field monitoring events, a basic site walkover be conducted to evaluate for potential erosion, cracking, and/or exposed wastes. This information could be used to document whether potential repairs to the cap are warranted.

Administrative Actions:

- Utilize the revised generic mitigative measures when evaluating applications for development within the setback.
- Ensure that the site is clearly identified within The City's Land Use Bylaw and appropriate administrative requirements are met for the site in accordance with City policies.
- Ensure that the site is clearly identified within The City's utility mapping system. Elevated gas concentrations are present in the subsurface proximate to the 32 Street road right-of-way. Future activities in this vicinity (e.g. utility work, repairs, paving, etc.) should consider the potential presence of gas and a site-specific safety plan should be developed for work undertaken to limit the potential for exposure to site workers.

Further to the above recommendations, as noted the site remains an historical landfill. It presently appears to be well maintained and capped. The City should review this status on an ongoing basis to ensure that the cover remains intact and drainage remains positive; repairs or maintenance should be undertaken as required to maintain the site.

11.0 CLOSURE

We trust this report meets your present requirements. If you have any questions or comments, please contact the undersigned.

Respectfully submitted, Tetra Tech Canada Inc.

FILE: SWM.SWOP04071-01.006 FILE: SWM.SWOP04071-01.006 FILE: SWM.SWOP04071-01.006

Prepared by:

Megan Rouse, B.Sc., G.I.T.

Environmental Geologist-in-Training Environment and Water Practice

Direct Line: 403.723.6929 Megan.Rouse@tetratech.com

FILE: SWM.SWOP04071-01.006 FILE: SWM.SWOP04071-01.006 FILE: SWM.SWOP04071-01.006

Reviewed by: Frans Hettinga, B.Sc. Principal Specialist Solid Waste Management Practice

Direct Line: 403.723.6860 Frans.Hettinga@tetratech.com

FILE: SWM.SWOP04071-01.006 FILE: SWM.SWOP04071-01.006 FILE: SWM.SWOP04071-01.006

Reviewed by:

Sean D. Buckles, M.Sc., P.Eng. Senior Project Engineer- Team Lead Solid Waste Management Practice Direct Line: 403.723.6876

Sean.Buckles@tetratech.com

/dm/sy

FILE: SWM, SWO P04071-01.006 FILE: SWM, SWO P04071-01.006 FILE: SWM, SWO P04071-01.006

Prepared by (Soil Vapour): Kelly Jones, B.Sc. Environmental Scientist Infrastructure and Environment Direct Line: 306.347.4039 Kelly.Jones@tetratech.com

Reviewed by (Soil Vapour): Theresa Lopez, MSPH Senior Toxicologist

WTR - USA

Direct Line: 720.235.5521 Theresa.Lopez@tetratech.com

RM SIGNATURE:

RM APEGA ID #: 64479

October 28, 2020

PERMIT NUMBER: P013774

The Association of Professional Engineers and Geoscientists of Alberta (APEGA)

REFERENCES

- Alberta Environment and Parks. 2019a. Alberta Tier 1 Soil and Groundwater Remediation Guidelines. Land Policy Branch, Policy and Planning Division. 198 pp.
- Alberta Environment and Parks. 2019b. Water Well Database. Information obtained included in Appendix C. http://www.telusgeomatics.com/tgpub/ag_water/.
- Alberta Environment and Parks. 2019c. Alberta Tier 2 Soil and Groundwater Remediation Guidelines. Land Policy Branch, Policy and Planning Division. 150 pp.
- Alberta Geological Survey. 2019. Alberta Geological Survey Map 600, Bedrock Geology of Alberta. June 2013. http://www.ags.aer.ca.
- Andriashek, L. comp. 2018. Thalwegs of Bedrock Valleys, Alberta (GIS data, line features); Alberta Energy Regulator, AER/AGS Digital Data 2018-0001.
- Canadian Council of Ministers of the Environment. 2014. A Protocol for the Derivation of Soil Vapour Quality Guidelines for Exposure Protection of Human Exposures via Inhalation of Vapours. Available online: http://ceqg-rcqe.ccme.ca/en/index.html#void.
- Canadian Council of Ministers of the Environment. 2016. Guidance Manual for Environmental Site Characterization in Support of Environmental and Human Health Risk Assessment. Volume 1 Guidance Manual.
- Health Canada. 2012. Federal Contaminated Site Risk Assessment in Canada, Part I Guidance on Human Health Preliminary Quantitative Risk Assessment (PQRA), version 2.0.
- Hem, J.D. 1992. Study and Interpretation of the Chemical Characteristics of Natural Water U.S. Geological Survey, Water Supply Paper 2254.
- Natural Resources Canada. 2019. The Atlas of Canada, Topographic Maps. http://atlas.gc.ca/toporama/en/index.html.
- Tiamat Environmental Consultants Ltd. 2013. Phase I Environmental Site Assessment, Historic Waste Disposal Site, Red Deer Motors, The City of Red Deer. September 24, 2013.
- Tiamat Environmental Consultants Ltd. 2014a. Phase II Environmental Site Assessment, Historic Waste Disposal Site, Red Deer Motors, The City of Red Deer. February 26, 2014.
- Tiamat Environmental Consultants Ltd. 2014b. Environmental Risk Management Plan, Historic Waste Disposal Sites, Red Deer College & Red Deer Motors, The City of Red Deer. November 27, 2014.
- Tetra Tech Canada. 2019. Proposal for Environmental Monitoring Services for Pre 1972 Landfill Sites. The City of Red Deer. RFP No. 1090-2018-26. January 11, 2019.
- The City of Red Deer. 2019. WebMap. http://webmap.reddeer.ca/webmap/.

TABLES

Table 1	Groundwater Elevations
Table 2	Groundwater Analytical Results
Table 3	Soil Vapour Monitoring Results
Table 4	Soil Vapour Analytical Results
Table 5	Soil Vapour Quality Assurance/Quality Control Analytical Results
Table 6	Chemical, Physical, and Toxicological Properties
Table 7	Soil Properties for Evaluation of Vapour Transport
Table 8	Building Properties for Evaluation of Vapour Transport
Table 9	Generic Soil Vapour Criteria
Table 10	Soil Vapour Risk Evaluation

Table 1: Groundwater Elevations

Monitoring Well		MW-01	MW-02	MW-03	MW-04A	MW-04B	MW05
Total Drilled Depth (m)		6.1	6.6	5.1	4.6	6.0	4.6
Top of Screened Interval (mbg)		1.5	-	-	-	-	-
Bottom of Screened Interval (mbg)		6.1	-	-	-	-	-
Stick up (m)		1.09	0.79	0.01	0.20	0.78	0.52
Ground Elevation (m)		874.01	877.30	877.30	-	-	-
TPC Elevation (m)		875.10	878.10	877.31	-	-	-
Depth to Groundwater (mBTPC)	Aug-13	4.17	3.03		-	-	-
	Jun-19	5.04	CNL	CNL	-	-	-
	Dec-19	5.37	CNL	CNL	2.97	1.80	3.18
Groundwater Elevation (m)	Aug-13	870.93	875.07	-	-	-	-
	Jun-19	870.06	-	-	-	-	-
	Dec-19	869.73	-	-	-	-	-
Combustible Vapour	Jun-19	190	CNL	CNL	-	-	-
Concentrations* (CVCs) (ppm)	Dec-19	10	CNL	CNL	ND	ND	ND
Volatile Organic Compounds*	Jun-19	12	CNL	CNL	-	-	-
(VOCs) (ppm)	Dec-19	1	CNL	CNL	ND	ND	ND

mbg - metres below grade.

mBTPC - Metres below top of plastic pipe casing.

- Not monitored/information unavailable.

ND- non-detect

CNL - Could not locate.

ppm- parts per million

^{*-} measured using an RKI Eagle II calibrated to hexane and isobutylene operated in methane elimination mode

Table 2: Groundwater Analytical Results

		Location Code	MW-01	MW-04A	MW-04B	MW-05
		Sample Date	6-Dec-2019	6-Dec-2019	6-Dec-2019	6-Dec-2019
		Lab Report Number	L2393429	L2393429	L2393429	L2393429
		Laboratory ID	L2393429-1	L2393429-2	L2393429-3	L2393429-4
Parameter	Units	Tier 1 Guideline ^{1,2}		•	•	
Field Testing						
Field Temperature	°C	-	6.55	5.52	4.59	2.18
Field Electric Conductivity	μS/cm	-	2,213	1,754	1,282	1,918
Field pH	pH Units	6.5 to 8.5	8.32	7.90	8.40	7.81
Routine						
pH	pH Units	6.5 to 8.5	7.71	8.10	7.80	7.76
Electrical Conductivity (EC)	μS/cm	-	2,220	1,250	1,260	1,930
Total Dissolved Solids (TDS) Hardness as CaCO ₃	mg/L	500	1,300	1,840	1,040	1,060
Alkalinity (total as CaCO ₃)	mg/L mg/L	-	811 564	1,140 559	201 881	812 581
Bicarbonate	mg/L	-	688	682	1,070	709
Carbonate	mg/L	-	<5.0	<5.0	<5.0	<5.0
Hydroxide	mg/L	-	<5.0	<5.0	<5.0	<5.0
Calcium	mg/L	-	161	249	49.8	161
Magnesium	mg/L	-	99.4	126	18.6	99.6
Potassium	mg/L	-	9.55	5.29	3.37	9.91
Sodium	mg/L	200	189	284	256	177
Chloride	mg/L	120	423	450	6.8	167
Fluoride	mg/L	1.5	0.12	0.14	0.35	<0.10
Phosphorus - Total	mg/L	-	1.72	0.761	0.085	2.29
Sulphate Ionic Balance	mg/L	429 ³	79.1 101	394	174 71.4	94.9
Nutrients	N/A	-	101	110	/1.4	135
Ammonia as N	mg/L	0.456 to 2.47 ⁶	7.2	0.450	0.306	7.1
Nitrate (as NO ₃ -N)	mg/L	3	<0.10	<0.10	<0.10	<0.10
Nitrite (as NO ₂ -N)	mg/L	0.080 to 0.20 ⁴	<0.050	<0.050	<0.050	<0.050
Nitrate and Nitrite (as N)	mg/L	-	<0.11	<0.11	<0.11	<0.11
Total Kjeldahl Nitrogen (TKN)	mg/L	-	9.9	10.9	0.51	8.9
Carbon		•		•	•	
Dissolved Organic Carbon (DOC)	mg/L	-	10.6	23.0	7.4	18.3
Dissolved Metals						
Aluminum	mg/L	0.050 5	0.0016	0.0027	0.0027	0.0028
Antimony	mg/L	0.006	<0.00010	0.00147	<0.00010	0.00021
Arsenic Barium	mg/L	0.005	0.0225	0.0146	0.00711	0.0134
Boron	mg/L	1.5	0.604 0.079	0.0479 0.142	0.0228 0.214	0.794 0.169
Cadmium	mg/L mg/L	0.00028 to 0.00037 ³	0.0000142	0.0000150	0.0000275	0.000461
Chromium	mg/L	0.00020 to 0.00037	0.000142	0.00023	<0.00010	0.00029
Copper	mg/L	0.007	0.00033	0.00358	0.00037	0.00753
Iron	mg/L	0.30	24.4	1.23	0.025	7.43
Lead	mg/L	0.0070 ³	<0.000050	0.000225	<0.000050	0.000246
Manganese	mg/L	0.050	1.91	0.732	0.178	1.28
Mercury	mg/L	0.000005	<0.0000050	<0.0000050	<0.0000050	<0.0000050
Nickel	mg/L	0.094 to 0.409 ³	0.0135	0.0346	<0.00050	0.0262
Selenium	mg/L	0.002	0.000074	0.000172	<0.000050	0.000245
Silver	mg/L	0.0001	<0.000010	<0.000010	<0.000010	<0.000010
Uranium Zinc	mg/L	0.015	0.00196	0.0391	0.00217	0.00927
Organics	mg/L	0.03	0.0015	0.0034	<0.0010	0.0060
AOX	mg/L	-	ND	ND	ND	ND
Hydrocarbons	IIIg/L		ND	IND	IND	ND
Benzene	mg/L	0.005	0.00060	<0.00050	<0.00050	0.00189
Toluene	mg/L	0.021	<0.00050	<0.00050	<0.00050	<0.00050
Ethylbenzene	mg/L	0.0016	<0.00050	<0.00050	<0.00050	<0.00050
Xylenes (m & p)	mg/L	-	<0.00050	<0.00050	<0.00050	<0.00050
Xylene (o)	mg/L	-	<0.00050	<0.00050	<0.00050	<0.00050
Xylenes Total	mg/L	0.020	<0.00071	<0.00071	<0.00071	<0.00071
Styrene	mg/L	0.072	<0.00050	<0.00050	<0.00050	<0.00050
F1 (C ₆ -C ₁₀)	mg/L	-	<0.10	<0.10	<0.10	<0.10
F1 (C ₆ -C ₁₀) - BTEX	mg/L	0.81	<0.10	<0.10	<0.10	<0.10
F2 (C ₁₀ -C ₁₆) Volatile Fatty/Carboxylic Acids	mg/L	1.1	<0.10	<0.10	<0.10	<0.10
Acetic Acid	ma/l	<u> </u>	<10	<10	<10	<10
Butyric Acid	mg/L mg/L	-	<10 <1.0	<10 <1.0	<10 <1.0	<10 <1.0
Formic Acid	mg/L	-	<1.0 <50	<1.0 <50	<1.0 <50	<1.0 <50
Hexanoic Acid	mg/L	-	<1.0	<1.0	<1.0	<1.0
so-Butyric Acid	mg/L	-	<1.0	<1.0	<1.0	<1.0
,	···-g/ =		• •			
Isovaleric acid	mg/L	-	<1.0	<1.0	<1.0	<1.0
	mg/L mg/L		<1.0 <5.0	<1.0 <5.0	<1.0 <5.0	<1.0 <5.0

"ND" Non-detected.

BOLD - Greater than Tier 1 Guideline.

N/A - Not applicable.

¹ Alberta Environment and Parks (AEP). 2019. Alberta Tier 1 Soil and Groundwater Remediation Guidelines. Land Policy Branch, Policy and Planning Division. 198 pp. Referenced guidelines are for coarse-textured soils under Residential/Parkland land use.

² Alberta Environment and Parks (AEP). Environmental Quality Guidelines for Alberta Surface Waters. March 2018. Table 1 Surface water quality guidelines for the protection of freshwater aquatic life (FAL). Most conservative values applied (chronic or acute).

³ Guideline varies with hardness. Values shown based on site hardness range of 201 mg/L to 1140 mg/L.

 $^{^4}$ Guideline varies with chloride. Values shown based on site chloride range of 6.8 mg/L to 450 mg/L. $^{\rm c}$

 $^{^{\}rm 5}$ Guideline varies with pH. Values shown based on site pH range of 7.81 to 8.40.

⁶ Guideline varies with pH and temperature. Values shown based on pH range of 7.81 to 8.40 and temperature range of 2.18°C to 6.55°C.

[&]quot;-" No applicable guideline.

Table 2: Groundwater Analytical Results

		Location Code	MW-01	MW-04A	MW-04B	MW-05
		Sample Date	6-Dec-2019	6-Dec-2019	6-Dec-2019	6-Dec-2019
		Lab Report Number	L2393429	L2393429	L2393429	L2393429
		Laboratory ID	L2393429-1	L2393429-2	L2393429-3	L2393429-4
Parameter	Units	Tier 1 Guideline ^{1,2}		•		
Volatile Organic Compounds (VOCs)						
1,1,1,2-Tetrachloroethane	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010
1,1,1-Trichloroethane	mg/L	_	<0.00050	<0.00050	<0.00050	<0.00050
1,1,2,2-Tetrachloroethane	mg/L	_	<0.00050	<0.00050	<0.00050	<0.00050
1,1,2-Trichloroethane	mg/L	-	<0.00050	<0.00050	<0.00050	<0.00050
1,1-Dichloroethane	mg/L	_	<0.00050	<0.00050	<0.00050	<0.00050
1,1-Dichloroethene	mg/L	0.014	<0.00050	<0.00050	<0.00050	<0.00050
1,1-Dichloropropene	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010
1,2,3-Trichlorobenzene	mg/L	0.008	<0.0010	<0.0010	<0.0010	<0.0010
I,2,3-Trichloropropane	mg/L	-	<0.00050	<0.00050	<0.00050	<0.00050
1,2,4-Trichlorobenzene	mg/L	0.015	<0.0010	<0.0010	<0.0010	<0.0010
1,2,4-Trimethylbenzene	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010
1,2-Dibromo-3-chloropropane	mg/L	- 1	<0.0010	<0.0010	<0.0010	<0.0010
1,2-Dibromoethane	mg/L	-	<0.00050	<0.00050	<0.00050	<0.00050
1,2-Dichlorobenzene	mg/L	0.0007	<0.00050	<0.00050	<0.00050	<0.00050
1,2-Dichloroethane	mg/L	0.005	<0.0010	<0.0010	<0.0010	<0.0010
1,2-Dichloroethene (cis)	mg/L	-	0.0096	0.0019	<0.0010	0.222
1,2-Dichloroethene (trans)	mg/L	-	0.00187	<0.00050	<0.00050	0.018
I,2-Dichloropropane	mg/L	-	< 0.00050	<0.00050	<0.00050	<0.00050
,3,5-Trimethylbenzene	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010
,3-Dichlorobenzene	mg/L	-	<0.00050	<0.00050	<0.00050	<0.00050
1,3-Dichloropropane	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010
1,3-Dichloropropene [cis]	mg/L	-	<0.00050	<0.00050	<0.00050	<0.00050
1,3-Dichloropropene [trans]	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010
I,4-Dichlorobenzene	mg/L	0.001	<0.00050	<0.00050	<0.00050	<0.00050
2,2-Dichloropropane	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010
2-Chlorotoluene	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010
1-Chlorotoluene	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010
Bromobenzene	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010
Bromochloromethane	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010
Bromodichloromethane	mg/L	-	<0.00050	<0.00050	<0.00050	<0.00050
Bromoform	mg/L	-	<0.00050	<0.00050	<0.00050	<0.00050
Bromomethane	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010
Carbon tetrachloride	mg/L	0.00057	<0.00050	<0.00050	<0.00050	<0.00050
Chlorobenzene	mg/L	0.0013	<0.00050	<0.00050	<0.00050	<0.00050
Chloroethane	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010
Chloroform	mg/L	0.018	<0.00050	<0.00050	<0.00050	<0.00050
Chloromethane	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010
Dibromochloromethane	mg/L	0.19	<0.00050	<0.00050	<0.00050	<0.00050
Dibromomethane	mg/L	-	<0.00050	<0.00050	<0.00050	<0.00050
Dichlorodifluoromethane	mg/L	-	<0.00050	<0.00050	<0.00050	<0.00050
Hexachlorobutadiene	mg/L	0.0013	<0.0010	<0.0010	<0.0010	<0.0010
so-Propylbenzene (cumene)	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010
Methylene Chloride	mg/L	0.05	<0.0010	<0.0010	<0.0010	<0.0010
n-Butylbenzene	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010
n-Propylbenzene	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010
o-Isopropyltoluene	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010
sec-Butylbenzene	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010
ert-Butylbenzene	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010
etrachloroethene	mg/L	0.01	<0.00050	<0.00050	<0.00050	<0.00050
richloroethene	mg/L	0.005	<0.00050	<0.00050	<0.00050	<0.00050
richlorofluoromethane	mg/L	-	<0.0010	<0.0010	<0.0010	<0.0010
/inyl chloride	mg/L	0.0011	0.0124	<0.00050	<0.00050	0.0132

2

BOLD - Greater than Tier 1 Guideline.

N/A - Not applicable.

TETRA TECH

¹ Alberta Environment and Parks (AEP). 2019. Alberta Tier 1 Soil and Groundwater Remediation Guidelines. Land Policy Branch, Policy and Planning Division. 198 pp. Referenced guidelines are for coarse-textured soils under Residential/Parkland land use.

² Alberta Environment and Parks (AEP). Environmental Quality Guidelines for Alberta Surface Waters. March 2018. Table 1 Surface water quality guidelines for the protection of freshwater aquatic life (FAL). Most conservative values applied (chronic or acute).

 $^{^{3}}$ Guideline varies with hardness. Values shown based on site hardness range of 201 mg/L to 1140 mg/L.

⁴ Guideline varies with chloride. Values shown based on site chloride range of 6.8 mg/L to 450 mg/L.

⁵ Guideline varies with pH. Values shown based on site pH range of 7.81 to 8.40.

⁶ Guideline varies with pH and temperature. Values shown based on pH range of 7.81 to 8.40 and temperature range of 2.18°C to 6.55°C.

[&]quot;-" No applicable guideline.
"ND" Non-detected.

Table 3: Soil Vapour Monitoring Results

					Gas Well					
Parameter		VW-01			VW-02			VW-03		
	Aug-13	Jun-19	Dec-19	Aug-13	Jun-19	Dec-19	Aug-13	Jun-19	Dec-19	
Pressure (kPa) ¹		0.0	0.0		0.0	0.0				
CH ₄ (%)	26.0	11.7	0.0	0.0	0.0	0.0	0.0			
CO (ppm) ²	0.0	8.0	0.0	0.0	0.0	0.0	0.0			
CO ₂ (%)	13.1	13.7	0.2	4.6	0.1	0.2	1.9			
O ₂ (%)	8.4	3.3	20.9	17.2	19.9	21.3	19.8	Could No	ot Locate	
Balance (% v/v)	52.5	71.3	78.8	77.8	80.1	78.4	78.3			
Static Water Level (mbtoc) ³		Dry	Dry		Dry	Dry				
Depth to Bottom (m)	3.50	4.31	4.12	4.60	5.63	3.37	4.00			
Stick up (m)		0.77	0.82		0.87	0.91				

N/A - Not applicable - well can not be accessed to obtain measurement or has a submerged screen (blinded).

¹ Kpa - Kilopascal.

² ppm - Parts per million.
³ mbtoc - Meters below top of casing.

Table 4: Soil Vapour Analytical Results

	Location Code	Generic Soil	VW	/-01	VW-02
	Field ID	Vapour Criteria -	VW-01	19DUP01	VW-02
	Sample Date	Residential	5-Dec-2019	5-Dec-2019	5-Dec-2019
	Lab Report Number	Coarse-Grained	L2393599	L2393599	L2393599
	Laboratory ID	(µg/m³)¹	L2393599-1 / L2393599-4	L2393599-3	L2393599-2 / L2393599-5
Parameter	Units	μg/m³			
Field Testing					
Air Volume	L		0.06	-	0.06
Initial Pressure	in Hg		-11.4	-9.6	-4.9
Aliphatic/Aromatic PHC Sub-Fractionation	9				110
Aliphatics (C ₆ -C ₈)	μg/m³	740,737	56,400	56,200	1,300
Aliphatics (>C ₈ -C ₁₀)	μg/m ³	40,257	21,500	21,100	728
Aliphatics (>C ₁₀ -C ₁₂)	μg/m ³	40,257	9,920	9,690	179
Aliphatics (>C ₁₂ -C ₁₆)	μg/m ³	40,257	880	840	<30
Aromatics (>C ₈ -C ₁₀)	μg/m ³	805	<390	<360	<15
Aromatics (>C ₁₀ -C ₁₂)	μg/m ³	8,051	490	470	<15
Aromatics (>C ₁₂ -C ₁₆)	μg/m ³	8,051	<770	<730	<30
Linear & Cyclic Methyl Siloxanes		-,	<u> </u>		
Hexamethylcyclotrisiloxane, D3(CVMS)	μg/m ³	NG	<170	-	<170
Octamethylcyclotetrasiloxane, D4(CVMS)	μg/m ³	NG	<170	-	<170
Decamethylcyclopentasiloxane, D5(CVMS)	μg/m ³	NG	<170	-	<170
Dodecamethylcyclohexasiloxane, D6(CVMS)	μg/m ³	NG	<170	-	<170
Hexamethyldisiloxane, MM(LVMS)	μg/m ³	NG	<170	-	<170
Octamethyltrisiloxane, MDM(LVMS)	μg/m ³	NG	<170	_	<170
Decamethyltetrasiloxane, MD2M(LVMS)	μg/m ³	NG	<170	_	<170
Dodecamethylpentasiloxane, MD3M(LVMS)	μg/m ³	NG	<170	_	<170
Hydrocarbons	р дулл				1
Benzene	μg/m ³	195	<16	<15	1.4
Toluene	μg/m ³	124,220	<19	<17	1.31
Ethylbenzene	μg/m ³	34,330	<22	<20	<0.87
Xylenes (m & p)	μg/m ³	NG	<43	<39	<1.7
Xylene (o)	μg/m ³	NG	<22	<20	<0.87
Xylenes Total	μg/m ³	6,330	<48	<43	<2.0
Styrene	μg/m ³	3,220	<21	<19	<0.85
F1 (C ₆ -C ₁₀)	μg/m ³	867,383	62,900	62,500	1,720
F2 (C ₁₀ -C ₁₆)	μg/m ³	52,495	19,300	18,900	380
Alcohols	р дулт	02,100		10,000	
Isopropanol	μg/m ³	6,219	<61	<56	<2.5
High Level Fixed Gases	<u> </u>	, ,			
Nitrogen	%	NG	66.3	69.8	74.9
Oxygen	%	NG	7.04	7.49	20.3
Carbon Dioxide	%	NG	11.1	11.5	0.391
Carbon Monoxide	%	NG	<0.050	<0.050	<0.050
Methane	%	NG	5.26	5.46	<0.050
Hydrocarbon Gases (C₁-C₅)	I	-	-	<u> </u>	
Methane	%	NG	-	-	0.00333
Ethane	%	NG	<0.00020	<0.00020	<0.00020
Ethene	%	NG	0.00026	0.00025	<0.00020
Propane	%	NG	<0.00020	<0.00020	<0.00020
Propene	%	NG	<0.00020	<0.00020	<0.00020
Butane	%	NG	<0.00020	<0.00020	<0.00020
Pentane	%	NG	0.00020	0.0002	<0.00020
Polycyclic Aromatic Hydrocarbons (PAHs)		110	3.00021	1 0.0002	-0.00020
. , . ,	μg/m ³				

1

NG - No applicable criteria.

¹ Canadian Council of Ministers of the Environment (CCME). 2014. A Protocol for the Derivation of Soil Vapour Quality Guidelines for Protection of Human Exposures via Inhalation of Vapours. Refer to Tables 6 to 9 for further information.

BOLD - Greater than criteria.

^{* =} Detection limit raised above criteria.

Table 4: Soil Vapour Analytical Results

	Location Code	Generic Soil	VW	/- 01	VW-02	
	Field ID	Vapour Criteria -	VW-01	19DUP01	VW-02	
	Sample Date	Residential	5-Dec-2019	5-Dec-2019	5-Dec-2019	
	Lab Report Number	Coarse-Grained	L2393599	L2393599	L2393599	
	Laboratory ID	(µg/m³)¹	L2393599-1 /	L2393599-3	L2393599-2 /	
	Laboratory ID		L2393599-4	L2000000-0	L2393599-5	
Parameter	Units	μg/m³				
Volatile Organic Compounds (VOCs)						
1,1,1-Trichloroethane	μg/m ³	1,693,510	<27	<25	<1.1	
1,1,2,2-Tetrachloroethane	μg/m ³	11	<34*	<31*	<1.4	
1,1,2-Trichloroethane	μg/m ³	7	<27*	<25*	<1.1	
1,1-Dichloroethane	μg/m ³	430	<20	<18	<0.81	
1,1-Dichloroethene	μg/m ³	6,470	<20	<18	<0.79	
1,2,4-Trichlorobenzene	μg/m ³	365	<37	<34	<1.5	
1,2,4-Trimethylbenzene	μg/m ³	2,235	<25	<22	<0.98	
1,2-Dibromoethane	μg/m ³	590	<38	<35	<1.5	
1,2-Dichlorobenzene	μg/m ³	7,072	<30	<27	<1.2	
1,2-Dichloroethane	μg/m ³	24	45	33	<0.81	
1,2-Dichloroethene (cis)	μg/m ³	242	34	22	<0.79	
1,2-Dichloroethene (trans)	μg/m ³	245	24	<18	<0.79	
1,2-Dichloropropane	μg/m ³	135	<23	<21	<0.92	
1,2-Dichlorotetrafluoroethane	μg/m ³	566,335	65	47	7.6	
1,3,5-Trimethylbenzene	μg/m ³	2,235	172	126	<0.98	
1,3-Butadiene	μg/m ³	17	<11	<10	<0.44	
1,3-Dichlorobenzene	μg/m ³	64	<30	<27	<1.2	
1,3-Dichloropropene [cis]	μg/m ³	163	<23	<21	<0.91	
1,3-Dichloropropene [trans]	μg/m ³	149	<23	<21	<0.91	
1,4-Dichlorobenzene	μg/m ³	64	<30	<27	<1.2	
1,4-Dioxane	μg/m ³	105	<18	<16	<0.72	
1-Methyl-4 ethyl benzene	μg/m ³	14,461	<25	<22	<0.98	
2-Butanone (MEK) 2-Hexanone (MBK)	μg/m ³	167,364	<15	<13	0.74	
,	μg/m ³	1,053	<100	<93	<4.1	
4-Methyl-2-pentanone (MIBK)	μg/m ³	103	<20	<19	<0.82	
Acetone Allyl chloride	μg/m ³	918,788	<460	<320	9.0	
	μg/m ³	32	<16	<14	<0.63	
Benzyl chloride Bromodichloromethane	μg/m ³	34	<26	<24	<1.0	
Bromoform	μg/m ³	28	<34*	<30* <47	<1.3	
Bromomethane	μg/m ³	1,494	<52 <19	<18	<2.1	
Carbon disulfide	μg/m ³	173	<19 <16	<18	<0.78 2.75	
Carbon tetrachloride	μg/m ³	21,713 113	<31	<29	<1.3	
Chlorobenzene	μg/m ³	347	<23	<21	<0.92	
Chloroethane	μg/m³ μg/m³	31,019	<13	<12	<0.53	
Chloroform	μg/m ³	27	<24	<22	<0.98	
Chloromethane	μg/m³	2,657	<10	<9.4	1.1	
Cyclohexane	μg/m ³	201,510	6,700	6,450	45	
Dibromochloromethane	μg/m³	4,750	<43	<39	<1.7	
Dichlorodifluoromethane	μg/m³	3,584	31	<22	47.8	
Ethyl acetate	μg/m ³	2,509	<18	<16	<0.72	
Freon 113	μg/m ³	230,627	<38	<35	<1.5	
Heptane	μg/m ³	14,461	4,210	2,880	16.5	
Hexachlorobutadiene	μg/m ³	51	<53	<48	<2.1	
Hexane	μg/m ³	18,839	11,700	11,600	79.8	
Isooctane	μg/m ³	14,917	1,050	720	4.45	
iso-Propylbenzene (cumene)	μg/m ³	14,461	<25	<22	<0.98	
Methyl t-Butyl Ether (MTBE)	μg/m ³	1,153	<18	<16	<0.72	
Methylene Chloride	μg/m ³	18,764	<17	<16	<0.69	
Propene	μg/m ³	91,723	676	474	<0.34	
Tetrachloroethene	μg/m ³	2,679	<34	<31	252	
Tetrahydrofuran	μg/m ³	62,828	<15	<13	<0.59	
Trichloroethene	μg/m ³	153	<27	<24	7.6	
Trichlorofluoromethane	μg/m ³	34,325	<28	<26	60.2	
Vinyl acetate	μg/m ³	6,586	<44	<40	<1.8	
Vinyl bromide (bromoethene)	μg/m ³	94	<22	<20	<0.87	
Vinyl chloride	μg/m ³	140	926	664	3.98	

BOLD - Greater than criteria.

¹ Canadian Council of Ministers of the Environment (CCME). 2014. A Protocol for the Derivation of Soil Vapour Quality Guidelines for Protection of Human Exposures via Inhalation of Vapours. Refer to Tables 6 to 9 for further information. NG - No applicable criteria.

^{* =} Detection limit raised above criteria.

Table 5: Soil Vapour Quality Assurance/Quality Control Analytical Results

		Field ID Sample Date	VW-01	VW-01 19DUP01 5-Dec-2019 5-Dec-2019		
	1	Sample Date Lab Report Number	L2393599	L2393599	RPD (%)	
	•	Laboratory ID	L2393599-1 /	L2393599-3		
			L2393599-4	22000000		
Parameter	Units	RDL				
Field Testing Air Volume	L	0.01	0.06			
nitial Pressure	in Hg	-30	-11.4	-9.6	-	
Aliphatic/Aromatic PHC Sub-Fractionation						
Aliphatics (C ₆ -C ₈) Aliphatics (>C ₈ -C ₁₀)	μg/m ³ μg/m ³	15 15	56,400 21,500	56,200 21,100	0.4	
Aliphatics (C_{00} - C_{10})	μg/m ³	15	9,920	9,690	2	
Aliphatics (>C ₁₂ -C ₁₆)	μg/m ³	30	880	840	5	
Aromatics (>C ₈ -C ₁₀) Aromatics (>C ₁₀ -C ₁₂)	μg/m ³	15	<390	<360	-	
Aromatics (>C ₁₀ -C ₁₂) Aromatics (>C ₁₂ -C ₁₆)	μg/m³ μg/m³	15 30	490 <770	470 <730	4	
inear & Cyclic Methyl Siloxanes						
Hexamethylcyclotrisiloxane, D3(CVMS)	μg/m³	170	<170	-	-	
Octamethylcyclotetrasiloxane, D4(CVMS) Decamethylcyclopentasiloxane, D5(CVMS)	μg/m³ μα/m³	170 170	<170 <170	-	-	
Oodecamethylcyclohexasiloxane, D6(CVMS)	μg/m μg/m ³	170	<170	-	-	
Hexamethyldisiloxane, MM(LVMS)	μg/m³	170	<170	-	-	
Octamethyltrisiloxane, MDM(LVMS)	μg/m ³	170	<170	-	-	
Decamethyltetrasiloxane, MD2M(LVMS) Dodecamethylpentasiloxane, MD3M(LVMS)	μg/m³ μg/m³	170 170	<170 <170	-	-	
Hydrocarbons	рулп	170	1170			
Benzene	μg/m³	0.64	<16	<15	-	
Toluene Ethylbenzene	μg/m ³	0.75	<19	<17	-	
thylbenzene Kylenes (m & p)	μg/m³ μg/m³	0.87	<22 <43	<20 <39	-	
Kylene (o)	μg/m³	0.87	<22	<20	-	
Kylenes Total	μg/m ³	2	<48	<43	-	
Styrene	μg/m ³	0.85	<21	<19	- 1	
=1 (C ₆ -C ₁₀) =2 (C ₁₀ -C ₁₆)	μg/m³ μg/m³	15 15	62,900 19,300	62,500 18,900	2	
Alcohols			.0,000	.0,000		
sopropanol	μg/m³	2.5	<61	<56	-	
High Level Fixed Gases Nitrogen	%	1 1	00.0	00.0	5	
Oxygen	%	0.1	7.04	69.8 7.49	6	
Carbon Dioxide	%	0.05	11.1	11.5	4	
Carbon Monoxide	%	0.05	<0.050	<0.050	-	
Methane Hydrocarbon Gases (C ₁ -C ₅)	%	0.05	5.26	5.46	4	
Methane	%	0.0001	-	_	_	
Ethane	%	0.0002	<0.00020	<0.00020	-	
Ethene	%	0.0002	0.00026	0.00025	-	
Propane Propene	% %	0.0002 0.0002	<0.00020 <0.00020	<0.00020	-	
Butane	% %	0.0002	<0.00020	<0.00020 <0.00020	-	
Pentane	%	0.0002	0.00021	0.0002	-	
Polycyclic Aromatic Hydrocarbons (PAHs)						
Naphthalene Volatile Organic Compounds (VOCs)	μg/m³	2.6	<66	<60	-	
1.1.1-Trichloroethane	μg/m ³	1.1	<27	<25	_	
1,1,2,2-Tetrachloroethane	μg/m³	1.4	<34	<31	-	
1,1,2-Trichloroethane	μg/m ³	1.1	<27	<25	-	
1,1-Dichloroethane	μg/m ³	0.81	<20	<18	-	
1,1-Dichloroethene 1,2,4-Trichlorobenzene	μg/m³ μg/m³	0.79 1.5	<20 <37	<18 <34	-	
1,2,4-Trimethylbenzene	μg/m μg/m³	0.98	<25	<22	-	
1,2-Dibromoethane	μg/m³	1.5	<38	<35	-	
1,2-Dichlorobenzene	μg/m³	1.2	<30	<27	-	
1,2-Dichloroethane 1,2-Dichloroethene (cis)	μg/m ³	0.81 0.79	45 34	33 22	31 43	
1,2-Dichloroethene (ds)	μg/m³ μg/m³	0.79	24	<18	- 43	
1,2-Dichloropropane	μg/m ³	0.92	<23	<21	-	
1,2-Dichlorotetrafluoroethane	μg/m ³	1.4	65	47	32	
1,3,5-Trimethylbenzene 1,3-Butadiene	μg/m ³	0.98 0.44	172 <11	126 <10	31	
1,3-Dichlorobenzene	μg/m³ μg/m³	1.2	<11 <30	<10 <27	-	
,3-Dichloropropene [cis]	μg/m³	0.91	<23	<21	-	
,3-Dichloropropene [trans]	μg/m³	0.91	<23	<21	-	
I,4-Dichlorobenzene	μg/m ³	1.2 0.72	<30 <18	<27 <16	-	
i,4-Dioxane I-Methyl-4 ethyl benzene	μg/m³ μg/m³	0.72	<18 <25	<16 <22	-	
2-Butanone (MEK)	μg/m ³	0.59	<15	<13		
2-Hexanone (MBK)	μg/m ³	4.1	<100	<93	-	
I-Methyl-2-pentanone (MIBK) Acetone	μg/m ³	0.82 1.2	<20 <460	<19 <320	-	
Allyl chloride	μg/m³ μg/m³	0.63	<460 <16	<320 <14	-	
Benzyl chloride	μg/m ³	1	<26	<24	-	
Bromodichloromethane	μg/m³	1.3	<34	<30	-	
Bromoform Bromomethane	μg/m ³	2.1	<52 <19	<47 <18	-	
Carbon disulfide	μg/m³ μg/m³	0.78 0.62	<19 <16	<18 <14	-	
Carbon tetrachloride	μg/m³	1.3	<31	<29	-	
Chlorobenzene	μg/m³	0.92	<23	<21	-	
Chloroethane	μg/m ³	0.53	<13	<12	-	
Chloroform Chloromethane	μg/m ³	0.98 0.41	<24 <10	<22 <9.4	-	
Cyclohexane	μg/m³ μg/m³	0.41 3.4	<10 6,700	<9.4 6,450	4	
Dibromochloromethane	μg/m³	1.7	<43	<39	-	
		1	2.1	.00		
Dichlorodifluoromethane Ethyl acetate	μg/m³ μg/m³	4.9 0.72	31 <18	<22 <16	-	

RDL RPD

1

Not analyzed or RPD not calculated.

Concentration is less than the laboratory detection limit indicated.

Laboratory Reportable Detection Limit.

RPD is Relative Percentage Difference calculated as RPD(%)=(|V1-V2|/[(V1+V2)/2])*100 where V1,V2 = concentrations of parent and duplicate sample, respectively.

RPDs have only been calculated where a concentration is greater than 5 times the RDL.

Table 5: Soil Vapour Quality Assurance/Quality Control Analytical Results

		Field ID	VW-01	19DUP01	
		Sample Date	5-Dec-2019	5-Dec-2019	
	L	ab Report Number	L2393599	L2393599	RPD (%)
		Laboratory ID	L2393599-1 / L2393599-4	L2393599-3	
Parameter	Units	RDL			
Volatile Organic Compounds (VOCs)					
Heptane	μg/m³	0.82	4,210	2,880	38
Hexachlorobutadiene	μg/m ³	2.1	<53	<48	-
Hexane	μg/m ³	3.5	11,700	11,600	1
Isooctane	μg/m³	0.93	1,050	720	37
so-Propylbenzene (cumene)	μg/m ³	0.98	<25	<22	-
Methyl t-Butyl Ether (MTBE)	μg/m ³	0.72	<18	<16	-
Methylene Chloride	μg/m³	0.69	<17	<16	-
Propene	μg/m ³	0.34	676	474	35
Tetrachloroethene	μg/m ³	6.8	<34	<31	-
Tetrahydrofuran	μg/m³	0.59	<15	<13	-
Trichloroethene	μg/m ³	1.1	<27	<24	-
Trichlorofluoromethane	μg/m ³	5.6	<28	<26	-
Vinyl acetate	μg/m³	1.8	<44	<40	-
Vinyl bromide (bromoethene)	μg/m³	0.87	<22	<20	-
Vinyl chloride	μg/m ³	0.51	926	664	33

Not analyzed or RPD not calculated.

Concentration is less than the laboratory detection limit indicated.

2

RDL RPD

Laboratory Reportable Detection Limit.

RPD is Relative Percentage Difference calculated as RPD(%)=(|V1-V2|/[(V1+V2)/2])*100 where V1,V2 = concentrations of parent and duplicate sample, respectively.

RPDs have only been calculated where a concentration is greater than 5 times the RDL.

Table 6: Chemical, Physical, and Toxicological Properties

		TC	RsC	H'	D _{air}	D _{water}	BAF		MF	
	Parameter	Tolerable Concentration	Risk-specific concentration	Unitless Henry's Law Constant	Pure component molecular diffusivity in air	Pure component molecular diffusivity in water	Bioattenuation Factor	Mass Fraction in Soil (Coarse and Fine)	Mass Fraction in Soil Vapour - Coarse Soil	Mass Fraction in Soil Vapour - Fine Soil
	Units	mg/m ³	mg/m ³	unitless	cm²/s	cm²/s	unitless	unitless	unitless	unitless
Benze			0.003	0.225	0.088	1.00E-05	10			
Toluer		3.8		0.274	0.087	9.20E-06	10			
Xylene	penzene	0.18		0.358	0.075	8.50E-06	10 10			
	halene	0.003		0.252 0.017	0.078 0.059	9.90E-06 7.50E-06	10			
Napril	Aliphatic C>6-C8	18.4		50	0.059	0.00001	10	0.55	0.854	0.842
F1	Aliphatic C>8-C10	10.4		80	0.05	0.00001	10	0.36	0.141	0.153
''	Aromatic C>8-C10	0.2		0.48	0.05	0.00001	10	0.09	0.005	0.105
	Aliphatic C>10-C12	1		120	0.05	0.00001	10	0.36	0.767	0.766
-	Aliphatic C>12-C16	1		520	0.05	0.00001	10	0.44	0.205	0.700
F2	Aromatic C>10-C12	0.2		0.14	0.05	0.00001	10	0.09	0.023	0.023
-	Aromatic C>12-C16	0.2		0.053	0.05	0.00001	10	0.11	0.025	0.005
1 1 1-	Trichloroethane	5		0.688	0.078	0.000001	10			
	2-Tetrachloroethane		0.000172	0.019	0.071	0.000008	10			
	Trichloroethane	0.0002	0.000625	0.038	0.078	0.000009	10			
	chloroethane	0.0002	0.006250	0.240	0.074	0.000011	10			
	chloroethene	0.2		0.942	0.090	0.000011	10			
	Trichlorobenzene	0.007		0.112	0.030	0.000010	10			
	Trimethylbenzene	0.007		0.112	0.061	0.000008	10			
	bromoethane	0.0093	0.016700	0.230	0.061	0.000008	10			
	chlorobenzene	0.0093	0.010700	0.027	0.022	0.000012	10			
	chloroethane	0.007	0.000385	0.072	0.104	0.000008	10			
	chloroetnane	0.007	0.000385	0.049	0.104	0.000010	10			
	Trimethylbenzene	0.004	0.002703	0.110	0.078	0.000009	10			
	utadiene	0.002	0.000333	3.009	0.249	0.000011	10			
_	chlorobenzene	0.002	0.000909	0.128	0.069	0.000011	10			
	chlorobenzene	0.095	0.000909	0.098	0.069	0.000008	10			
	oxane	0.03	0.002000	0.000	0.229	0.000010	10			
	anone	0.03		0.000	0.070	0.000010	10			
Aceto		31		0.004	0.070	0.000011	10			
	hloride	0.001		0.450	0.094	0.000011	10			
	l chloride	0.001		0.017	0.075	0.0000011	10			
	odichloromethane	0.001	0.000270	0.098	0.030	0.000011	10			
Bromo			0.009091	0.038	0.030	0.000011	10			
	omethane	0.005		0.255	0.073	0.000010	10			
	on Disulfide	0.7		0.705	0.104	0.000012	10			
	on Tetrachloride	0.1	0.001667	1.183	0.078	0.000010	10			
	obenzene	0.01		0.148	0.073	0.000009	10			
	pethane	1		0.073	0.073	0.000003	10			
Chlore		0.098	0.000435	0.154	0.104	0.000012	10			
	omethane	0.090		0.388	0.126	0.00007	10			
	2-Dichloroethene	0.007		0.302	0.074	0.00001	10			
	3-Dichloropropene	0.02	0.002500	0.053	0.087	0.000011	10			
	hexane	6	0.002300	7.618	0.080	0.000010	10			
	mochloromethane	0.07		0.040	0.080	0.000009	10			
	prodifluoromethane	0.07		16.475	0.020	0.000011	10			
	/Itoluene	0.40		0.205	0.065	0.000010	10			
	acetate	0.40		0.203	0.067	0.00007	10			
Freon		5		21.500	0.087	0.000010	10			
Freon		17		115.000	0.082	0.000009	10			
Hepta		0.4		83.709	0.082	0.000009	10			
	rne chlorobutadiene	0.4	0.000455	0.421	0.065	0.000007	10			
Isooct		0.4	0.000455	30.500	0.060	0.000007	10			
	ane ppyl alcohol	0.4		0.000331	0.103	0.000007	10			
	ppyl alconol ppylbenzene	0.2		0.000331	0.103	0.000011	10			
	ppyrbenzene rl ethyl ketone	0.4		0.591	0.065	0.000007	10			
	l isobutyl ketone	0.003		0.001	0.081	0.000010	10			
	l isobulyi kelone lene chloride	0.003	1	0.006	0.075	0.000008	10			
MTBE		0.037		0.028	0.101	0.000012	10			
n-Hex		0.037		73.916	0.102	0.000011	10			
Propy		3		8.013	0.200	0.000008	10			
Styrer		0.092		0.130	0.071	0.000011	10			
	ne chloroethylene	0.092	0.038462	1.077	0.071	0.000008	10			
	onioroetnylene Nydrofuran	0.36		0.003	0.072	0.000008	10			
	,			0.003	0.099	0.000011	10			
	1,2-Dichloroethene		0.002500							
	1,3-Dichloropropene	0.02	0.002500	0.053	0.087	0.000010	10			
	oroethylene	0.04	0.002439	0.477	0.079	0.000009	10			
	orofluoromethane	1.05		5.200	0.087	0.000010	10			
	acetate	0.2		0.024	0.085	0.000009	10			
	bromide	0.003		0.260	0.100	0.000012	10			
	chloride	0.1	0.002273	3.236	0.106	0.000012	10			
Hydro	gen Sulfide	0.002		0.350	0.188	0.000022	10			

Notes:

cm²/s Square centimetres per second.

F1 Fraction 1 (C6-C10). F2 Fraction 2 (C>10-C16).

mg/m³ Milligrams per cubic metre.
PHC Petroleum hydrocarbon.

HC Petroleum hydro -- Not applicable.

-- Not applicable.

References: Canadian Council of Ministers of the Environment (CCME). 2014. A Protocol for the Derivation of Soil Vapour Quality Guidelines for Protection of Human Exposures via Inhalation of Vapours.

1

TE TETRA TECH

Table 7: Soil Properties for Evaluation of Vapour Transport

	Parameter	Units	Coarse-Grained Soil	Fine-Grained Soil
θ_{a}	Vapour-filled porosity	unitless	0.31	0.303
ρ_{b}	Dry bulk density	g/cm ³	1.7	1.4
n	Total soil porosity	unitless	0.36	0.47
θ_{w}	Moisture-filled porosity	unitless	0.05	0.167
Q _{soil}	Soil gas flow rate	cm ³ /s	167	16.7

Values from CCME (2014).

cm Centimetre.

cm2 Square centimetre.

g/cm³ Grams per cubic centimetre.

PHC Petroleum hydrocarbon.

References: Canadian Council of Ministers of the Environment (CCME). 2014. A Protocol for the Derivation of Soil Vapour Quality Guidelines for Protection of Human Exposures via Inhalation of Vapours.

Table 8: Building Properties for Evaluation of Vapour Transport

	Parameter	Units	Residential Land Use
	raiametei	Units	Basement
L_B	Building length	cm	1,225
W _B	Building width	cm	1,225
A _B	Building area exposed to soil, including basement wall area	cm ²	2.7E+06
H _B	Building height	cm	360
L _{crack}	Thickness of the foundation	cm	11.25
A _{crack}	Area of cracks through which contaminant vapours enter the building	cm ²	994.5
ACH	Air exchanges per hour	h ⁻¹	0.5

Values taken from CCME (2014).

cm Centimetre.

cm² Square centimetre.

h⁻¹ Per hour.

References: Canadian Council of Ministers of the Environment (CCME). 2014. A Protocol for the Derivation of Soil Vapour Quality Guidelines for Protection of Human Exposures via Inhalation of Vapours.

Table 9: Generic Soil Vapour Criteria

	Residential Land Use Basement and Slab-on-Grade						
Parameter							
	Units	Coarse-Grained	Units	Coarse-Grained			
Benzene		0.195		195			
Toluene		124		124,220			
Ethylbenzene		34		34,330			
Xylenes		6		6,330			
PHC F1		867		867,380			
PHC F2		53		52,500			
Naphthalene		0.112		112			
Isopropanol		6.22		6,219			
1,1,1-Trichloroethane		1,694		1,693,510			
1,1,2,2-Tetrachloroethane		0.01		11			
1,1,2-Trichloroethane		0.01		7			
1,1-Dichloroethane		0.43		430			
1,1-Dichloroethene		6.47		6,470			
1,2,4-Trichlorobenzene		0.36		365			
1,2,4-Trimethylbenzene		2.23		2,235			
1,2-Dibromoethane		0.59		590			
1,2-Dichlorobenzene		7.07		7,072			
1,2-Dichloroethane		0.02		24			
1,2-Dichloroethene (cis)		0.24		242			
1,2-Dichloroethene (trans)		NG		NG			
1,2-Dichloropropane		0.14		135			
1,3,5-Trimethylbenzene		2.23		2,235			
1,3-Butadiene		0.02		17			
1,3-Dichlorobenzene		0.06		64			
1,3-Dichloropropene [cis]		0.16		163			
1,3-Dichloropropene [trans]		0.15		149			
1,4-Dichlorobenzene		0.06		64			
1,4-Dioxane		0.11		105			
1-Methyl-4 ethyl benzene		14.46		14,461			
2-Butanone (MEK)		167		167,364			
2-Hexanone (MBK)		1.05		1,053			
4-Methyl-2-pentanone (MIBK)		0.1		103			
Acetone		919		918,788			
Allyl chloride	mg/m³	0.03	μg/m³	32			
Benzyl chloride		0.03		34			
Bromodichloromethane		0.03		28			
Bromoform		1.49					
				1,494			
Bromomethane		0.17		173			
Carbon disulfide		21.71		21,713			
Carbon tetrachloride		0.11		113			
Chlorobenzene		0.35		347			
Chloroethane		31		31,019			
Chloroform		0.03		27			
Chloromethane		2.66		2,657			
Cyclohexane		202		201,510			
Dibromochloromethane		4.75		4,750			
Dichlorodifluoromethane		3.58		3,584			
Ethyl acetate		2.51		2,509			
Freon 113		231		230,627			
Freon 114		566.00		566,335			
Heptane		14.46		14,461			
Hexachlorobutadiene		0.05		51			
Hexane		18.84		18,839			
Isooctane		14.92		14,917			
so-Propylbenzene (cumene)		14.46		14,461			
Methyl t-Butyl Ether (MTBE)		1.15		1,153			
Methylene Chloride		18.76		18,764			
Propylene		92		91,723			
Styrene		3.22		3,220			
Tetrachloroethene		2.68		2,679			
Tetrahydrofuran		62.83		62,828			
Trichloroethene		0.15		153			
Trichlorofluoromethane		34.32		34,325			
Vinyl acetate		6.59		6,586			
Vinyl bromide (bromoethene)		0.09		94			
VIIIVI DIOITIICE COLOCIOECELE		0.00					

 mg/m^3 Milligrams per cubic metre. $\mu g/m^3$ Micrograms per cubic metre.

1

Table 10: Soil Vapour Risk Evaluation

		Soil Vapour	Soil V	apour Results (ua/m³)	Comparisons of Soil Vapour Measurements to Soil Vapour Criteria							
Parameter	Unit	Screening	3011 1	apour recours (rg, <i>)</i>	Esti	mated Cancer F	lisk ^b	Estima	ted Hazard Quo	otients ^c		
		Criteria ^a	VW-01	19DUP-01	VW-02	VW-01	19DUP-01	VW-02	VW-01	·	VW-02		
Benzene	μg/m ³	195	<16	<15	1.4	ND	ND	7.2E-08					
Toluene	μg/m ³	124,220	<19	<17	1.31	-	-	-	ND	ND	1.05E-05		
F1 (C ₆ -C ₁₀)	μg/m ³	867,383	62,900	62,500	1720	-	-	-	7.25E-02	7.21E-02	1.98E-03		
F2 (C ₁₀ -C ₁₆)	μg/m ³	52,495	19,300	18,900	380	-	-	-	3.68E-01	3.60E-01	7.24E-03		
Aliphatics (C ₆ -C ₈)	μg/m ³	740,737	56,400	56,200	1300	-	-	-	7.61E-02	7.59E-02	1.76E-03		
Aliphatics (>C ₈ -C ₁₀)	μg/m ³	40,257	21,500	21,100	728	-	-	-	5.34E-01	5.24E-01	1.81E-02		
Aliphatics (>C ₁₀ -C ₁₂)	μg/m ³	40,257	9,920	9,690	179	-	-	-	2.46E-01	2.41E-01	4.45E-03		
Aliphatics (>C ₁₂ -C ₁₆)	μg/m ³	40,257	880	840	<30	-	-	-	2.19E-02	2.09E-02	ND		
Aromatics (>C ₁₀ -C ₁₂)	μg/m ³	8,051	490	470	<15	-	-	_	6.09E-02	5.84E-02	ND		
1,2-Dichloroethane	μg/m ³	217 / 24 ^e	45	33	<0.81	1.9E-05	1.4E-05	ND	2.07E-01		ND		
1,2-Dichloroethene (cis)	μg/m ³	242	34	22	<0.79	-	-	-	1.41E-01		ND		
1,2-Dichloroethene (trans)	μg/m ³	245	24	<18	<0.79	-	-	-	9.80E-02	ND	ND		
1,2-Dichlorotetrafluoroethane	μg/m ³	566,335	65	47	7.6	-	-	-	1.15E-04	8.30E-05	1.34E-05		
1,3,5-Trimethylbenzene	μg/m ³	2,235	172	126	<0.98	-	-	-	7.70E-02	5.64E-02	ND		
2-Butanone (MEK)	μg/m ³	167,364	<15	<13	0.74	-	-	-	ND	ND	4.42E-06		
Acetone	μg/m ³	918,788	<460	<320	9.0	-	-	-	ND	ND	9.80E-06		
Carbon disulfide	μg/m ³	21,713	<16	<14	2.75	-	-	-	ND	ND	1.27E-04		
Chloromethane	μg/m ³	2,657	<10	<9.4	1.1	-	-	-	ND	ND	4.14E-04		
Cyclohexane	μg/m ³	201,510	6,700	6,450	45	-	-	-	3.32E-02	3.20E-02	2.23E-04		
Dichlorodifluoromethane	μg/m ³	3,584	31	<22	47.8	-	-	-	8.65E-03	ND	1.33E-02		
Heptane	μg/m ³	14,461	4,210	2,880	16.5	-	-	-	2.91E-01	1.99E-01	1.14E-03		
Hexane	μg/m ³	18,839	11,700	11,600	79.8	-	-	-	6.21E-01	6.16E-01	4.24E-03		
Isooctane	μg/m ³	14,917	1,050	720	4.45	-	-	-	7.04E-02	4.83E-02	2.98E-04		
Propene	μg/m ³	91,723	676	474	<0.34	-	-	-	7.37E-03	5.17E-03	ND		
Tetrachloroethene	μg/m ³	12,535 / 2,679 ^e	<34	<31	252	ND	ND	9.4E-07	ND	ND	2.01E-02		
Trichloroethene	μg/m ³	1,349 / 153 ^e	<27	<24	7.6	ND	ND	5.0E-07	ND	ND	5.63E-03		
Trichlorofluoromethane	μg/m ³	34,325	<28	<26	60.2	-	-	_	ND	ND	1.75E-03		
Vinyl chloride	μg/m ³	3,086 / 140 ^e	926	664	3.98	6.6E-05	4.7E-05	2.8E-07	3.00E-01	2.15E-01	1.29E-03		
	Cumu	lative Risk and Haz	ard Index ^d			8.5E-05	6.1E-05	1.8E-06	3.235	2.767	0.082		
		get Risk and Hazar					1.0 x 10 ⁻⁵						

Bold = identifies estimated risks and hazards that exceed the target risk level of 1 x 10⁻⁵ or target hazard level of 1.

< - not detected. Listed value is the corresponding detection limit.

^{- =} screening criteria not calculated as appropriate toxicity data not available.

^a Listed soil vapour screening criteria derived in accordance with CCME, 2014.

^b Estimated cancer risk = (soil vapour concentration/cancer soil vapour screening level) x 10⁻⁵.

^c Estimated hazard quotient = (soil vapour concentration/non-cancer soil vapour screening level).

^d Cumulative risk and hazard index represent the sum of chemical-specific cancer risks and hazard quotients.

^e Soil vapour screening criteria shows both the threshold criteria and non-threshold criteria. Target risk and hazard levels are calculated with the appropriate criteria.

FIGURES

Figure 1	Site Location Plan
Figure 2	Site Plan and Surrounding Land Use
Figure 3	Historical Groundwater Elevations (Groundwater Monitoring Wells
Figure 4	Groundwater Elevation – June 2019
Figure 5	Groundwater Elevation – December 2019

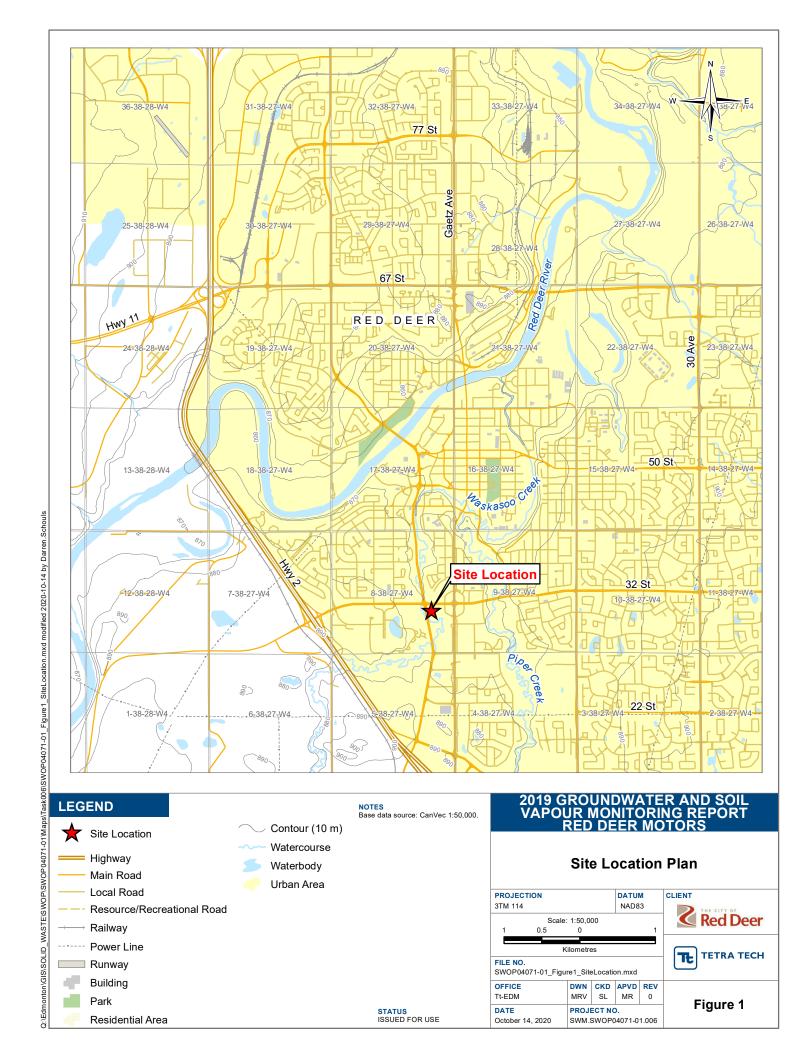
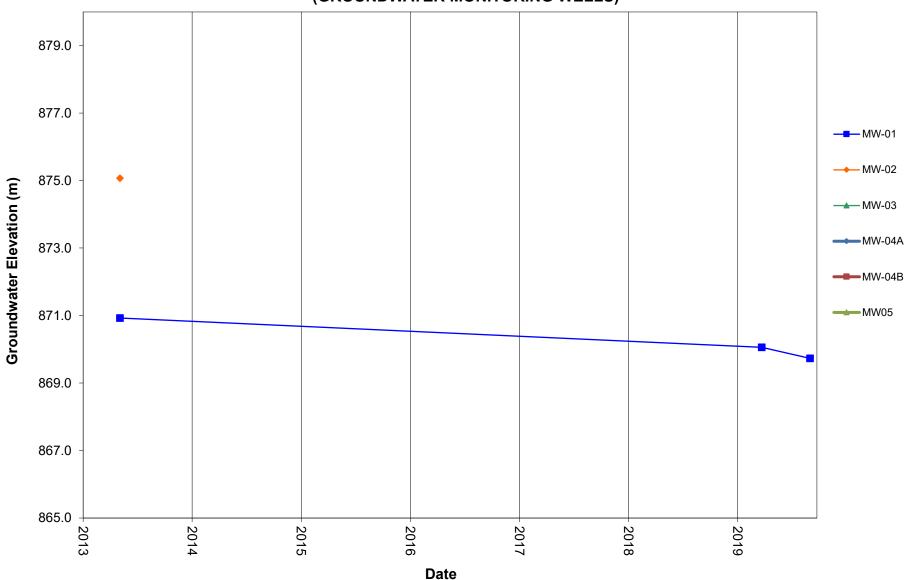
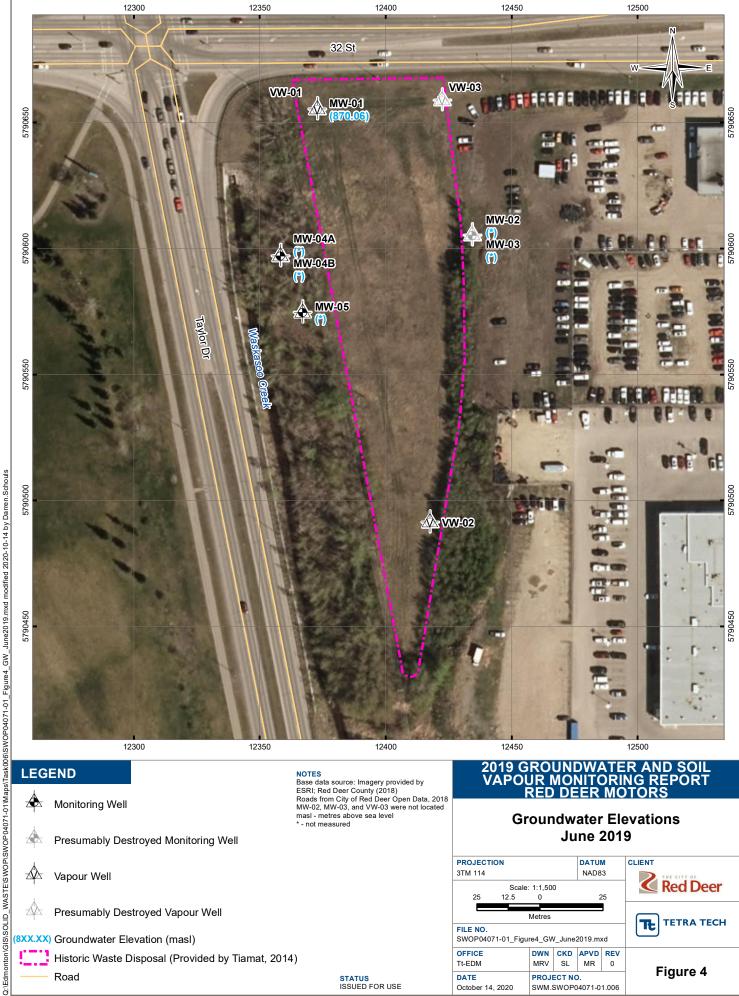
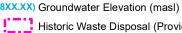




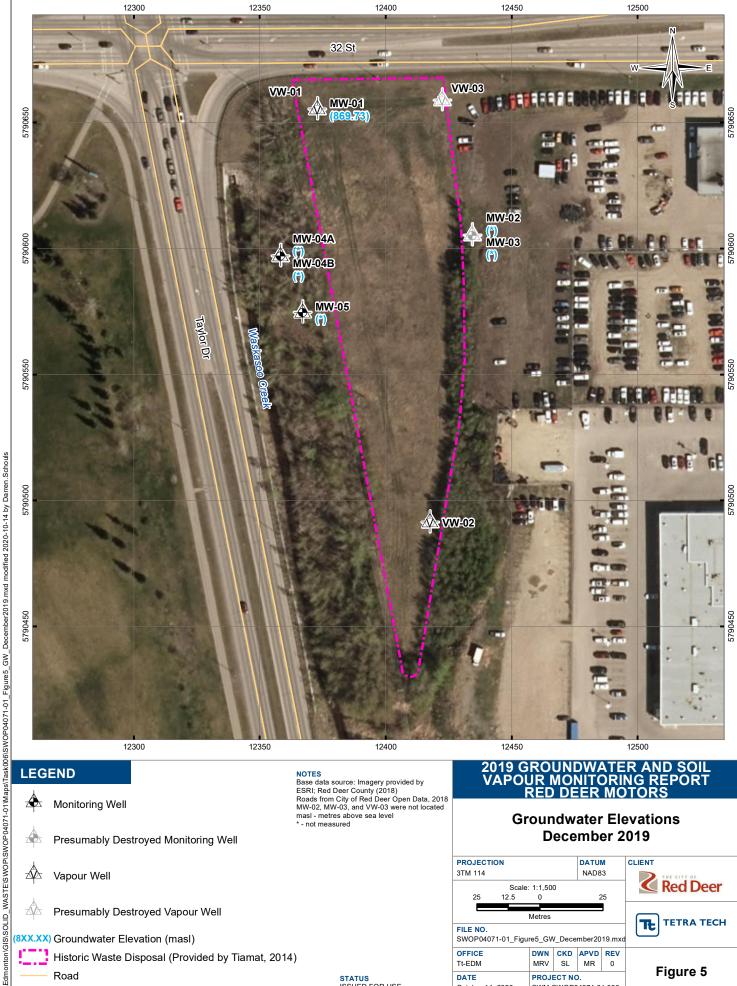
FIGURE 3
HISTORICAL GROUNDWATER ELEVATIONS
(GROUNDWATER MONITORING WELLS)

Monitoring Well


Presumably Destroyed Monitoring Well

Vapour Well

Presumably Destroyed Vapour Well


Historic Waste Disposal (Provided by Tiamat, 2014)

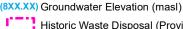
Road

STATUS ISSUED FOR USE

Groundwater Elevations June 2019

PROJECTION			DATU	M	CLIENT
3TM 114			NAD8	3	THE CITY OF
	: 1:1,50	0			Red Deer
25 12.5	0		2	25	
FILE NO. SWOP04071-01 Figu	Metres	V luno	2010 m	ud.	TETRA TECH
		_			
OFFICE	DWN	CKD	APVD	REV	
Tt-EDM	MRV	SL	MR	0	Figure 4
DATE	PROJ	ECT NO	Э.		i igale T
October 14, 2020	SWM.	SWOP	04071-0	1.006	

Monitoring Well


Presumably Destroyed Monitoring Well

Vapour Well

Presumably Destroyed Vapour Well

Historic Waste Disposal (Provided by Tiamat, 2014)

Road

STATUS ISSUED FOR USE

Groundwater Elevations December 2019

PROJECTION			DATU	VI	CLIENT
3TM 114			NAD8	3	THE CITY OF
	: 1:1,50	0	_		Red Deer
25 12.5	0		2	25 ■	
	Metres			,	TETRA TECH
FILE NO. SWOP04071-01 Figu	re5 GV	/ Dece	mber20	19.mxc	
OFFICE	DWN	CKD	APVD		
Tt-EDM	MRV	SL	MR	0	
					Figure 5
DATE		ECT NO			1 19 11 1

APPENDIX A

TETRA TECH'S LIMITATIONS ON THE USE OF THIS DOCUMENT

LIMITATIONS ON USE OF THIS DOCUMENT

GEOENVIRONMENTAL

1.1 USE OF DOCUMENT AND OWNERSHIP

This document pertains to a specific site, a specific development, and a specific scope of work. The document may include plans, drawings, profiles and other supporting documents that collectively constitute the document (the "Professional Document").

The Professional Document is intended for the sole use of TETRA TECH's Client (the "Client") as specifically identified in the TETRA TECH Services Agreement or other Contractual Agreement entered into with the Client (either of which is termed the "Contract" herein). TETRA TECH does not accept any responsibility for the accuracy of any of the data, analyses, recommendations or other contents of the Professional Document when it is used or relied upon by any party other than the Client, unless authorized in writing by TETRA TECH.

Any unauthorized use of the Professional Document is at the sole risk of the user. TETRA TECH accepts no responsibility whatsoever for any loss or damage where such loss or damage is alleged to be or, is in fact, caused by the unauthorized use of the Professional Document.

Where TETRA TECH has expressly authorized the use of the Professional Document by a third party (an "Authorized Party"), consideration for such authorization is the Authorized Party's acceptance of these Limitations on Use of this Document as well as any limitations on liability contained in the Contract with the Client (all of which is collectively termed the "Limitations on Liability"). The Authorized Party should carefully review both these Limitations on Use of this Document and the Contract prior to making any use of the Professional Document. Any use made of the Professional Document by an Authorized Party constitutes the Authorized Party's express acceptance of, and agreement to, the Limitations on Liability.

The Professional Document and any other form or type of data or documents generated by TETRA TECH during the performance of the work are TETRA TECH's professional work product and shall remain the copyright property of TETRA TECH.

The Professional Document is subject to copyright and shall not be reproduced either wholly or in part without the prior, written permission of TETRA TECH. Additional copies of the Document, if required, may be obtained upon request.

1.2 ALTERNATIVE DOCUMENT FORMAT

Where TETRA TECH submits electronic file and/or hard copy versions of the Professional Document or any drawings or other project-related documents and deliverables (collectively termed TETRA TECH's "Instruments of Professional Service"), only the signed and/or sealed versions shall be considered final. The original signed and/or sealed electronic file and/or hard copy version archived by TETRA TECH shall be deemed to be the original. TETRA TECH will archive a protected digital copy of the original signed and/or sealed version for a period of 10 years.

Both electronic file and/or hard copy versions of TETRA TECH's Instruments of Professional Service shall not, under any circumstances, be altered by any party except TETRA TECH. TETRA TECH's Instruments of Professional Service will be used only and exactly as submitted by TETRA TECH.

Electronic files submitted by TETRA TECH have been prepared and submitted using specific software and hardware systems. TETRA TECH makes no representation about the compatibility of these files with the Client's current or future software and hardware systems.

1.3 STANDARD OF CARE

Services performed by TETRA TECH for the Professional Document have been conducted in accordance with the Contract, in a manner

consistent with the level of skill ordinarily exercised by members of the profession currently practicing under similar conditions in the jurisdiction in which the services are provided. Professional judgment has been applied in developing the conclusions and/or recommendations provided in this Professional Document. No warranty or guarantee, express or implied, is made concerning the test results, comments, recommendations, or any other portion of the Professional Document.

If any error or omission is detected by the Client or an Authorized Party, the error or omission must be immediately brought to the attention of TETRA TECH.

1.4 DISCLOSURE OF INFORMATION BY CLIENT

The Client acknowledges that it has fully cooperated with TETRA TECH with respect to the provision of all available information on the past, present, and proposed conditions on the site, including historical information respecting the use of the site. The Client further acknowledges that in order for TETRA TECH to properly provide the services contracted for in the Contract, TETRA TECH has relied upon the Client with respect to both the full disclosure and accuracy of any such information.

1.5 INFORMATION PROVIDED TO TETRA TECH BY OTHERS

During the performance of the work and the preparation of this Professional Document, TETRA TECH may have relied on information provided by persons other than the Client.

While TETRA TECH endeavours to verify the accuracy of such information, TETRA TECH accepts no responsibility for the accuracy or the reliability of such information even where inaccurate or unreliable information impacts any recommendations, design or other deliverables and causes the Client or an Authorized Party loss or damage.

1.6 GENERAL LIMITATIONS OF DOCUMENT

This Professional Document is based solely on the conditions presented and the data available to TETRA TECH at the time the data were collected in the field or gathered from available databases.

The Client, and any Authorized Party, acknowledges that the Professional Document is based on limited data and that the conclusions, opinions, and recommendations contained in the Professional Document are the result of the application of professional judgment to such limited data.

The Professional Document is not applicable to any other sites, nor should it be relied upon for types of development other than those to which it refers. Any variation from the site conditions present, or variation in assumed conditions which might form the basis of design or recommendations as outlined in this report, at or on the development proposed as of the date of the Professional Document requires a supplementary investigation and assessment.

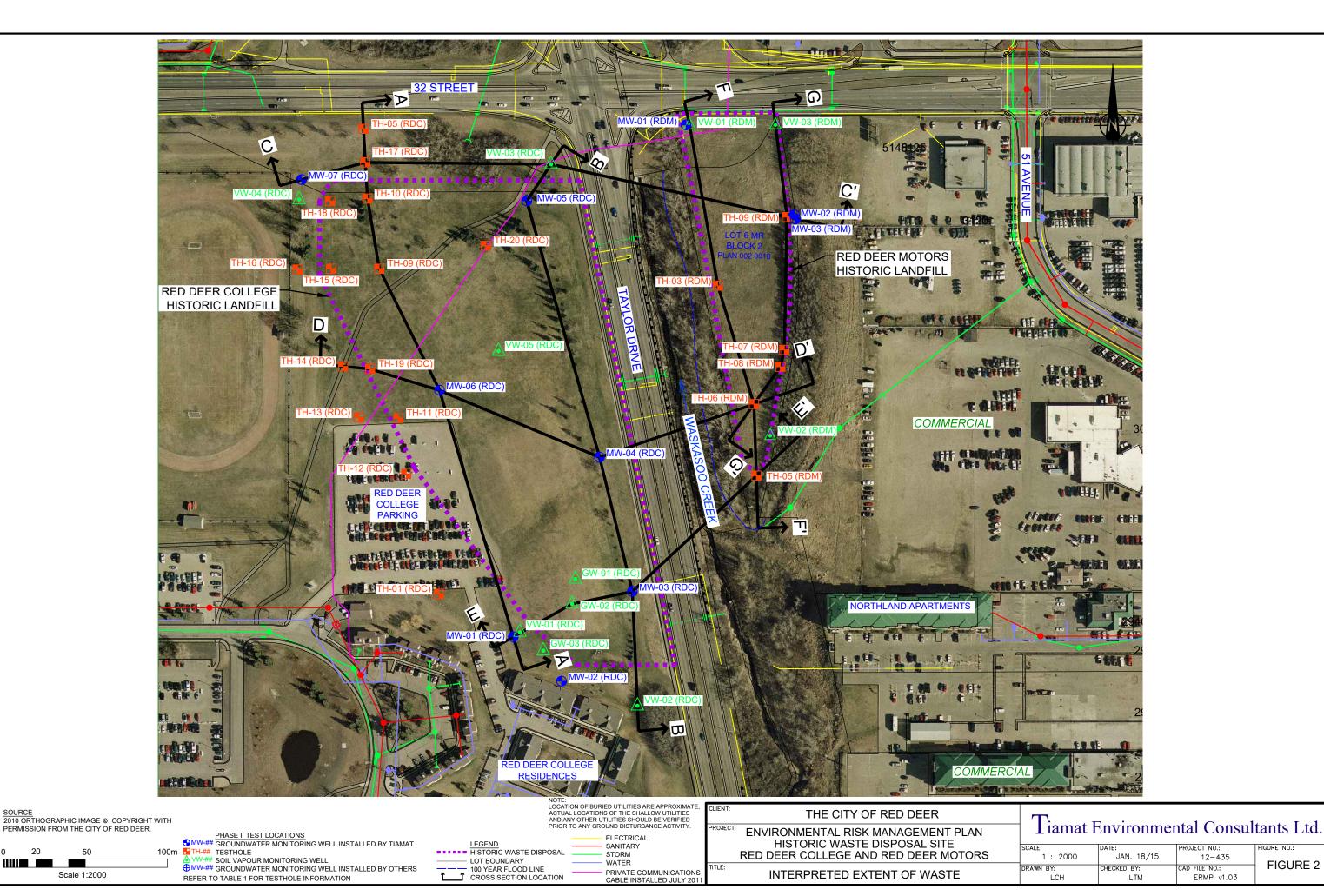
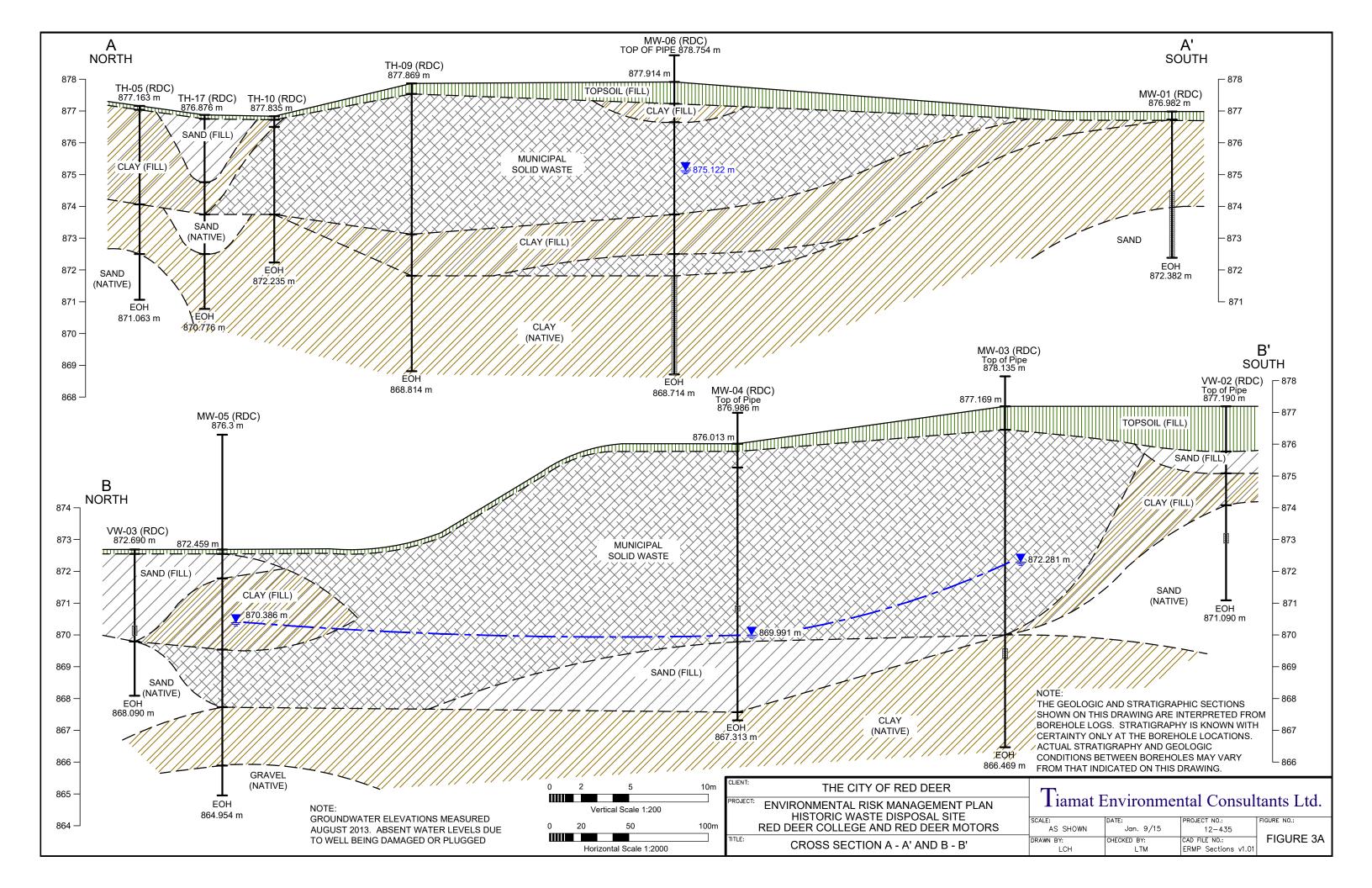
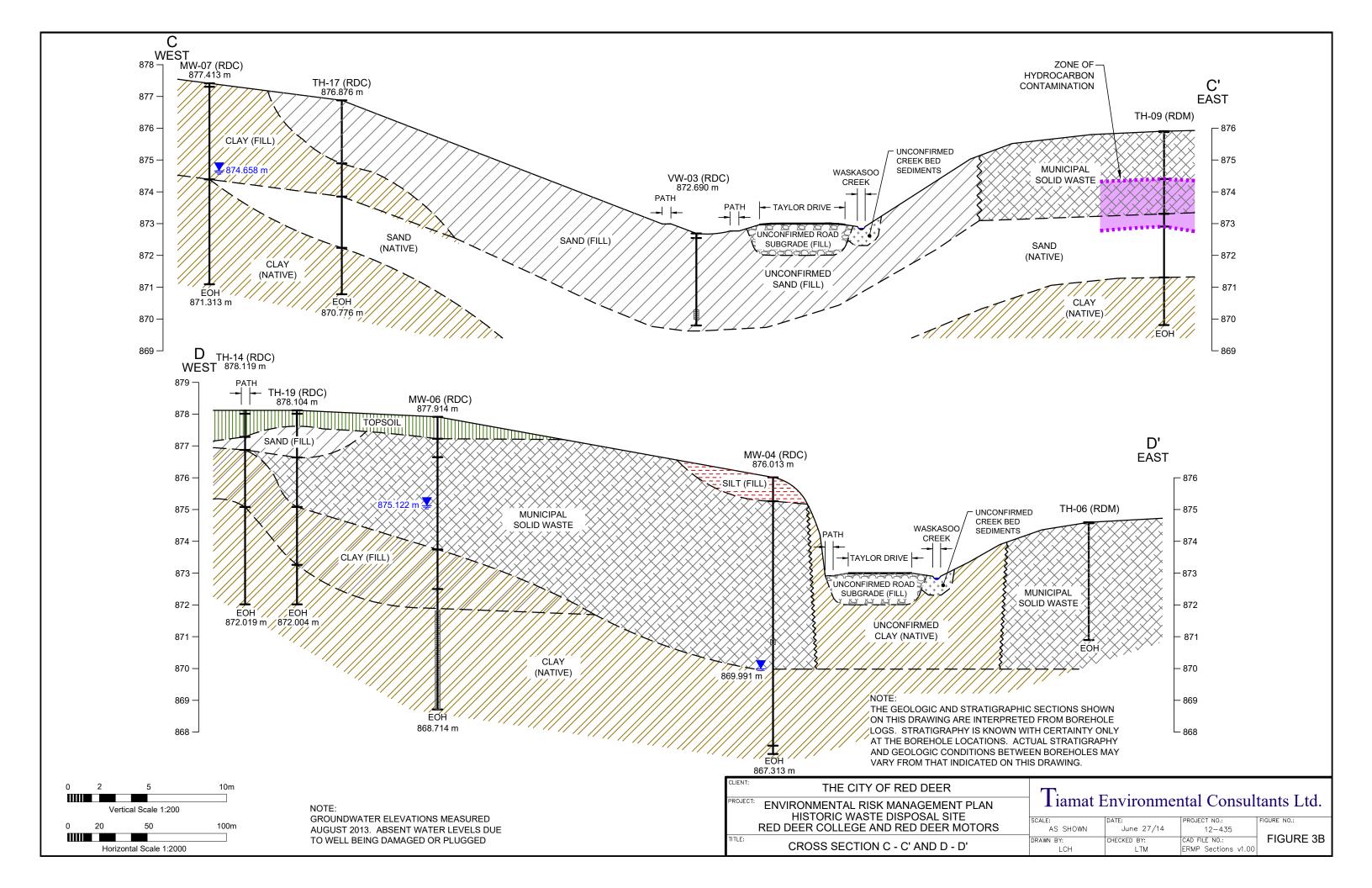
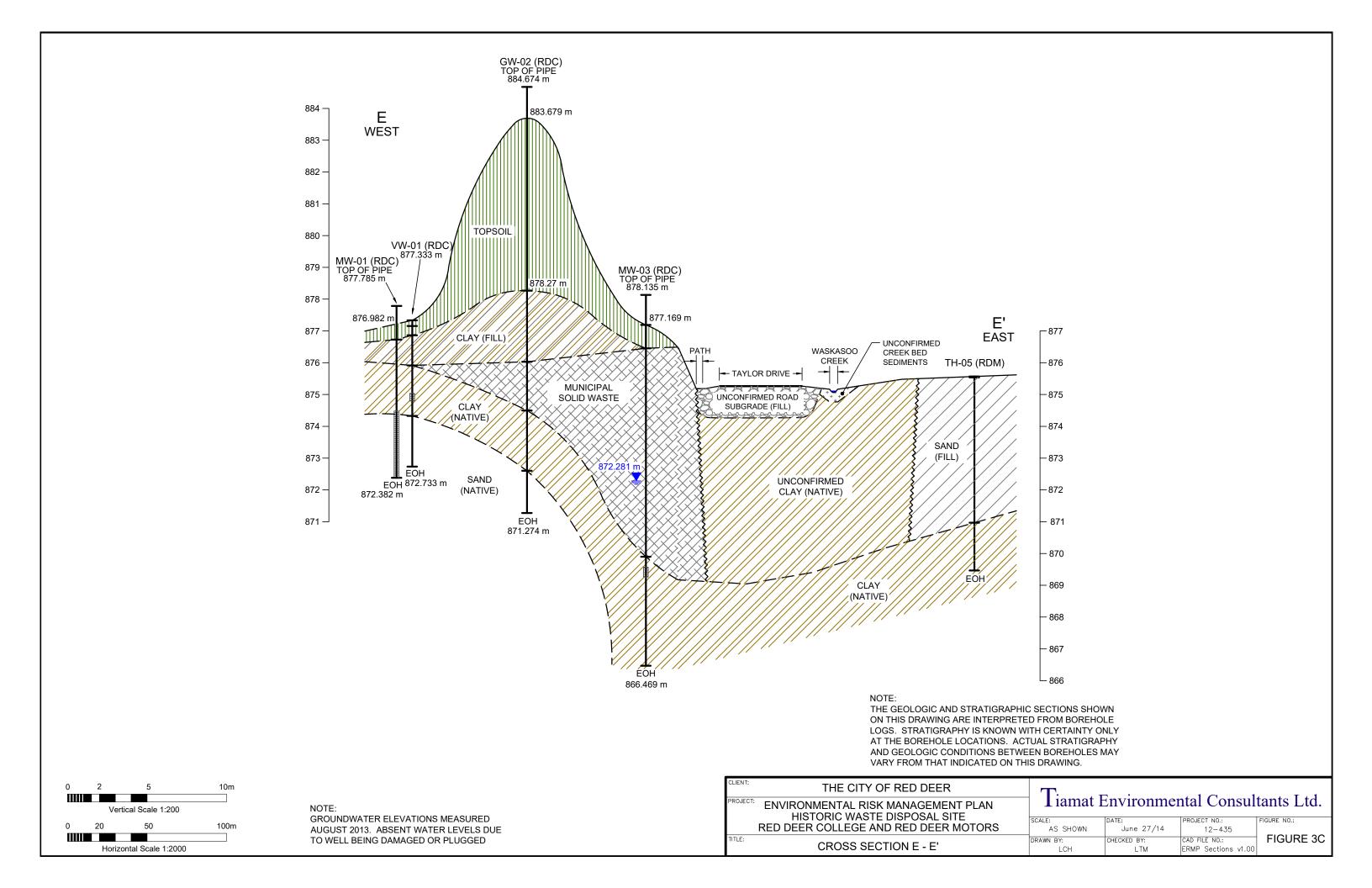
TETRA TECH is neither qualified to, nor is it making, any recommendations with respect to the purchase, sale, investment or development of the property, the decisions on which are the sole responsibility of the Client.

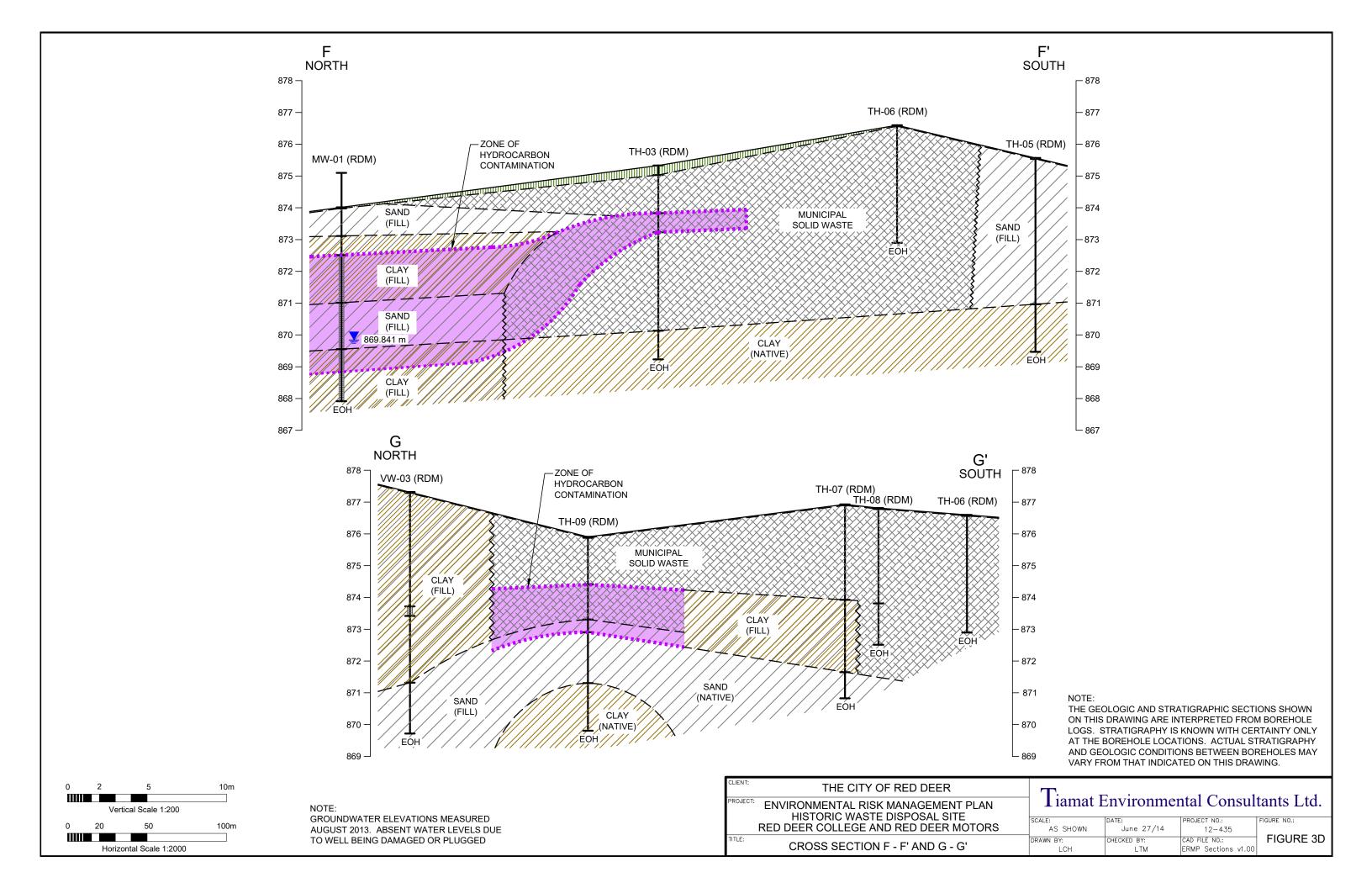
1.7 NOTIFICATION OF AUTHORITIES

In certain instances, the discovery of hazardous substances or conditions and materials may require that regulatory agencies and other persons be informed and the client agrees that notification to such bodies or persons as required may be done by TETRA TECH in its reasonably exercised discretion.

APPENDIX B

CROSS-SECTIONS (TIAMAT 2014A)


FIGURE 2

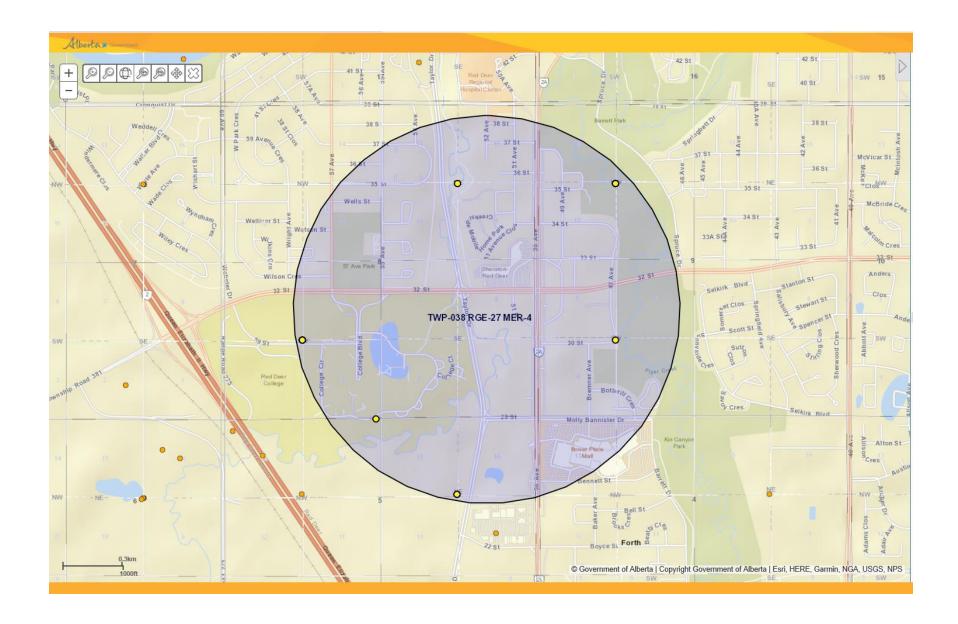
20

APPENDIX C

WATER WELL DATA

Reconnaissance Report

View in Metric


Export to Excel

Groundwater Wells

Please click the water Well ID to generate the Water Well Drilling Report.

GIC Well ID	LSD	SEC	TWP	RGE	М	DRILLING COMPANY	DATE COMPLETED	DEPTH (ft)	TYPE OF WORK	USE	СНМ	LT	PT	WELL OWNER	STATIC LEVEL (ft)	TEST RATE (igpm)	SC_DIA (in)
96136	SW	8	38	27	4	FORRESTER DRILLING	1974-12-17	137.00	New Well	Domestic		11		BANTING, LAWRENCE A.	47.00	15.00	6.63
96137	SW	8	38	27	4	BRADY C	1922-01-01	110.00	Federal Well Survey	Domestic & Stock				BANTING			6.00
<u>96138</u>	SW	8	38	27	4	ALBERTA ENVIRONMENT/EARTH SCIENCES DIVISION	1986-10-01	198.00	New Well	Other		11		RED DEER COLLEGE# 2417E			0.00
<u>96139</u>	SW	8	38	27	4	ALBERTA ENVIRONMENT/EARTH SCIENCES DIVISION	1986-10-01	19.00	New Well	Other		3		RED DEER COLLEGE			0.00
96140	NE	8	38	27	4	RICHMOND WW DRLG	1979-10-26	255.00	New Well	Domestic		6		RUSSELL, MIKE	200.00	8.00	4.50
<u>96141</u>	SW	9	38	27	4	FORRESTER DRILLING	1973-01-18	210.00	New Well	Domestic & Stock		10		BOWER, NORMAN	75.00	30.00	7.00
96142	NW	9	38	27	4	COMFORT DRLG	1979-05-25	130.00	New Well	Domestic		6		BODWELL, RICH	27.00	20.00	5.56
<u>96143</u>	NW	9	38	27	4	UNKNOWN DRILLER		0.00	Chemistry	Domestic				ORR, OSCAR JR.			0.00
153246	NW	9	38	27	4	WHITELINE OILFIELD RENTALS	1990-09-04	230.00	New Well	Domestic		10		STALENHOEF FARMS	30.00	7.00	5.56
160374	NE	5	38	27	4	FORRESTER WATER WELL DRILLING (1981) LTD.	1971-11-12	400.00	New Well	Industrial		32	84	DRUMMOND BREWERIES/UNCLE BEN T	61.30	19.29	8.62
<u>160374</u>	NE	5	38	27	4	ALBERTA EAGLE DRILLING LTD.	1990-08-29	400.00	Existing Well- Decommissioned	Industrial				DRUMMOND BREWERIES			0.00
<u>282162</u>	SW	8	38	27	4	FORRESTER WATER WELL DRILLING (1981) LTD.	1981-10-26	180.00	Test Hole	Observation		24		RED DEER COLLEGE	40.00	22.00	7.00
289673	14	5	38	27	4	RANKIN DRILLING	1998-07-31	142.00	New Well	Domestic		13	24	GEORGE, KEVIN	54.00	6.00	5.50

Printed on 2/12/2020 11:18:36 AM Page: 1 / 1

APPENDIX D

LABORATORY ANALYTICAL REPORTS

TETRA TECH CANADA INC.

ATTN: Darby Madalena

110, 140 Quarry Park Blvd SE

Calgary AB T2C 3G3

Date Received: 06-DEC-19

Report Date: 27-DEC-19 16:26 (MT)

Version: FINAL

Client Phone: 403-203-3355

Certificate of Analysis

Lab Work Order #: L2393429

Project P.O. #:

SWM.SWOP04071-01.006

Job Reference: C of C Numbers: SWM.SWOP04071-01.006 RED DEER MOTORS

Legal Site Desc:

Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 2559 29 Street NE, Calgary, AB T1Y 7B5 Canada | Phone: +1 403 291 9897 | Fax: +1 403 291 0298 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🕽

www.alsglobal.com

L2393429 CONTD.... PAGE 2 of 15 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2393429-1 MW-01							
Sampled By: MR/RM on 06-DEC-19 @ 14:45							
Matrix: WATER							
F1 (C6-C10) and F2 (>C10-C16)							
CCME F2-4 Hydrocarbons							
F2: (C10-C16)	<0.10		0.10	mg/L	16-DEC-19	17-DEC-19	R4944846
Surrogate: 2-Bromobenzotrifluoride	68.2		60-140	%	16-DEC-19	17-DEC-19	R4944846
F1 (C6-C10)							
F1(C6-C10)	<0.10		0.10	mg/L		13-DEC-19	R4944123
F1-BTEX	<0.10		0.10	mg/L		13-DEC-19	R4944123
Surrogate: 3,4-Dichlorotoluene	94.6		70-130	%		13-DEC-19	R4944123
Miscellaneous Parameters							
AOX	ND U		10	mg/L		12-DEC-19	R4955245
Ammonia, Total (as N)	7.2	DLHC	2.5	mg/L		13-DEC-19	R4943991
Dissolved Organic Carbon	10.6		1.0	mg/L		13-DEC-19	R4943303
Xylenes	<0.00071		0.00071	mg/L		16-DEC-19	
Total Kjeldahl Nitrogen	9.9		1.0	mg/L		12-DEC-19	R4943090
Phosphorus (P)-Total	1.72	DLHC	0.10	mg/L		13-DEC-19	R4943276
Volatile fatty/carboxylic acids				J			
Formic Acid	<50	DLM	50	mg/L		14-DEC-19	R4943956
Acetic Acid	<10		10	mg/L		14-DEC-19	R4943956
Propionic Acid	<5.0		5.0	mg/L		14-DEC-19	R4943956
Butyric Acid	<1.0		1.0	mg/L		14-DEC-19	R4943956
Isobutyric Acid	<1.0		1.0	mg/L		14-DEC-19	R4943956
Valeric Acid	<1.0		1.0	mg/L		14-DEC-19	R4943956
Isovaleric Acid	<1.0		1.0	mg/L		14-DEC-19	R4943956
Caproic (Hexanoic) Acid	<1.0		1.0	mg/L		14-DEC-19	R4943956
Major Ions & Trace Dissolved Metals							
Chloride in Water by IC	400	DLHC				00 DE0 40	D 40 40000
Chloride (CI)	423	DLHC	2.5	mg/L		08-DEC-19	R4942862
Dissolved Mercury in Water by CVAAS Mercury (Hq)-Dissolved	<0.0000050		0.0000050	mg/L		13-DEC-19	R4943011
Dissolved Mercury Filtration Location	FIELD		0.0000000	IIIg/L		13-DEC-19	R4942998
Dissolved Metals in Water by CRC ICPMS	11220					13-020-13	114342330
Dissolved Metals III Water by CRC ICFMS Dissolved Metals Filtration Location	FIELD					14-DEC-19	R4943390
Aluminum (Al)-Dissolved	0.0016		0.0010	mg/L		17-DEC-19	R4943353
Antimony (Sb)-Dissolved	<0.00010		0.00010	mg/L		17-DEC-19	R4943353
Arsenic (As)-Dissolved	0.0225		0.00010	mg/L		17-DEC-19	R4943353
Barium (Ba)-Dissolved	0.604		0.00010	mg/L		17-DEC-19	R4943353
Boron (B)-Dissolved	0.079		0.010	mg/L		17-DEC-19	R4943353
Cadmium (Cd)-Dissolved	0.0000142		0.0000050	mg/L		17-DEC-19	R4943353
Calcium (Ca)-Dissolved	161		0.050	mg/L		17-DEC-19	R4943353
Chromium (Cr)-Dissolved	0.00013		0.00010	mg/L		17-DEC-19	R4943353
Copper (Cu)-Dissolved	0.00033		0.00020	mg/L		17-DEC-19	R4943353
Iron (Fe)-Dissolved	24.4		0.010	mg/L		17-DEC-19	R4943353
Lead (Pb)-Dissolved	<0.000050		0.000050	mg/L		17-DEC-19	R4943353
Magnesium (Mg)-Dissolved	99.4		0.0050	mg/L		17-DEC-19	R4943353
Manganese (Mn)-Dissolved	1.91		0.00010	mg/L		17-DEC-19	R4943353
Nickel (Ni)-Dissolved	0.0135		0.00050	mg/L		17-DEC-19	R4943353
Potassium (K)-Dissolved	9.55		0.050	mg/L		17-DEC-19	R4943353
Selenium (Se)-Dissolved	0.000074		0.000050	mg/L		17-DEC-19	R4943353
Silver (Ag)-Dissolved	<0.000010		0.000010	mg/L		17-DEC-19	R4943353
Sodium (Na)-Dissolved	189		0.050	mg/L		17-DEC-19	R4943353
Uranium (U)-Dissolved Zinc (Zn)-Dissolved	0.00196 0.0015		0.000010 0.0010	mg/L mg/L		17-DEC-19 17-DEC-19	R4943353 R4943353
Ziic (Zii)-Dissolveu	0.0015		0.0010	IIIg/L		17-020-19	144343333

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2393429 CONTD.... PAGE 3 of 15 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2393429-1 MW-01							
Sampled By: MR/RM on 06-DEC-19 @ 14:45							
Matrix: WATER							
Fluoride in Water by IC Fluoride (F)	0.12	DLHC	0.10	mg/L		08-DEC-19	R4942862
Ion Balance Calculation							
Ion Balance	101			%		17-DEC-19	
TDS (Calculated)	1300			mg/L		17-DEC-19	
Hardness (as CaCO3)	811			mg/L		17-DEC-19	
Nitrate in Water by IC Nitrate (as N)	<0.10	DLHC	0.10	mg/L		08-DEC-19	R4942862
Nitrate+Nitrite Nitrate and Nitrite (as N)	<0.11		0.11	mg/L		13-DEC-19	
Nitrite in Water by IC	30.11		0.11	llig/L		13-020-13	
Nitrite (as N)	<0.050	DLHC	0.050	mg/L		08-DEC-19	R4942862
Sulfate in Water by IC	70.4	_D	4.5			00 000 45	D4040000
Sulfate (SO4)	79.1	DLHC	1.5	mg/L		08-DEC-19	R4942862
pH, Conductivity and Total Alkalinity pH	7.71		0.40	_B ⊔		14 DEC 40	R4943994
Conductivity (EC)	2220		0.10	pH uS/cm		14-DEC-19 14-DEC-19	R4943994 R4943994
Bicarbonate (HCO3)	688		2.0 5.0	mg/L		14-DEC-19	R4943994 R4943994
Carbonate (CO3)	<5.0		5.0	mg/L		14-DEC-19	R4943994
Hydroxide (OH)	<5.0 <5.0		5.0	mg/L		14-DEC-19	R4943994
Alkalinity, Total (as CaCO3)	564		2.0	mg/L		14-DEC-19	R4943994
EPA 8260 Volatile Organics	557		2.0	l lligre		17-520-10	111010001
VOCs in Water							
1,1,2-Tetrachloroethane	<0.0010		0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
1,1,1-Trichloroethane	<0.00050		0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
1,1,2,2-Tetrachloroethane	<0.00050		0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
1,1,2-Trichloroethane	<0.00050		0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
1,1-Dichloroethane	<0.00050		0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
1,1-Dichloroethene	<0.00050		0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
1,1-Dichloropropene	<0.0010		0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
1,2,3-Trichlorobenzene	<0.0010		0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
1,2,3-Trichloropropane	<0.00050		0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
1,2,4-Trichlorobenzene	<0.0010		0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
1,2,4-Trimethylbenzene	<0.0010		0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
1,2-Dibromo-3-chloropropane	<0.0010		0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
1,2-Dichlorobenzene	<0.00050		0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
1,2-Dichloroethane	<0.0010		0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
1,2-Dichloropropane 1,3,5-Trimethylbenzene	<0.00050		0.00050	mg/L	13-DEC-19 13-DEC-19	13-DEC-19 13-DEC-19	R4942751 R4942751
1,3,5-1 rimethylbenzene 1,3-Dichlorobenzene	<0.0010 <0.00050		0.0010 0.00050	mg/L mg/L	13-DEC-19 13-DEC-19	13-DEC-19 13-DEC-19	R4942751
1,3-Dichloropenzene	<0.00050		0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
1,4-Dichlorobenzene	<0.0010		0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
2,2-Dichloropropane	<0.0010		0.00030	mg/L	13-DEC-19	13-DEC-19	R4942751
2-Chlorotoluene	<0.0010		0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
4-Chlorotoluene	<0.0010		0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
p-Isopropyltoluene	<0.0010		0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
Benzene	0.00060		0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
Bromobenzene	<0.0010		0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
Bromochloromethane	<0.0010		0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
Bromodichloromethane	<0.00050		0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
Bromoform	<0.00050		0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
Bromomethane	<0.0010		0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
Carbon tetrachloride	<0.00050		0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2393429 CONTD.... PAGE 4 of 15 Version: FINAL

Sample Details/Parameters	Result	Qualifier* D.L.	Units	Extracted	Analyzed	Batch
L2393429-1 MW-01						
Sampled By: MR/RM on 06-DEC-19 @ 14:45						
Matrix: WATER						
VOCs in Water						
Chlorobenzene	<0.00050	0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
Chloroethane	<0.0010	0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
Chloroform	<0.00050	0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
Chloromethane	<0.0010	0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
cis-1,2-Dichloroethene	0.0096	0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
cis-1,3-Dichloropropene	<0.00050	0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
Dibromochloromethane	<0.00050	0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
Dibromomethane	<0.00050	0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
Dichlorodifluoromethane	<0.00050	0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
Ethylbenzene	<0.00050	0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
Ethylene dibromide Hexachlorobutadiene	<0.00050	0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
Isopropylbenzene	<0.0010 <0.0010	0.0010	mg/L	13-DEC-19 13-DEC-19	13-DEC-19 13-DEC-19	R4942751
m+p-Xylenes	<0.0010	0.0010	mg/L mg/L	13-DEC-19	13-DEC-19	R4942751 R4942751
Methylene chloride	<0.00050	0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
n-Butylbenzene	<0.0010	0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
n-Propylbenzene	<0.0010	0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
o-Xylene	<0.00050	0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
sec-Butylbenzene	<0.0010	0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
Styrene	<0.00050	0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
tert-Butylbenzene	<0.0010	0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
Tetrachloroethylene	<0.00050	0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
Toluene	<0.00050	0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
trans-1,2-Dichloroethene	0.00187	0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
trans-1,3-Dichloropropene	<0.0010	0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
Trichloroethene	<0.00050	0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
Trichlorofluoromethane Vinyl chloride	<0.0010	0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
Surrogate: 1,4-Difluorobenzene	0.0124 98.7	0.00050 70-130	mg/L %	13-DEC-19 13-DEC-19	13-DEC-19 13-DEC-19	R4942751 R4942751
Surrogate: 4-Bromofluorobenzene	77.3	70-130	/ _%	13-DEC-19	13-DEC-19	R4942751
Surrogate. 4-bromonuorobenzene	11.5	70-130	70	13-DEC-19	13-DEC-19	14942751

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2393429 CONTD.... PAGE 5 of 15 Version: FINAL

Sample Details/Parameters	Result	Qualifier ⁴	D.L.	Units	Extracted	Analyzed	Batch
L2393429-2 AEP MW-04							
Sampled By: MR/RM on 06-DEC-19 @ 14:00							
Matrix: WATER							
F1 (C6-C10) and F2 (>C10-C16)							
CCME F2-4 Hydrocarbons F2: (C10-C16)	<0.10		0.10	mg/L	16-DEC-19	17-DEC-19	R4944846
Surrogate: 2-Bromobenzotrifluoride	69.4		60-140	mg/L %	16-DEC-19	17-DEC-19	R4944846
F1 (C6-C10)	03.4		00-140	70	10-020-13	17-020-13	114344040
F1(C6-C10)	<0.10		0.10	mg/L		13-DEC-19	R4944123
F1-BTEX	<0.10		0.10	mg/L		13-DEC-19	R4944123
Surrogate: 3,4-Dichlorotoluene	101.0		70-130	%		13-DEC-19	R4944123
Miscellaneous Parameters							
AOX	ND U		10	mg/L		12-DEC-19	R4955245
Ammonia, Total (as N)	0.45	DLHC	0.25	mg/L		16-DEC-19	R4943991
Dissolved Organic Carbon	23.0		1.0	mg/L		13-DEC-19	R4943303
Xylenes	<0.00071		0.00071	mg/L		16-DEC-19	
Total Kjeldahl Nitrogen	10.9	DLHC	1.0	mg/L		12-DEC-19	R4943090
Phosphorus (P)-Total	0.761	DLHC	0.050	mg/L		13-DEC-19	R4943276
Volatile fatty/carboxylic acids	0.701		0.030	my/L		13-020-19	14343270
Formic Acid	<50	DLM	50	mg/L		14-DEC-19	R4943956
Acetic Acid	<10		10	mg/L		14-DEC-19	R4943956
Propionic Acid	<5.0		5.0	mg/L		14-DEC-19	R4943956
Butyric Acid	<1.0		1.0	mg/L		14-DEC-19	R4943956
Isobutyric Acid	<1.0		1.0	mg/L		14-DEC-19	R4943956
Valeric Acid	<1.0		1.0	mg/L		14-DEC-19	R4943956
Isovaleric Acid	<1.0		1.0	mg/L		14-DEC-19	R4943956
Caproic (Hexanoic) Acid	<1.0		1.0	mg/L		14-DEC-19	R4943956
Major Ions & Trace Dissolved Metals							
Chloride in Water by IC							
Chloride (CI)	450	DLHC	2.5	mg/L	,	08-DEC-19	R4942862
Dissolved Mercury in Water by CVAAS						40.050.40	
Mercury (Hg)-Dissolved	<0.0000050		0.0000050	mg/L		13-DEC-19	R4943011
Dissolved Mercury Filtration Location	FIELD					13-DEC-19	R4942998
Dissolved Metals in Water by CRC ICPMS Dissolved Metals Filtration Location	FIELD					14-DEC-19	D4043300
Aluminum (Al)-Dissolved	0.0027		0.0010	mg/L		17-DEC-19	R4943390 R4943353
Antimony (Sb)-Dissolved	0.0027		0.0010	mg/L		17-DEC-19	R4943353
Arsenic (As)-Dissolved	0.0146		0.00010	mg/L		17-DEC-19	R4943353
Barium (Ba)-Dissolved	0.0479		0.00010	mg/L		17-DEC-19	R4943353
Boron (B)-Dissolved	0.142		0.010	mg/L		17-DEC-19	R4943353
Cadmium (Cd)-Dissolved	0.0000150		0.0000050	mg/L		17-DEC-19	R4943353
Calcium (Ca)-Dissolved	249		0.050	mg/L		17-DEC-19	R4943353
Chromium (Cr)-Dissolved	0.00023		0.00010	mg/L		17-DEC-19	R4943353
Copper (Cu)-Dissolved	0.00358		0.00020	mg/L		17-DEC-19	R4943353
Iron (Fe)-Dissolved	1.23		0.010	mg/L		17-DEC-19	R4943353
Lead (Pb)-Dissolved	0.000225		0.000050	mg/L		17-DEC-19	R4943353
Magnesium (Mg)-Dissolved	126		0.0050	mg/L		17-DEC-19	R4943353
Manganese (Mn)-Dissolved	0.732		0.00010	mg/L		17-DEC-19	R4943353
Nickel (Ni)-Dissolved	0.0346		0.00050	mg/L		17-DEC-19	R4943353
Potassium (K)-Dissolved	5.29		0.050	mg/L		17-DEC-19	R4943353
Selenium (Se)-Dissolved	0.000172		0.000050	mg/L		17-DEC-19	R4943353
Silver (Ag)-Dissolved	<0.000010		0.000010	mg/L		17-DEC-19	R4943353
Sodium (Na)-Dissolved	284		0.050	mg/L		17-DEC-19	R4943353
Uranium (U)-Dissolved	0.0391		0.000010	mg/L		17-DEC-19	R4943353
Zinc (Zn)-Dissolved	0.0034	<u></u>	0.0010	mg/L		17-DEC-19	R4943353

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2393429 CONTD.... PAGE 6 of 15 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2393429-2 AEP MW-04							
Sampled By: MR/RM on 06-DEC-19 @ 14:00							
Matrix: WATER							
Fluoride in Water by IC Fluoride (F)	0.14	DLHC	0.10	mg/L		08-DEC-19	R4942862
Ion Balance Calculation	445			.,		40 DEC 40	
Ion Balance	110			%		18-DEC-19 18-DEC-19	
TDS (Calculated) Hardness (as CaCO3)	1840 1140			mg/L mg/L		18-DEC-19	
Nitrate in Water by IC	1140			IIIg/L		10-DEC-19	
Nitrate (as N)	<0.10	DLHC	0.10	mg/L		08-DEC-19	R4942862
Nitrate+Nitrite			5.44			40.050.40	
Nitrate and Nitrite (as N)	<0.11		0.11	mg/L		18-DEC-19	
Nitrite in Water by IC Nitrite (as N)	<0.050	DLHC	0.050	mg/L		08-DEC-19	R4942862
Sulfate in Water by IC		_					
Sulfate (SO4)	394	DLHC	1.5	mg/L		08-DEC-19	R4942862
pH, Conductivity and Total Alkalinity			0.45			44 050 40	D4040004
pH Conductivity (EC)	8.10		0.10	pH uS/cm		14-DEC-19 14-DEC-19	R4943994
Bicarbonate (HCO3)	1250 682		2.0 5.0			14-DEC-19	R4943994 R4943994
Carbonate (CO3)	<5.0		5.0	mg/L mg/L		14-DEC-19	R4943994
Hydroxide (OH)	<5.0 <5.0		5.0	mg/L		14-DEC-19	R4943994
Alkalinity, Total (as CaCO3)	559		2.0	mg/L		14-DEC-19	R4943994
EPA 8260 Volatile Organics			2.0	mgrc		14-020-10	111010001
VOCs in Water							
1,1,1,2-Tetrachloroethane	<0.0010		0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
1,1,1-Trichloroethane	<0.00050		0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
1,1,2,2-Tetrachloroethane	<0.00050		0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
1,1,2-Trichloroethane	<0.00050		0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
1,1-Dichloroethane	<0.00050	li	0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
1,1-Dichloroethene	<0.00050		0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
1,1-Dichloropropene 1,2,3-Trichlorobenzene	<0.0010 <0.0010		0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751 R4942751
1,2,3-Trichloropenzene	<0.0010		0.0010 0.00050	mg/L mg/L	13-DEC-19 13-DEC-19	13-DEC-19 13-DEC-19	R4942751
1,2,4-Trichlorobenzene	<0.0010		0.00030	mg/L	13-DEC-19	13-DEC-19	R4942751
1,2,4-Trimethylbenzene	<0.0010		0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
1,2-Dibromo-3-chloropropane	<0.0010		0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
1,2-Dichlorobenzene	<0.00050		0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
1,2-Dichloroethane	<0.0010		0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
1,2-Dichloropropane	<0.00050		0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
1,3,5-Trimethylbenzene	<0.0010		0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
1,3-Dichlorobenzene	<0.00050		0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
1,3-Dichloropropane	<0.0010		0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
1,4-Dichlorobenzene	<0.00050		0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
2,2-Dichloropropane	<0.0010		0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
2-Chlorotoluene	<0.0010		0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
4-Chlorotoluene	<0.0010		0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
p-Isopropyltoluene	<0.0010		0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
Benzene Bromohonzono	<0.00050		0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
Bromoblerzene Bromoblerzenethene	<0.0010		0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
Bromochloromethane Bromodichloromethane	<0.0010 <0.00050		0.0010 0.00050	mg/L mg/L	13-DEC-19 13-DEC-19	13-DEC-19 13-DEC-19	R4942751 R4942751
Bromoform	<0.00050		0.00050	mg/L mg/L	13-DEC-19	13-DEC-19 13-DEC-19	R4942751
Bromomethane	<0.0000		0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
Carbon tetrachloride	<0.00050		0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2393429 CONTD.... PAGE 7 of 15 Version: FINAL

Sample Details/Parameters	Result	Qualifier* D.L.	Units	Extracted	Analyzed	Batch
L2393429-2 AEP MW-04						
Sampled By: MR/RM on 06-DEC-19 @ 14:00						
Matrix: WATER						
VOCs in Water						
Chlorobenzene	<0.00050	0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
Chloroethane	<0.0010	0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
Chloroform	<0.00050	0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
Chloromethane	<0.0010	0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
cis-1,2-Dichloroethene	0.0019	0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
cis-1,3-Dichloropropene	<0.00050	0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
Dibromochloromethane	<0.00050	0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
Dibromomethane	<0.00050	0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
Dichlorodifluoromethane	<0.00050	0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
Ethylbenzene	<0.00050	0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
Ethylene dibromide	<0.00050	0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
Hexachlorobutadiene	<0.0010	0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
Isopropylbenzene	<0.0010	0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
m+p-Xylenes	<0.00050	0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
Methylene chloride n-Butylbenzene	<0.0010 <0.0010	0.0010	mg/L mg/L	13-DEC-19 13-DEC-19	13-DEC-19 13-DEC-19	R4942751 R4942751
n-Propylbenzene	<0.0010	0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751 R4942751
o-Xylene	<0.0010	0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
sec-Butylbenzene	<0.00030	0.00030	mg/L	13-DEC-19	13-DEC-19	R4942751
Styrene	<0.00050	0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
tert-Butylbenzene	<0.0010	0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
Tetrachloroethylene	<0.00050	0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
Toluene	<0.00050	0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
trans-1,2-Dichloroethene	<0.00050	0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
trans-1,3-Dichloropropene	<0.0010	0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
Trichloroethene	<0.00050	0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
Trichlorofluoromethane	<0.0010	0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
Vinyl chloride	<0.00050	0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
Surrogate: 1,4-Difluorobenzene	99.1	70-130	%	13-DEC-19	13-DEC-19	R4942751
Surrogate: 4-Bromofluorobenzene	79.0	70-130	%	13-DEC-19	13-DEC-19	R4942751

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2393429 CONTD.... PAGE 8 of 15 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2393429-3 AEP MW-04							
Sampled By: MR/RM on 06-DEC-19 @ 14:15							
Matrix: WATER		1					
F1 (C6-C10) and F2 (>C10-C16)							
CCME F2-4 Hydrocarbons							
F2: (C10-C16)	<0.10		0.10	mg/L	16-DEC-19	17-DEC-19	R4944846
Surrogate: 2-Bromobenzotrifluoride	61.7		60-140	%	16-DEC-19	17-DEC-19	R4944846
F1 (C6-C10)							
F1(C6-C10)	<0.10		0.10	mg/L		13-DEC-19	R4944123
F1-BTEX	<0.10		0.10	mg/L		13-DEC-19	R4944123
Surrogate: 3,4-Dichlorotoluene	105.5		70-130	%		13-DEC-19	R4944123
Miscellaneous Parameters							
AOX	ND U		10	mg/L		12-DEC-19	R4955245
Ammonia, Total (as N)	0.306		0.050	mg/L		13-DEC-19	R4943991
Dissolved Organic Carbon	7.4		1.0	mg/L		13-DEC-19	R4943303
Xylenes	<0.00071		0.00071	mg/L		16-DEC-19	
Total Kjeldahl Nitrogen	0.51		0.20	mg/L		12-DEC-19	R4943090
Phosphorus (P)-Total	0.085	DLM	0.050	mg/L		13-DEC-19	R4943276
Volatile fatty/carboxylic acids							
Formic Acid	<50	DLM	50	mg/L		14-DEC-19	R4943956
Acetic Acid	<10		10	mg/L		14-DEC-19	R4943956
Propionic Acid	<5.0		5.0	mg/L		14-DEC-19	R4943956
Butyric Acid	<1.0		1.0	mg/L		14-DEC-19	R4943956
Isobutyric Acid	<1.0		1.0	mg/L		14-DEC-19	R4943956
Valeric Acid	<1.0		1.0	mg/L		14-DEC-19	R4943956
Isovaleric Acid	<1.0		1.0	mg/L		14-DEC-19	R4943956
Caproic (Hexanoic) Acid	<1.0		1.0	mg/L		14-DEC-19	R4943956
Major Ions & Trace Dissolved Metals							
Chloride in Water by IC Chloride (CI)	6.0	DLHC	ا ء ا			00 DEC 40	D4042002
	6.8	DLAC	2.5	mg/L		08-DEC-19	R4942862
Dissolved Mercury in Water by CVAAS Mercury (Hq)-Dissolved	<0.0000050		0.0000050	mg/L		13-DEC-19	R4943011
Dissolved Mercury Filtration Location	FIELD		0.0000000	IIIg/L		13-DEC-19	R4942998
Dissolved Metals in Water by CRC ICPMS	11225					13-020-13	114342330
Dissolved Metals Filtration Location	FIELD					14-DEC-19	R4943390
Aluminum (Al)-Dissolved	0.0027		0.0010	mg/L		14-DEC-19	R4943353
Antimony (Sb)-Dissolved	<0.00010		0.00010	mg/L		14-DEC-19	R4943353
Arsenic (As)-Dissolved	0.00711		0.00010	mg/L		14-DEC-19	R4943353
Barium (Ba)-Dissolved	0.0228		0.00010	mg/L		14-DEC-19	R4943353
Boron (B)-Dissolved	0.214		0.010	mg/L		14-DEC-19	R4943353
Cadmium (Cd)-Dissolved	0.0000275		0.0000050	mg/L		14-DEC-19	R4943353
Calcium (Ca)-Dissolved	49.8		0.050	mg/L		14-DEC-19	R4943353
Chromium (Cr)-Dissolved	<0.00010		0.00010	mg/L		14-DEC-19	R4943353
Copper (Cu)-Dissolved	0.00037		0.00020	mg/L		14-DEC-19	R4943353
Iron (Fe)-Dissolved	0.025		0.010	mg/L		14-DEC-19	R4943353
Lead (Pb)-Dissolved	<0.000050		0.000050	mg/L		14-DEC-19	R4943353
Magnesium (Mg)-Dissolved	18.6		0.0050	mg/L		14-DEC-19	R4943353
Manganese (Mn)-Dissolved	0.178		0.00010	mg/L		14-DEC-19	R4943353
Nickel (Ni)-Dissolved Potassium (K)-Dissolved	<0.00050		0.00050	mg/L		14-DEC-19	R4943353
Selenium (Se)-Dissolved	3.37 <0.000050		0.050 0.000050	mg/L mg/L		14-DEC-19 14-DEC-19	R4943353 R4943353
Silver (Ag)-Dissolved	<0.000050		0.000050	mg/L		14-DEC-19	R4943353
Sodium (Na)-Dissolved	256		0.050	mg/L		14-DEC-19	R4943353
Uranium (U)-Dissolved	0.00217		0.000010	mg/L		14-DEC-19	R4943353
Zinc (Zn)-Dissolved	<0.00217		0.000010	mg/L		14-DEC-19	R4943353
	-5.5010		5.5510				

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2393429 CONTD.... PAGE 9 of 15 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2393429-3 AEP MW-04							
Sampled By: MR/RM on 06-DEC-19 @ 14:15							
Matrix: WATER		ł l					
Fluoride in Water by IC							
Fluoride (F)	0.35	DLHC	0.10	mg/L		08-DEC-19	R4942862
Ion Balance Calculation							
Ion Balance	71.4	RRV		%		19-DEC-19	
TDS (Calculated)	1040			mg/L		19-DEC-19	
Hardness (as CaCO3)	201			mg/L		19-DEC-19	
Nitrate in Water by IC Nitrate (as N)	<0.10	DLHC	0.10	mg/L		08-DEC-19	R4942862
Nitrate+Nitrite							
Nitrate and Nitrite (as N)	<0.11		0.11	mg/L		18-DEC-19	
Nitrite in Water by IC							
Nitrite (as N)	<0.050	DLHC	0.050	mg/L		08-DEC-19	R4942862
Sulfate in Water by IC	474		4.5	w#		00 000 40	D4040000
Sulfate (SO4)	174	DLHC	1.5	mg/L		08-DEC-19	R4942862
pH, Conductivity and Total Alkalinity pH	7.80		0.10	pН		14-DEC-19	R4943994
Conductivity (EC)	1260		2.0	uS/cm		14-DEC-19	R4943994
Bicarbonate (HCO3)	1070		5.0	mg/L		14-DEC-19	R4943994
Carbonate (CO3)	<5.0		5.0	mg/L		14-DEC-19	R4943994
Hydroxide (OH)	<5.0		5.0	mg/L		14-DEC-19	R4943994
Alkalinity, Total (as CaCO3)	881		2.0	mg/L		14-DEC-19	R4943994
EPA 8260 Volatile Organics							
VOCs in Water							
1,1,1,2-Tetrachloroethane	<0.0010		0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
1,1,1-Trichloroethane	<0.00050		0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
1,1,2,2-Tetrachloroethane	<0.00050		0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
1,1,2-Trichloroethane	<0.00050		0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
1,1-Dichloroethane	<0.00050		0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
1,1-Dichloroethene	<0.00050		0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
1,1-Dichloropropene	<0.0010		0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
1,2,3-Trichlorobenzene 1,2,3-Trichloropropane	<0.0010		0.0010 0.00050	mg/L mg/L	13-DEC-19 13-DEC-19	13-DEC-19 13-DEC-19	R4942751
1,2,4-Trichlorobenzene	<0.00050 <0.0010		0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751 R4942751
1,2,4-Trimethylbenzene	<0.0010		0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
1,2-Dibromo-3-chloropropane	<0.0010		0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
1,2-Dichlorobenzene	<0.00050		0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
1,2-Dichloroethane	<0.0010		0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
1,2-Dichloropropane	<0.00050		0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
1,3,5-Trimethylbenzene	<0.0010		0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
1,3-Dichlorobenzene	<0.00050		0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
1,3-Dichloropropane	<0.0010		0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
1,4-Dichlorobenzene	<0.00050		0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
2,2-Dichloropropane	<0.0010		0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
2-Chlorotoluene	<0.0010		0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
4-Chlorotoluene	<0.0010		0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
p-Isopropyltoluene	<0.0010		0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
Benzene	<0.00050		0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
Bromobenzene	<0.0010		0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
Bromochloromethane	<0.0010		0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
Bromodichloromethane Bromoform	<0.00050		0.00050	mg/L	13-DEC-19 13-DEC-19	13-DEC-19	R4942751
Bromonethane	<0.00050 <0.0010		0.00050 0.0010	mg/L mg/L	13-DEC-19 13-DEC-19	13-DEC-19 13-DEC-19	R4942751 R4942751
Carbon tetrachloride	<0.0010		0.00050	mg/L mg/L	13-DEC-19	13-DEC-19	R4942751
Canoni tottacilionae	V0.00050		0.00000	IIIg/L	13-000-19	13-000-19	14342731

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2393429 CONTD.... PAGE 10 of 15 Version: FINAL

Sample Details/Parameters	Result	Qualifier* D.L.	Units	Extracted	Analyzed	Batch
L2393429-3 AEP MW-04						
Sampled By: MR/RM on 06-DEC-19 @ 14:15						
Matrix: WATER						
VOCs in Water						
Chlorobenzene	<0.00050	0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
Chloroethane	<0.0010	0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
Chloroform	<0.00050	0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
Chloromethane	<0.0010	0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
cis-1,2-Dichloroethene	<0.0010	0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
cis-1,3-Dichloropropene	<0.00050	0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
Dibromochloromethane	<0.00050	0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
Dibromomethane	<0.00050	0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
Dichlorodifluoromethane	<0.00050	0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
Ethylbenzene Ethylene dibromide	<0.00050	0.00050	mg/L	13-DEC-19 13-DEC-19	13-DEC-19 13-DEC-19	R4942751
Hexachlorobutadiene	<0.00050 <0.0010	0.00050	mg/L mg/L	13-DEC-19	13-DEC-19	R4942751 R4942751
Isopropylbenzene	<0.0010	0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
m+p-Xylenes	<0.0010	0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
Methylene chloride	<0.0010	0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
n-Butylbenzene	<0.0010	0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
n-Propylbenzene	<0.0010	0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
o-Xylene	<0.00050	0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
sec-Butylbenzene	<0.0010	0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
Styrene	<0.00050	0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
tert-Butylbenzene	<0.0010	0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
Tetrachloroethylene	<0.00050	0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
Toluene	<0.00050	0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
trans-1,2-Dichloroethene	<0.00050	0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
trans-1,3-Dichloropropene	<0.0010	0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
Trichloroethene Trichlorofluoromethane	<0.00050	0.00050	mg/L	13-DEC-19 13-DEC-19	13-DEC-19 13-DEC-19	R4942751
Vinyl chloride	<0.0010 <0.00050	0.0010	mg/L mg/L	13-DEC-19	13-DEC-19	R4942751 R4942751
Surrogate: 1,4-Difluorobenzene	98.9	70-130	IIIg/L %	13-DEC-19	13-DEC-19	R4942751
Surrogate: 4-Bromofluorobenzene	79.9	70-130	%	13-DEC-19	13-DEC-19	R4942751

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2393429 CONTD.... PAGE 11 of 15 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2393429-4 AEP MW-05							
Sampled By: MR/RM on 06-DEC-19 @ 14:30							
F1 (C6-C10) and F2 (>C10-C16)							
CCME F2-4 Hydrocarbons F2: (C10-C16)	<0.10		0.10	mg/L	16-DEC-19	17-DEC-19	R4944846
Surrogate: 2-Bromobenzotrifluoride	87.8		60-140	//////////////////////////////////////	16-DEC-19	17-DEC-19	R4944846
F1 (C6-C10)	07.0		00-140	70	10-DEC-19	17-020-19	114344040
F1(C6-C10)	<0.10		0.10	mg/L		13-DEC-19	R4944123
F1-BTEX	<0.10		0.10	mg/L		13-DEC-19	R4944123
Surrogate: 3,4-Dichlorotoluene	92.5		70-130	%		13-DEC-19	R4944123
Miscellaneous Parameters	02.0		10 100				
AOX	ND U		10	mg/L		12-DEC-19	R4955245
Ammonia, Total (as N)	7.1	DLHC	5.0	mg/L		13-DEC-19	R4943991
Dissolved Organic Carbon	18.3		1.0	_		13-DEC-19	R4943303
I - I			0.00071	mg/L		16-DEC-19	14943303
Xylenes	<0.00071	_D		mg/L			D4040000
Total Kjeldahl Nitrogen	8.9	DLHC	1.0	mg/L		12-DEC-19	R4943090
Phosphorus (P)-Total	2.29	DLHC	0.25	mg/L		13-DEC-19	R4943276
Volatile fatty/carboxylic acids Formic Acid	.55	DLM				14 DEC 40	DADAGGG
	<50	DLM	50	mg/L		14-DEC-19	R4943956
Acetic Acid	<10		10	mg/L		14-DEC-19	R4943956
Propionic Acid	<5.0		5.0	mg/L		14-DEC-19 14-DEC-19	R4943956
Butyric Acid	<1.0		1.0	mg/L			R4943956
Isobutyric Acid Valeric Acid	<1.0		1.0	mg/L		14-DEC-19	R4943956
Isovaleric Acid	<1.0		1.0	mg/L		14-DEC-19 14-DEC-19	R4943956
	<1.0 <1.0		1.0 1.0	mg/L		14-DEC-19	R4943956 R4943956
Caproic (Hexanoic) Acid Major Ions & Trace Dissolved Metals	<1.0		1.0	mg/L		14-000-19	K4943936
Chloride in Water by IC							
Chloride (Cl)	167	DLHC	2.5	mg/L		08-DEC-19	R4942862
Dissolved Mercury in Water by CVAAS	101			mgre		00-020-10	111012002
Mercury (Hg)-Dissolved	< 0.0000050		0.0000050	mg/L		13-DEC-19	R4943011
Dissolved Mercury Filtration Location	FIELD					13-DEC-19	R4942998
Dissolved Metals in Water by CRC ICPMS							
Dissolved Metals Filtration Location	FIELD					14-DEC-19	R4943390
Aluminum (AI)-Dissolved	0.0028		0.0010	mg/L		14-DEC-19	R4943353
Antimony (Sb)-Dissolved	0.00021		0.00010	mg/L		14-DEC-19	R4943353
Arsenic (As)-Dissolved	0.0134		0.00010	mg/L		14-DEC-19	R4943353
Barium (Ba)-Dissolved	0.794		0.00010	mg/L		14-DEC-19	R4943353
Boron (B)-Dissolved	0.169		0.010	mg/L		14-DEC-19	R4943353
Cadmium (Cd)-Dissolved	0.0000461		0.0000050	mg/L		14-DEC-19	R4943353
Calcium (Ca)-Dissolved	161		0.050	mg/L		14-DEC-19	R4943353
Chromium (Cr)-Dissolved	0.00029		0.00010	mg/L		14-DEC-19	R4943353
Copper (Cu)-Dissolved	0.00753		0.00020	mg/L		14-DEC-19	R4943353
Iron (Fe)-Dissolved	7.43		0.010	mg/L		14-DEC-19	R4943353
Lead (Pb)-Dissolved	0.000246		0.000050	mg/L		14-DEC-19	R4943353
Magnesium (Mg)-Dissolved	99.6		0.0050	mg/L		14-DEC-19	R4943353
Manganese (Mn)-Dissolved	1.28		0.00010	mg/L		14-DEC-19	R4943353
Nickel (Ni)-Dissolved	0.0262		0.00050	mg/L		14-DEC-19	R4943353
Potassium (K)-Dissolved	9.91		0.050	mg/L		14-DEC-19	R4943353
Selenium (Se)-Dissolved	0.000245		0.000050	mg/L		14-DEC-19	R4943353
Silver (Ag)-Dissolved	<0.000010		0.000010	mg/L		14-DEC-19	R4943353
Sodium (Na)-Dissolved	177		0.050	mg/L		14-DEC-19	R4943353
Uranium (U)-Dissolved	0.00927		0.000010	mg/L		14-DEC-19	R4943353
Zinc (Zn)-Dissolved	0.0060		0.0010	mg/L		14-DEC-19	R4943353

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2393429 CONTD.... PAGE 12 of 15 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2393429-4 AEP MW-05							
Sampled By: MR/RM on 06-DEC-19 @ 14:30							
Matrix: WATER							
Fluoride in Water by IC Fluoride (F)	<0.10	DLHC	0.10	mg/L		08-DEC-19	R4942862
Ion Balance Calculation	425	RRV		0,		40 DEC 40	
Ion Balance TDS (Calculated)	135 1060	I KKV		% mg/L		19-DEC-19 19-DEC-19	
Hardness (as CaCO3)	812			mg/L		19-DEC-19	
Nitrate in Water by IC	""			illy/L		13-020-13	
Nitrate (as N)	<0.10	DLHC	0.10	mg/L		08-DEC-19	R4942862
Nitrate+Nitrite							
Nitrate and Nitrite (as N)	<0.11		0.11	mg/L		18-DEC-19	
Nitrite in Water by IC						00 DEC 45	
Nitrite (as N)	<0.050	DLHC	0.050	mg/L		08-DEC-19	R4942862
Sulfate in Water by IC Sulfate (SO4)	94.9	DLHC	1.5	mg/L		08-DEC-19	R4942862
pH, Conductivity and Total Alkalinity	34.5		1.5	IIIg/L		30-020-13	14342002
pH	7.76		0.10	pН		14-DEC-19	R4943994
Conductivity (EC)	1930		2.0	uS/cm		14-DEC-19	R4943994
Bicarbonate (HCO3)	709		5.0	mg/L		14-DEC-19	R4943994
Carbonate (CO3)	<5.0		5.0	mg/L		14-DEC-19	R4943994
Hydroxide (OH)	<5.0		5.0	mg/L		14-DEC-19	R4943994
Alkalinity, Total (as CaCO3)	581		2.0	mg/L		14-DEC-19	R4943994
EPA 8260 Volatile Organics							
VOCs in Water	-0.0040		0.0040	me#	13 DEC 10	13 DEC 10	B4042754
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane	<0.0010 <0.00050		0.0010 0.00050	mg/L mg/L	13-DEC-19 13-DEC-19	13-DEC-19 13-DEC-19	R4942751 R4942751
1,1,2,2-Tetrachloroethane	<0.00050		0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
1,1,2-Trichloroethane	<0.00050		0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
1,1-Dichloroethane	<0.00050		0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
1,1-Dichloroethene	<0.00050		0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
1,1-Dichloropropene	<0.0010		0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
1,2,3-Trichlorobenzene	<0.0010		0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
1,2,3-Trichloropropane	<0.00050		0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
1,2,4-Trichlorobenzene	<0.0010		0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
1,2,4-Trimethylbenzene	<0.0010		0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
1,2-Dibromo-3-chloropropane	<0.0010		0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
1,2-Dichlorobenzene 1,2-Dichloroethane	<0.00050		0.00050	mg/L	13-DEC-19 13-DEC-19	13-DEC-19	R4942751
1,2-Dichloropethane 1,2-Dichloropropane	<0.0010 <0.00050		0.0010 0.00050	mg/L mg/L	13-DEC-19 13-DEC-19	13-DEC-19 13-DEC-19	R4942751 R4942751
1,3,5-Trimethylbenzene	<0.00050		0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751 R4942751
1,3-Dichlorobenzene	<0.0000		0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
1,3-Dichloropropane	<0.0010		0.00030	mg/L	13-DEC-19	13-DEC-19	R4942751
1,4-Dichlorobenzene	<0.00050		0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
2,2-Dichloropropane	<0.0010		0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
2-Chlorotoluene	<0.0010		0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
4-Chlorotoluene	<0.0010		0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
p-Isopropyltoluene	<0.0010		0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
Benzene	0.00189		0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
Bromobenzene	<0.0010		0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
Bromochloromethane	<0.0010		0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
Bromodichloromethane	<0.00050		0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
Bromoform	<0.00050		0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
Bromomethane Carbon tetrachloride	<0.0010		0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
Calbon tellachionde	<0.00050		0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2393429 CONTD.... PAGE 13 of 15 Version: FINAL

Sample Details/Parameters	Result	Qualifier* D.L.	Units	Extracted	Analyzed	Batch
L2393429-4 AEP MW-05						
Sampled By: MR/RM on 06-DEC-19 @ 14:30						
Matrix: WATER						
VOCs in Water						
Chlorobenzene	<0.00050	0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
Chloroethane	< 0.0010	0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
Chloroform	<0.00050	0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
Chloromethane	< 0.0010	0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
cis-1,2-Dichloroethene	0.222	0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
cis-1,3-Dichloropropene	<0.00050	0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
Dibromochloromethane	<0.00050	0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
Dibromomethane	<0.00050	0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
Dichlorodifluoromethane	<0.00050	0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
Ethylbenzene	<0.00050	0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
Ethylene dibromide	<0.00050	0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
Hexachlorobutadiene	<0.0010	0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
Isopropylbenzene	<0.0010	0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
m+p-Xylenes	<0.00050	0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
Methylene chloride	<0.0010	0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
n-Butylbenzene	<0.0010	0.0010	mg/L	13-DEC-19	13-DEC-19 13-DEC-19	R4942751
n-Propylbenzene o-Xylene	<0.0010 <0.00050	0.0010	mg/L mg/L	13-DEC-19 13-DEC-19	13-DEC-19 13-DEC-19	R4942751 R4942751
sec-Butylbenzene	<0.0010	0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
Styrene	<0.0010	0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
tert-Butylbenzene	<0.0010	0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
Tetrachloroethylene	<0.0000	0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
Toluene	<0.00050	0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
trans-1,2-Dichloroethene	0.0180	0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
trans-1,3-Dichloropropene	< 0.0010	0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
Trichloroethene	< 0.00050	0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
Trichlorofluoromethane	< 0.0010	0.0010	mg/L	13-DEC-19	13-DEC-19	R4942751
Vinyl chloride	0.0132	0.00050	mg/L	13-DEC-19	13-DEC-19	R4942751
Surrogate: 1,4-Difluorobenzene	99.0	70-130	%	13-DEC-19	13-DEC-19	R4942751
Surrogate: 4-Bromofluorobenzene	78.9	70-130	%	13-DEC-19	13-DEC-19	R4942751

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2393429 CONTD....

PAGE 14 of 15

Reference Information

Sample Parameter Qualifier Key:

Qualifier	Description
DLHC	Detection Limit Raised: Dilution required due to high concentration of test analyte(s).
DLM	Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference, colour, turbidity).
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
RRV	Reported Result Verified By Repeat Analysis

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
AOX-MISA-KL	Water	Adsorbable Organic Halides	EPA 1650
BTXS-HS-MS-CL	Water	BTEX and Styrene	EPA 8260C/5021A

The water sample, with added reagents, is heated in a sealed vial to equilibrium. The headspace from the vial is transferred into a gas chromatograph. BTEX Target compound concentrations are measured using mass spectrometry detection.

C-DIS-ORG-CL Water Dissolved Organic Carbon APHA 5310 B-Instrumental

Filtered (0.45 um) sample is acidified and purged to remove inorganic carbon, then injected into a heated reaction chamber where organic carbon is oxidized to CO2 which is then transported in the carrier gas stream and measured via a non-dispersive infrared analyzer.

CL-IC-N-CL Water Chloride in Water by IC EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

F-IC-N-CL Water Fluoride in Water by IC EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

F1-HS-FID-CL Water F1 (C6-C10) EPA 5021A / CWS PHC Tier 1

This analysis is based on the "Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil - Tier 1 Method, Canadian Council of Ministers of the Environment, December 2001." For F1 (C6-C10) analysis, the water sample, with added reagents, is heated in a sealed vial to equilibrium. The headspace from the vial is transferred into a GC-FID for analysis.

F2-4-ME-FID-CL Water CCME F2-4 Hydrocarbons EPA 3511/ CCME PHC CWS GC-FID

Water samples are spiked with 2-BBTF surrogate, and extracted by reciprocal action shaker for 30 minutes using a single micro-extraction with hexane. Instrumental analysis is by GC-FID, as per the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil, Tier 1 Method, CCME, December 2001.

HG-D-CVAA-CL Water Dissolved Mercury in Water by CVAAS APHA 3030B/EPA 1631E (mod)

Water samples are filtered (0.45 um), preserved with hydrochloric acid, then undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.

APHA 1030E

IONBALANCE-CL Water Ion Balance Calculation

MET-D-CCMS-CL Water Dissolved Metals in Water by CRC ICPMS APHA 3030B/6020A (mod)

Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by CRC ICPMS.

Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

N2N3-CALC-CL Water Nitrate+Nitrite CALCULATION

NH3-F-CL Water Ammonia by Fluorescence J. ENVIRON. MONIT., 2005, 7, 37-42, RSC

This analysis is carried out, on sulfuric acid preserved samples, using procedures modified from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society of Chemistry, "Flow-injection analysis with fluorescence detection for the determination of trace levels of ammonium in seawater", Roslyn J. Waston et al.

NO2-IC-N-CL Water Nitrite in Water by IC EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

NO3-IC-N-CL Water Nitrate in Water by IC EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

P-T-COL-CL Water Total P in Water by Colour APHA 4500-P PHOSPHORUS

This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". Total Phosphorus is determined colourimetrically after persulphate digestion of the sample.

PH/EC/ALK-CL Water pH, Conductivity and Total Alkalinity APHA 4500H,2510,2320

All samples analyzed by this method for pH will have exceeded the 15 minute recommended hold time from time of sampling (field analysis is recommended for pH where highly accurate results are needed)

SWM.SWOP04071-01.006

L2393429 CONTD.... PAGE 15 of 15 Version: FINAL

Reference Information

Test Method References:

ALS Test Code Matrix Test Description Method Reference**

pH measurement is determined from the activity of the hydrogen ions using a hydrogen electrode and a reference electrode.

Alkalinity measurement is based on the sample's capacity to neutralize acid

Conductivity measurement is based on the sample's capacity to convey an electric current

SQ4-IC-N-CL Water Sulfate in Water by IC EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

TKN-F-CL Water Total Kjeldahl Nitrogen by Fluorescence APHA 4500-NORG (TKN)

This analysis is carried out using procedures adapted from APHA Method 4500-Norg D. "Block Digestion and Flow Injection Analysis". Total Kjeldahl

Nitrogen is determined using block digestion followed by Flow-injection analysis with fluorescence detection.

VFA-WP Water Volatile fatty/carboxylic acids ASTM D2908-91

In the field, water and soil samples are collected in certified clean glass jars. In the laboratory, water samples are filtered and transferred to an autosampler vial for analysis. Soil samples are extracted with water and an aliquot of water is filtered. All extracts have internal standard added prior to injection. Analysis is performed by GC/MS in the selected ion monitoring (SIM) mode.

injection. Analysis is performed by GC/MS in the selected for monitoring (SIM) mode

VOC-HS-MS-CL Water VOCs in Water EPA 8260C/5021A

The water sample, with added reagents, is heated in a sealed vial to equilibrium. The headspace from the vial is transferred into a gas chromatograph.

VOC Target compound concentrations are measured using mass spectrometry detection.

XYLENES-CALC-CL Water Sum of Xylene Isomer Concentrations CALCULATION

Calculation of Total Xylenes

Total Xylenes is the sum of the concentrations of the ortho, meta, and para Xylene isomers. Results below detection limit (DL) are treated as zero. The DL for Total Xylenes is set to a value no less than the square root of the sum of the squares of the DLs of the individual Xylenes.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
WP	ALS ENVIRONMENTAL - WINNIPEG, MANITOBA, CANADA
KL	ALS ENVIRONMENTAL - KELSO, WASHINGTON, USA
CL	ALS ENVIRONMENTAL - CALGARY, ALBERTA, CANADA

Chain of Custody Numbers:

RED DEER MOTORS

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

ALS Routine Water Chemistry Report

L2393429

Lab ID Sample ID					Lab ID Sampl	e ID			
L2393429-1 MW-01					L2393429-2 AEP MW-04				
Sample Date: 06-DEC-19 Matrix: WATER					Sample Date: 06-DEC-19 Matrix: WATER				
Ion Balance	Result 101	UNITS %	MEQ/L	MEQ %	Ion Balance	Result 110	UNITS %	MEQ/L	MEQ %
Routine Anions Bicarbonate	688	mg/L	11.27	23	Routine Anions Bicarbonate	682	mg/L	11.18	17
Carbonate	<5.0	mg/L	0	0	Carbonate	<5.0	mg/L	0	0
Hydroxide	<5.0	mg/L	0	0	Hydroxide	<5.0	mg/L	0	0
Chloride	423	mg/L	11.93	24	Chloride	450	mg/L	12.69	19
Sulfate	79.1	mg/L	1.65	3	Sulfate	394	mg/L	8.20	12
Nitrate+Nitrite-N		mg/L	0	0	Nitrate+Nitrite-N		mg/L	0	0
Anion Sum			24.86	50	Anion Sum	1		32.08	48
Routine Cations Calcium	161	mg/L	8.03	16	Routine Cations Calcium	249	mg/L	12.43	18
Magnesium	99.4	mg/L	8.18	16	Magnesium	126	mg/L	10.37	15
Sodium	189	mg/L	8.22	16	Sodium	284	mg/L	12.35	18
Potassium	9.55	mg/L	0.24	0	Potassium	5.29	mg/L	0.14	0
Ammonium	7.2	mg/L	0.51	1	Ammonium	0.45	mg/L	0.03	0
Cation Surr			25.19	50	Cation Sun	n		35.32	52
L2393429-3 AEP MW-04		\vdash			L2393429-4 AEP MW-05				
Sample Date: 06-DEC-19					Sample Date: 06-DEC-19				
Matrix: WATER		L			Matrix: WATER				
Ion Balance	Result 71.4	UNITS %	MEQ/L	MEQ %	Ion Balance	Result 135	UNITS %	MEQ/L	MEQ %
Routine Anions Bicarbonate	1070	mg/L	17.54	48	Routine Anions Bicarbonate	709	mg/L	11.62	27
Carbonate	<5.0	mg/L	0	0	Carbonate	<5.0	mg/L	0	0
Hydroxide	<5.0	mg/L	0	0	Hydroxide	<5.0	mg/L	0	0
Chloride	6.8	mg/L	0.19	1	Chloride	167	mg/L	4.71	11
Sulfate	174	mg/L	3.62	10	Sulfate	94.9	mg/L	1.98	5
Nitrate+Nitrite-N		mg/L	0	0	Nitrate+Nitrite-N		mg/L	0	0
Anion Sum			21.37	58	Anion Sum	1		18.31	43
Routine Cations Calcium	49.8	mg/L	2.49	7	Routine Cations Calcium	161	mg/L	8.03	19
Magnesium	18.6	mg/L	1.53	4	Magnesium	99.6	mg/L	8.20	19
Sodium	256	mg/L	11.14	30	Sodium	177	mg/L	7.70	18
Potassium	3.37	mg/L	0.09	0	Potassium	9.91	mg/L	0.25	1
Ammonium	0.306	mg/L	0.02	0	Ammonium	7.1	mg/L	0.51	1
Cation Surr		-	15.26	42	Cation Sun	n	-	24.69	57
							\vdash		

ALS LABORATORY GROUP SOIL SALINITY CONVERSION

L2393429

Lab ID Samp	e ID			Lab ID	Sample ID		
"Calculations are a Methods of Analys Homer D. Chapma University of Califo	s per:	lante and Wat	ore				
Homer D. Chapma	n and Parke	r F. Pratt	LI 3				
University of Califo	rnia, Riversio	te, Ol.					
August, 1961."							

Report Date: 27-DEC-19 Workorder: L2393429 Page 1 of 14

TETRA TECH CANADA INC. Client:

110, 140 Quarry Park Blvd SE

Calgary AB T2C 3G3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
C-DIS-ORG-CL	Water							
Batch R4943303 WG3242660-7 DUP Dissolved Organic Car		L2393430-6 5.6	5.4		mg/L	2.9	20	13-DEC-19
WG3242660-2 LCS Dissolved Organic Car	bon		82.5		%		80-120	13-DEC-19
WG3242660-6 LCS Dissolved Organic Car	bon		107.6		%		80-120	13-DEC-19
WG3242660-1 MB Dissolved Organic Car	bon		<1.0		mg/L		1	13-DEC-19
WG3242660-5 MB Dissolved Organic Car	bon		<1.0		mg/L		1	13-DEC-19
WG3242660-8 MS Dissolved Organic Car	bon	L2393430-6	88.3		%		70-130	13-DEC-19
CL-IC-N-CL	Water							
Batch R4942862	2							
WG3242035-7 DUP Chloride (CI)		L2393409-7 1.02	1.00		mg/L	2.2	20	08-DEC-19
WG3242035-6 LCS Chloride (CI)			102.4		%		90-110	08-DEC-19
WG3242035-5 MB Chloride (CI)			<0.50		mg/L		0.5	08-DEC-19
WG3242035-8 MS Chloride (CI)		L2393409-5	103.1		%		75-125	08-DEC-19
F-IC-N-CL	Water							
Batch R4942862	2							
WG3242035-7 DUP Fluoride (F)		L2393409-7 0.190	0.187		mg/L	1.3	20	08-DEC-19
WG3242035-6 LCS Fluoride (F)			100.1		%		90-110	08-DEC-19
WG3242035-5 MB Fluoride (F)			<0.020		mg/L		0.02	08-DEC-19
WG3242035-8 MS Fluoride (F)		L2393409-5	98.1		%		75-125	08-DEC-19
F1-HS-FID-CL	Water							
Batch R4944123	3							
WG3243605-1 MB F1(C6-C10)			<0.10		mg/L		0.1	13-DEC-19
Surrogate: 3,4-Dichloro	toluene		125.7		%		70-130	13-DEC-19

Qualifier

Workorder: L2393429 Report Date: 27-DEC-19 Page 2 of 14

RPD

Limit

Analyzed

Units

Client: TETRA TECH CANADA INC.

110, 140 Quarry Park Blvd SE

Matrix

Reference

Result

Calgary AB T2C 3G3

Contact: Darby Madalena

Test

lest	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
F2-4-ME-FID-CL	Water							
Batch R4944846								
WG3243467-1 MB F2: (C10-C16)			<0.10		mg/L		0.1	17-DEC-19
Surrogate: 2-Bromobenz	otrifluoride		70.9		%		60-140	17-DEC-19
HG-D-CVAA-CL	Water							
Batch R4943011								
WG3242289-6 LCS Mercury (Hg)-Dissolved			118.0		%		80-120	13-DEC-19
WG3242289-5 MB Mercury (Hg)-Dissolved			<0.0000050	0	mg/L		0.000005	13-DEC-19
MET-D-CCMS-CL	Water							
Batch R4943353								
WG3242669-3 DUP	_	L2393409-7			_			
Aluminum (AI)-Dissolved		<0.0010	<0.0010	RPD-NA	mg/L	N/A	20	14-DEC-19
Antimony (Sb)-Dissolved	ı	<0.00010	<0.00010	RPD-NA	mg/L	N/A	20	14-DEC-19
Arsenic (As)-Dissolved		0.00016	0.00016		mg/L	0.8	20	14-DEC-19
Barium (Ba)-Dissolved		0.0659	0.0658		mg/L	0.2	20	14-DEC-19
Boron (B)-Dissolved		<0.010	<0.010	RPD-NA	mg/L	N/A	20	14-DEC-19
Cadmium (Cd)-Dissolved	d	0.0000157	0.0000101	J	mg/L	0.0000056	0.00001	14-DEC-19
Calcium (Ca)-Dissolved		74.7	81.9		mg/L	9.2	20	14-DEC-19
Chromium (Cr)-Dissolve	d	0.00014	0.00014		mg/L	1.5	20	14-DEC-19
Copper (Cu)-Dissolved		<0.00020	<0.00020	RPD-NA	mg/L	N/A	20	14-DEC-19
Iron (Fe)-Dissolved		<0.010	<0.010	RPD-NA	mg/L	N/A	20	14-DEC-19
Lead (Pb)-Dissolved		<0.000050	<0.000050	RPD-NA	mg/L	N/A	20	14-DEC-19
Magnesium (Mg)-Dissolv	/ed	40.1	40.2		mg/L	0.1	20	14-DEC-19
Manganese (Mn)-Dissolv	ved	0.00043	0.00046		mg/L	5.6	20	14-DEC-19
Nickel (Ni)-Dissolved		<0.00050	<0.00050	RPD-NA	mg/L	N/A	20	14-DEC-19
Potassium (K)-Dissolved	I	0.817	0.814		mg/L	0.3	20	14-DEC-19
Selenium (Se)-Dissolved	I	0.0376	0.0360		mg/L	4.5	20	14-DEC-19
Silver (Ag)-Dissolved		<0.000010	<0.000010	RPD-NA	mg/L	N/A	20	14-DEC-19
Sodium (Na)-Dissolved		1.83	1.85		mg/L	1.0	20	14-DEC-19
Uranium (U)-Dissolved		0.00206	0.00235		mg/L	13	20	14-DEC-19
Zinc (Zn)-Dissolved		<0.0010	<0.0010	RPD-NA	mg/L	N/A	20	14-DEC-19
WG3242669-2 LCS			40C C		96		00.400	44 050 40
Aluminum (Al)-Dissolved			106.8		%		80-120	14-DEC-19
Antimony (Sb)-Dissolved	ı		93.4		%		80-120	14-DEC-19

Workorder: L2393429 Report Date: 27-DEC-19 Page 3 of 14

Client: TETRA TECH CANADA INC.

110, 140 Quarry Park Blvd SE

Calgary AB T2C 3G3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-CCMS-CL	Water							
Batch R4943353	3							
WG3242669-2 LCS								
Arsenic (As)-Dissolved			105.4		%		80-120	14-DEC-19
Barium (Ba)-Dissolved			105.1		%		80-120	14-DEC-19
Boron (B)-Dissolved			100.7		%		80-120	14-DEC-19
Cadmium (Cd)-Dissolv			102.9		%		80-120	14-DEC-19
Calcium (Ca)-Dissolved			101.7		%		80-120	14-DEC-19
Chromium (Cr)-Dissolv	red		104.6		%		80-120	14-DEC-19
Copper (Cu)-Dissolved			101.0		%		80-120	14-DEC-19
Iron (Fe)-Dissolved			97.7		%		80-120	14-DEC-19
Lead (Pb)-Dissolved			101.5		%		80-120	14-DEC-19
Magnesium (Mg)-Disso	olved		107.4		%		80-120	14-DEC-19
Manganese (Mn)-Disso	olved		103.3		%		80-120	14-DEC-19
Nickel (Ni)-Dissolved			105.2		%		80-120	14-DEC-19
Potassium (K)-Dissolve	ed		108.3		%		80-120	14-DEC-19
Selenium (Se)-Dissolve	ed		99.0		%		80-120	14-DEC-19
Silver (Ag)-Dissolved			99.9		%		80-120	14-DEC-19
Sodium (Na)-Dissolved	I		104.3		%		80-120	14-DEC-19
Uranium (U)-Dissolved			100.8		%		80-120	14-DEC-19
Zinc (Zn)-Dissolved			102.1		%		80-120	14-DEC-19
WG3242669-1 MB					_			
Aluminum (Al)-Dissolve			<0.0010		mg/L		0.001	14-DEC-19
Antimony (Sb)-Dissolve			<0.00010		mg/L		0.0001	14-DEC-19
Arsenic (As)-Dissolved			<0.00010		mg/L		0.0001	14-DEC-19
Barium (Ba)-Dissolved			<0.00010		mg/L		0.0001	14-DEC-19
Boron (B)-Dissolved			<0.010		mg/L		0.01	14-DEC-19
Cadmium (Cd)-Dissolve			<0.000005	50	mg/L		0.000005	14-DEC-19
Calcium (Ca)-Dissolved			<0.050		mg/L		0.05	14-DEC-19
Chromium (Cr)-Dissolv			<0.00010		mg/L		0.0001	14-DEC-19
Copper (Cu)-Dissolved			<0.00020		mg/L		0.0002	14-DEC-19
Iron (Fe)-Dissolved			<0.010		mg/L		0.01	14-DEC-19
Lead (Pb)-Dissolved			<0.000050)	mg/L		0.00005	14-DEC-19
Magnesium (Mg)-Disso	olved		<0.0050		mg/L		0.005	14-DEC-19
Manganese (Mn)-Disso	olved		<0.00010		mg/L		0.0001	14-DEC-19
Nickel (Ni)-Dissolved			<0.00050		mg/L		0.0005	14-DEC-19
Potassium (K)-Dissolve	ed		<0.050		mg/L		0.05	14-DEC-19
1								

Workorder: L2393429 Report Date: 27-DEC-19 Page 4 of 14

Client: TETRA TECH CANADA INC.

110, 140 Quarry Park Blvd SE

Calgary AB T2C 3G3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-CCMS-CL	Water							
Batch R4943353								
WG3242669-1 MB			*U 00000				0.00000	
Selenium (Se)-Dissolved			<0.000050		mg/L		0.00005 0.00001	14-DEC-19
Silver (Ag)-Dissolved			<0.000010	J	mg/L			14-DEC-19
Sodium (Na)-Dissolved			<0.050		mg/L		0.05	14-DEC-19
Uranium (U)-Dissolved			<0.000010	J	mg/L		0.00001	14-DEC-19
Zinc (Zn)-Dissolved			<0.0010		mg/L		0.001	14-DEC-19
WG3242669-4 MS Aluminum (Al)-Dissolved	d	L2393409-7	122.3		%		70-130	15-DEC-19
Antimony (Sb)-Dissolved	d		105.6		%		70-130	15-DEC-19
Arsenic (As)-Dissolved			111.9		%		70-130	15-DEC-19
Barium (Ba)-Dissolved			100.1		%		70-130	15-DEC-19
Boron (B)-Dissolved			107.5		%		70-130	15-DEC-19
Cadmium (Cd)-Dissolve	d		110.1		%		70-130	15-DEC-19
Calcium (Ca)-Dissolved			N/A	MS-B	%		-	15-DEC-19
Chromium (Cr)-Dissolve	ed		113.7		%		70-130	15-DEC-19
Copper (Cu)-Dissolved			111.1		%		70-130	15-DEC-19
Iron (Fe)-Dissolved			111.4		%		70-130	15-DEC-19
Lead (Pb)-Dissolved			100.1		%		70-130	15-DEC-19
Magnesium (Mg)-Dissol	ved		N/A	MS-B	%		-	15-DEC-19
Manganese (Mn)-Dissol	ved		115.2		%		70-130	15-DEC-19
Nickel (Ni)-Dissolved			110.7		%		70-130	15-DEC-19
Potassium (K)-Dissolved	d		109.0		%		70-130	15-DEC-19
Selenium (Se)-Dissolved	d		108.9		%		70-130	15-DEC-19
Silver (Ag)-Dissolved			97.8		%		70-130	15-DEC-19
Sodium (Na)-Dissolved			115.0		%		70-130	15-DEC-19
Uranium (U)-Dissolved			103.0		%		70-130	15-DEC-19
Zinc (Zn)-Dissolved			102.7		%		70-130	15-DEC-19
NH3-F-CL	Water							
Batch R4943991								
WG3242302-18 LC\$ Ammonia, Total (as N)			109.6		%		85-115	13-DEC-19
WG3242302-17 MB Ammonia, Total (as N)			<0.050		mg/L		0.05	13-DEC-19
NO2-IC-N-CL	Water							

Workorder: L2393429

Report Date: 27-DEC-19

Page 5 of 14

Client:

TETRA TECH CANADA INC. 110, 140 Quarry Park Blvd SE

Calgary AB T2C 3G3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
NO2-IC-N-CL	Water							
Batch R4942862 WG3242035-6 LCS Nitrite (as N)			104.2		%		90-110	08-DEC-19
WG3242035-5 MB Nitrite (as N)			<0.010		mg/L		0.01	08-DEC-19
NO3-IC-N-CL	Water							
Batch R4942862 WG3242035-6 LCS Nitrate (as N)			102.0		%		90-110	08-DEC-19
WG3242035-5 MB Nitrate (as N)			<0.020		mg/L		0.02	08-DEC-19
P-T-COL-CL	Water							
Batch R4943276								
WG3242072-10 LCS Phosphorus (P)-Total			92.6		%		80-120	13-DEC-19
WG3242072-9 MB Phosphorus (P)-Total			<0.0050		mg/L		0.005	13-DEC-19
PH/EC/ALK-CL	Water							
Batch R4943994								
WG3243425-11 LCS Conductivity (EC)			99.3		%		90-110	14-DEC-19
Alkalinity, Total (as CaC	O3)		104.4		%		85-115	14-DEC-19
WG3243425-10 MB								
Conductivity (EC)			<2.0		uS/cm		2	14-DEC-19
Bicarbonate (HCO3)			<5.0		mg/L		5	14-DEC-19
Carbonate (CO3)			<5.0		mg/L		5	14-DEC-19
Hydroxide (OH)			<5.0		mg/L		5	14-DEC-19
Alkalinity, Total (as CaC	O3)		<2.0		mg/L		2	14-DEC-19
SO4-IC-N-CL	Water							
Batch R4942862								
WG3242035-7 DUP Sulfate (SO4)		L2393409-7 167	166		mg/L	0.3	20	08-DEC-19
WG3242035-6 LC\$ Sulfate (SO4)			101.9		%		90-110	08-DEC-19
WG3242035-5 MB Sulfate (SO4)			<0.30		mg/L		0.3	08-DEC-19
WG3242035-8 MS Sulfate (SO4)		L2393409-5	100.7				75-125	
i								

Workorder: L2393429

Report Date: 27-DEC-19

Page 6 of 14

Client:

TETRA TECH CANADA INC. 110, 140 Quarry Park Blvd SE

Calgary AB T2C 3G3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
SO4-IC-N-CL	Water							
Batch R4942862 WG3242035-8 MS Sulfate (SO4)		L2393409-5	100.7		%		75-125	08-DEC-19
TKN-F-CL	Water							
Batch R4943090 WG3242367-15 DUP Total Kjeldahl Nitrogen		L2393430-1 0.69	0.64		mg/L	8.0	20	12-DEC-19
WG3242367-17 DUP Total Kjeldahl Nitrogen		L2393876-2 18	17		mg/L	0.5	20	12-DEC-19
WG3242367-18 DUP Total Kjeldahl Nitrogen		L2393879-1 74	71		mg/L	4.4	20	12-DEC-19
WG3242367-3 DUP Total Kjeldahl Nitrogen		L2394735-1 3.93	3.82		mg/L	2.8	20	12-DEC-19
WG3242367-10 LC\$ Total Kjeldahl Nitrogen			102.0		%		75-125	12-DEC-19
WG3242367-14 LC\$ Total Kjeldahl Nitrogen			102.0		%		75-125	12-DEC-19
WG3242367-2 LC\$ Total Kjeldahl Nitrogen			98.4		%		75-125	12-DEC-19
WG3242367-6 LC\$ Total Kjeldahl Nitrogen			100.2		%		75-125	12-DEC-19
WG3242367-1 MB Total Kjeldahl Nitrogen			<0.20		mg/L		0.2	12-DEC-19
WG3242367-13 MB Total Kjeldahl Nitrogen			<0.20		mg/L		0.2	12-DEC-19
WG3242367-5 MB Total Kjeldahl Nitrogen			<0.20		mg/L		0.2	12-DEC-19
WG3242367-9 MB Total Kjeldahl Nitrogen			<0.20		mg/L		0.2	12-DEC-19
WG3242367-16 MS Total Kjeldahl Nitrogen		L2393430-1	99.9		%		70-130	12-DEC-19
WG3242367-4 MS Total Kjeldahl Nitrogen		L2394735-1	107.0		%		70-130	12-DEC-19
VFA-WP	Water							
Batch R4943956 WG3243154-3 DUP Formic Acid		L2393428-2 <50	<50	RPD-NA	mg/L	N/A	30	14-DEC-19
Acetic Acid		<10	<10	RPD-NA	mg/L	N/A	30	14-DEC-19

Qualifier

Workorder: L2393429 Report Date: 27-DEC-19 Page 7 of 14

RPD

Limit

Analyzed

Units

Client: TETRA TECH CANADA INC.

110, 140 Quarry Park Blvd SE

Matrix

Water

VOC-HS-MS-CL

Reference

Result

Calgary AB T2C 3G3

Contact: Darby Madalena

Test

lest		машх	Reference	Result	Quaimer	Units	RPD	Limit	Analyzed
VFA-WP		Water							
Batch R4	943956								
WG3243154-3 Propionic Acid	DUP		L2393428-2 <5.0	<5.0	RPD-NA	mg/L	N/A	30	14-DEC-19
Butyric Acid			<1.0	<1.0	RPD-NA	mg/L	N/A	30	14-DEC-19
Isobutyric Acid			<1.0	<1.0	RPD-NA	mg/L	N/A	30	14-DEC-19
Valeric Acid			<1.0	<1.0	RPD-NA	mg/L	N/A	30	14-DEC-19
Isovaleric Acid			<1.0	<1.0	RPD-NA	mg/L	N/A	30	14-DEC-19
Caproic (Hexan	oic) Acid		<1.0	<1.0	RPD-NA	mg/L	N/A	30	14-DEC-19
WG3243154-2 Formic Acid	LC S			124.7		%		70-130	16-DEC-19
Acetic Acid				73.5		%		70-130	16-DEC-19
Propionic Acid				87.7		%		70-130	16-DEC-19
Butyric Acid				70.6		%		70-130	16-DEC-19
Isobutyric Acid				76.8		%		70-130	16-DEC-19
Valeric Acid				75.6		%		70-130	16-DEC-19
Isovaleric Acid				71.7		%		70-130	16-DEC-19
Caproic (Hexan	oic) Acid			85.2		%		70-130	16-DEC-19
WG3243154-1 Formic Acid	МВ			<30		mg/L		30	13-DEC-19
Acetic Acid				<10		mg/L		10	13-DEC-19
Propionic Acid				<5.0		mg/L		5	13-DEC-19
Butyric Acid				<1.0		mg/L		1	13-DEC-19
Isobutyric Acid				<1.0		mg/L		1	13-DEC-19
Valeric Acid				<1.0		mg/L		1	13-DEC-19
Isovaleric Acid				<1.0		mg/L		1	13-DEC-19
Caproic (Hexan	oic) Acid			<1.0		mg/L		1	13-DEC-19
WG3243154-4	MS		L2393423-2						
Formic Acid				92.1		%		70-130	13-DEC-19
Acetic Acid				78.9		%		70-130	13-DEC-19
Propionic Acid				74.4		%		70-130	13-DEC-19
Butyric Acid				72.4		%		70-130	13-DEC-19
Isobutyric Acid				80.5		%		70-130	13-DEC-19
Valeric Acid				72.6		%		70-130	13-DEC-19
Isovaleric Acid	oio) Asid			70.3 91.8		%		70-130	13-DEC-19
Caproic (Hexan	oic) Acid			91.0		%		70-130	13-DEC-19

Workorder: L2393429 Report Date: 27-DEC-19 Page 8 of 14

Client: TETRA TECH CANADA INC.

110, 140 Quarry Park Blvd SE

Calgary AB T2C 3G3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-HS-MS-CL	Water							
Batch R494	2751							
WG3242018-2 D 1,1,1,2-Tetrachioro	UP sethana	L2393184-1 <0.0010	<0.0010	DDD NA	mg/L	N/A	30	42.050.40
1,1,1-Trichloroetha		<0.00050	<0.0010	RPD-NA RPD-NA	mg/L	N/A	30	12-DEC-19
1,1,2,2-Tetrachloro		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	12-DEC-19
1,1,2-Trichloroetha		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	12-DEC-19 12-DEC-19
1,1-Dichloroethane		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	12-DEC-19
1,1-Dichloroethene		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	12-DEC-19
1,1-Dichloroproper		<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-DEC-19
1,2,3-Trichloroben:		<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-DEC-19
1,2,3-Trichloroprop		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	12-DEC-19
1,2,4-Trichloroben		<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-DEC-19
1,2,4-Trimethylben	zene	<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-DEC-19
1,2-Dibromo-3-chlo	oropropane	<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-DEC-19
1,2-Dichlorobenzer	ne	<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	12-DEC-19
1,2-Dichloroethane	•	<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-DEC-19
1,2-Dichloropropar	ne	<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	12-DEC-19
1,3,5-Trimethylben	zene	<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-DEC-19
1,3-Dichlorobenzer	ne	<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	12-DEC-19
1,3-Dichloropropar	ne	<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-DEC-19
1,4-Dichlorobenzer	ne	<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	12-DEC-19
2,2-Dichloropropar	ne	<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-DEC-19
2-Chlorotoluene		<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-DEC-19
4-Chlorotoluene		<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-DEC-19
p-Isopropyltoluene		<0.0010	<0.0010	RPD-NA	mg/L	N/A	50	12-DEC-19
Benzene		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	12-DEC-19
Bromobenzene		<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-DEC-19
Bromochlorometha	ane	<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-DEC-19
Bromodichloromet	hane	<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	12-DEC-19
Bromoform		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	12-DEC-19
Bromomethane		<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-DEC-19
Carbon tetrachlorid	ie	<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	12-DEC-19
Chlorobenzene		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	12-DEC-19
Chloroethane		<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-DEC-19
Chloroform		<0.00050	<0.00050		mg/L			12-DEC-19

Workorder: L2393429 Report Date: 27-DEC-19 Page 9 of 14

Client: TETRA TECH CANADA INC.

110, 140 Quarry Park Blvd SE

Calgary AB T2C 3G3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-HS-MS-CL	Water							
Batch R4942751								
WG3242018-2 DUP Chloroform		L2393184-1 <0.00050	<0.00050	RPD-NA	mg/L	N/A	30	12-DEC-19
Chloromethane		<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-DEC-19
cis-1,2-Dichloroethene		<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-DEC-19
cis-1,3-Dichloropropene		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	12-DEC-19
Dibromochloromethane		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	12-DEC-19
Dibromomethane		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	12-DEC-19
Dichlorodifluoromethane	:	<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	12-DEC-19
Ethylbenzene		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	12-DEC-19
Ethylene dibromide		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	12-DEC-19
Hexachlorobutadiene		<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-DEC-19
Isopropylbenzene		<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-DEC-19
m+p-Xylenes		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	12-DEC-19
Methylene chloride		<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-DEC-19
n-Butylbenzene		<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-DEC-19
n-Propylbenzene		<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-DEC-19
o-Xylene		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	12-DEC-19
sec-Butylbenzene		<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-DEC-19
Styrene		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	12-DEC-19
tert-Butylbenzene		<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-DEC-19
Tetrachloroethylene		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	12-DEC-19
Toluene		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	12-DEC-19
trans-1,2-Dichloroethene	9	<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	12-DEC-19
trans-1,3-Dichloroproper	ne	<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-DEC-19
Trichloroethene		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	12-DEC-19
Trichlorofluoromethane		<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-DEC-19
Vinyl chloride		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	12-DEC-19
WG3242018-3 DUP		L2393424-1						
1,1,1,2-Tetrachloroethar	ne	<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-DEC-19
1,1,1-Trichloroethane		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	12-DEC-19
1,1,2,2-Tetrachloroethar	ne	<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	12-DEC-19
1,1,2-Trichloroethane		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	12-DEC-19
1,1-Dichloroethane		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	12-DEC-19
1,1-Dichloroethene		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	12-DEC-19

Workorder: L2393429 Report Date: 27-DEC-19 Page 10 of 14

Client: TETRA TECH CANADA INC.

110, 140 Quarry Park Blvd SE

Calgary AB T2C 3G3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-HS-MS-CL	Water							
Batch R494275	51							
WG3242018-3 DUF 1,1-Dichloropropene	•	L2393424-1 <0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-DEC-19
1,2,3-Trichlorobenzer	ne	<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-DEC-19
1,2,3-Trichloropropan	e	<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	12-DEC-19
1,2,4-Trichlorobenzer	ne	<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-DEC-19
1,2,4-Trimethylbenzer	ne	<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-DEC-19
1,2-Dibromo-3-chloro	propane	<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-DEC-19
1,2-Dichlorobenzene		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	12-DEC-19
1,2-Dichloroethane		<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-DEC-19
1,2-Dichloropropane		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	12-DEC-19
1,3,5-Trimethylbenzer	ne	<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-DEC-19
1,3-Dichlorobenzene		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	12-DEC-19
1,3-Dichloropropane		<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-DEC-19
1,4-Dichlorobenzene		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	12-DEC-19
2,2-Dichloropropane		<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-DEC-19
2-Chlorotoluene		<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-DEC-19
4-Chlorotoluene		<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-DEC-19
p-Isopropyltoluene		<0.0010	<0.0010	RPD-NA	mg/L	N/A	50	12-DEC-19
Benzene		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	12-DEC-19
Bromobenzene		<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-DEC-19
Bromochloromethane	:	<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-DEC-19
Bromodichloromethan	ne	<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	12-DEC-19
Bromoform		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	12-DEC-19
Bromomethane		<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-DEC-19
Carbon tetrachloride		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	12-DEC-19
Chlorobenzene		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	12-DEC-19
Chloroethane		<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-DEC-19
Chloroform		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	12-DEC-19
Chloromethane		<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-DEC-19
cis-1,2-Dichloroethen	е	0.0084	0.0075		mg/L	12	30	12-DEC-19
cis-1,3-Dichloroprope	ne	<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	12-DEC-19
Dibromochloromethan	ne	<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	12-DEC-19
Dibromomethane		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	12-DEC-19
Dichlorodifluorometha	ane	<0.00050	<0.00050		mg/L			12-DEC-19

Workorder: L2393429 Report Date: 27-DEC-19 Page 11 of 14

Client: TETRA TECH CANADA INC.

110, 140 Quarry Park Blvd SE

Calgary AB T2C 3G3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-HS-MS-CL	Water							
Batch R4942751	I							
WG3242018-3 DUP Dichlorodifluoromethan	ie	L2393424-1 <0.00050	<0.00050	RPD-NA	mg/L	N/A	30	12-DEC-19
Ethylbenzene		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	12-DEC-19
Ethylene dibromide		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	12-DEC-19
Hexachlorobutadiene		<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-DEC-19
Isopropylbenzene		<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-DEC-19
m+p-Xylenes		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	12-DEC-19
Methylene chloride		<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-DEC-19
n-Butylbenzene		<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-DEC-19
n-Propylbenzene		<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-DEC-19
o-Xylene		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	12-DEC-19
sec-Butylbenzene		<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-DEC-19
Styrene		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	12-DEC-19
tert-Butylbenzene		<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-DEC-19
Tetrachloroethylene		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	12-DEC-19
Toluene		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	12-DEC-19
trans-1,2-Dichloroether	ne	0.00067	0.00059		mg/L	13	30	12-DEC-19
trans-1,3-Dichloroprope	ene	<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-DEC-19
Trichloroethene		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	12-DEC-19
Trichlorofluoromethane	;	<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-DEC-19
Vinyl chloride		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	12-DEC-19
WG3242018-1 MB					_			
1,1,1,2-Tetrachloroetha	ane		<0.0010		mg/L		0.001	12-DEC-19
1,1,1-Trichloroethane			<0.00050		mg/L		0.0005	12-DEC-19
1,1,2,2-Tetrachloroetha	ane		<0.00050		mg/L		0.0005	12-DEC-19
1,1,2-Trichloroethane 1,1-Dichloroethane			<0.00050		mg/L		0.0005	12-DEC-19
•			<0.00050		mg/L		0.0005	12-DEC-19
1,1-Dichloroethene 1,1-Dichloropropene			<0.00050 <0.0010		mg/L		0.0005 0.001	12-DEC-19
1,1-Dichloropropene 1,2,3-Trichlorobenzene			<0.0010		mg/L		0.001	12-DEC-19
1,2,3-Trichloropropane			<0.0010		mg/L mg/L		0.001	12-DEC-19
1,2,4-Trichlorobenzene			<0.00030		mg/L		0.0005	12-DEC-19
1,2,4-Trimethylbenzene			<0.0010		mg/L		0.001	12-DEC-19
1,2-Dibromo-3-chloropi			<0.0010		mg/L		0.001	12-DEC-19
1,2-01010110-3-01101001	opano		~0.0010		IIIg/L		U.UU I	12-DEC-19

Workorder: L2393429 Report Date: 27-DEC-19 Page 12 of 14

Client: TETRA TECH CANADA INC.

110, 140 Quarry Park Blvd SE

Calgary AB T2C 3G3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-HS-MS-CL	Water							
Batch R4942751								
WG3242018-1 MB 1,2-Dichlorobenzene			<0.00050		ma/l		0.0005	40.050.40
1,2-Dichloroethane					mg/L		0.0005	12-DEC-19
-			<0.0010 <0.00050		mg/L		0.0005	12-DEC-19
1,2-Dichloropropane 1,3,5-Trimethylbenzene					mg/L		0.0005	12-DEC-19
	;		<0.0010 <0.00050		mg/L		0.0005	12-DEC-19
1,3-Dichlorobenzene					mg/L			12-DEC-19
1,3-Dichloropropane			<0.0010		mg/L		0.001	12-DEC-19
1,4-Dichlorobenzene			<0.00050		mg/L		0.0005	12-DEC-19
2,2-Dichloropropane			<0.0010		mg/L		0.001	12-DEC-19
2-Chlorotoluene			<0.0010		mg/L		0.001	12-DEC-19
4-Chlorotoluene			<0.0010		mg/L		0.001	12-DEC-19
p-Isopropyltoluene			<0.0010		mg/L		0.001	12-DEC-19
Benzene			<0.00050		mg/L		0.0005	12-DEC-19
Bromobenzene			<0.0010		mg/L		0.001	12-DEC-19
Bromochloromethane			<0.0010		mg/L		0.001	12-DEC-19
Bromodichloromethane			<0.00050		mg/L		0.0005	12-DEC-19
Bromoform			<0.00050		mg/L		0.0005	12-DEC-19
Bromomethane			<0.0010		mg/L		0.001	12-DEC-19
Carbon tetrachloride			<0.00050		mg/L		0.0005	12-DEC-19
Chlorobenzene			<0.00050		mg/L		0.0005	12-DEC-19
Chloroethane			<0.0010		mg/L		0.001	12-DEC-19
Chloroform			<0.00050		mg/L		0.0005	12-DEC-19
Chloromethane			<0.0010		mg/L		0.001	12-DEC-19
cis-1,2-Dichloroethene			<0.0010		mg/L		0.001	12-DEC-19
cis-1,3-Dichloropropene	9		<0.00050		mg/L		0.0005	12-DEC-19
Dibromochloromethane	:		<0.00050		mg/L		0.0005	12-DEC-19
Dibromomethane			<0.00050		mg/L		0.0005	12-DEC-19
Dichlorodifluoromethan	е		<0.00050		mg/L		0.0005	12-DEC-19
Ethylbenzene			<0.00050		mg/L		0.0005	12-DEC-19
Ethylene dibromide			<0.00050		mg/L		0.0005	12-DEC-19
Hexachlorobutadiene			<0.0010		mg/L		0.001	12-DEC-19
Isopropylbenzene			<0.0010		mg/L		0.001	12-DEC-19
m+p-Xylenes			<0.00050		mg/L		0.0005	12-DEC-19
Methylene chloride			<0.0010		mg/L		0.001	12-DEC-19

Workorder: L2393429 Report Date: 27-DEC-19 Page 13 of 14

Client: TETRA TECH CANADA INC.

110, 140 Quarry Park Blvd SE

Calgary AB T2C 3G3

Test M	latrix Reference	Result Qualit	ier Units	RPD	Limit	Analyzed
VOC-HS-MS-CL V	Vater					
Batch R4942751						
WG3242018-1 MB						
n-Butylbenzene		<0.0010	mg/L		0.001	12-DEC-19
n-Propylbenzene		<0.0010	mg/L		0.001	12-DEC-19
o-Xylene		<0.00050	mg/L		0.0005	12-DEC-19
sec-Butylbenzene		<0.0010	mg/L		0.001	12-DEC-19
Styrene		<0.00050	mg/L		0.0005	12-DEC-19
tert-Butylbenzene		<0.0010	mg/L		0.001	12-DEC-19
Tetrachloroethylene		<0.00050	mg/L		0.0005	12-DEC-19
Toluene		<0.00050	mg/L		0.0005	12-DEC-19
trans-1,2-Dichloroethene		<0.00050	mg/L		0.0005	12-DEC-19
trans-1,3-Dichloropropene		<0.0010	mg/L		0.001	12-DEC-19
Trichloroethene		<0.00050	mg/L		0.0005	12-DEC-19
Trichlorofluoromethane		<0.0010	mg/L		0.001	12-DEC-19
Vinyl chloride		<0.00050	mg/L		0.0005	12-DEC-19
Surrogate: 1,4-Difluorobenz	zene	100.5	%		70-130	12-DEC-19
Surrogate: 4-Bromofluorob	enzene	88.1	%		70-130	12-DEC-19

Workorder: L2393429 Report Date: 27-DEC-19

Client: TETRA TECH CANADA INC. Page 14 of 14

110, 140 Quarry Park Blvd SE Calgary AB T2C 3G3

Contact: Darby Madalena

Legend:

Limit ALS Control Limit (Data Quality Objectives)

DUP Duplicate

RPD Relative Percent Difference

N/A Not Available

LCS Laboratory Control Sample SRM Standard Reference Material

MS Matrix Spike

MSD Matrix Spike Duplicate

ADE Average Desorption Efficiency

MB Method Blank

IRM Internal Reference Material
CRM Certified Reference Material
CCV Continuing Calibration Verification
CVS Calibration Verification Standard
LCSD Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
DLM	Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference, colour, turbidity).
J	Duplicate results and limits are expressed in terms of absolute difference.
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

Service Request No:K1911637

Inayat Dhaliwal ALS Environmental - Canada 2559 29 Street NE Calgary, AB T1Y 7B5

Laboratory Results for: L2393429

Dear Inayat,

Enclosed are the results of the sample(s) submitted to our laboratory December 12, 2019 For your reference, these analyses have been assigned our service request number **K1911637**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3293. You may also contact me via email at Elizabeth.Harris@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Elizabeth Harris Project Manager

Narrative Documents

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

Client: ALS Environmental - Canada Service Request: K1911637

Project: L2393429 Date Received: 12/12/2019

Sample Matrix: Water

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples for the Tier II level requested by the client.

Sample Receipt:

Four water samples were received for analysis at ALS Environmental on 12/12/2019. Any discrepancies upon initial sample inspection are annotated on the sample receipt and preservation form included within this report. The samples were stored at minimum in accordance with the analytical method requirements.

General Chemistry:

No significant anomalies were noted with this analysis.

Approved by ______ Date ____12/26/2019

SAMPLE DETECTION SUMMARY

CLIENT ID: L2393429-2						
Analyte	Results	Flag	MDL	MRL	Units	Method
Halides, Adsorbable Organic (AOX)	0.039			0.025	mg/L	1650C
CLIENT ID: L2393429-4		Lab	ID: K1911	1637-004		
Analyte	Results	Flag	MDL	MRL	Units	Method
Halides, Adsorbable Organic (AOX)	0.180			0.025	mg/L	1650C

Sample Receipt Information

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com Client: ALS Environmental - Canada Service Request:K1911637

Project: L2393429

SAMPLE CROSS-REFERENCE

SAMPLE#	CLIENT SAMPLE ID	<u>DATE</u>	<u>TIME</u>
K1911637-001	L2393429-1	12/6/2019	
K1911637-002	L2393429-2	12/6/2019	
K1911637-003	L2393429-3	12/6/2019	
K1911637-004	L2393429-4	12/6/2019	

CALGARY

Subcontract Request Form

Subcontract To:

ALS ENVIRONMENTAL - KELSO, WASHINGTON, USA

1317 S. 13TH AVE KELSO,WA 98626

NOTES: Please reference on final re ALS requires QC data to be	eport and invoice: PO# <u>L2393</u> e e provided with your final results.	129			
Please see enclosed 4 samp	le(s) in 4 Container(s)				
SAMPLE NUMBER ANALYTICA	AL REQUIRED	DATE SAMPLED Priority DUE DATE Flag			
L2393429-1 MW-01		12/6/2019			
Adsorbable	Organic Halides (AOX-MISA-KL 1)	12/30/2019			
L2393429-2 AEP MW-04		12/6/2019			
Adsorbable	Organic Halides (AOX-MISA-KL 1)	12/30/2019			
L2393429-3 AEP MW-04		12/6/2019			
Adsorbable	Organic Halides (AOX-MISA-KL 1)	12/30/2019			
L2393429-4 AEP MW-05		12/6/2019			
Adsorbable	Organic Halides (AOX-MISA-KL 1)	12/30/2019			
Subcontract Info Contact:	John Forbes (403) 291-9897				
Analysis and reporting info contact:	Inayat Dhaliwal				
	2559 29 STREET NE				
	CALGARY,AB T1Y 7B5				
	Phone: (403) 291-9897	Email: inayat.dhaliwal@alsglobal.com			
Please email confirmation of receip	ot to: inayat.dhaliwal@	alsglobal.com			
Shipped By:	Date Shipped:				
Received By:	Date Received:	12/12/19 1000			
Verified By:	Date Verified:				
	Temperature:				
Sample Integrity Issues:					

PC EH

ent ALS	CANAP	A	Cooler	Kecei	pt an			tion Fort Request <i>F</i>		37		
ceived: 12/12/	19(Opened:13	12/19		Ву	:_C	î	Unloa	ded: 12/1	12/19 By:	CG	
Samples were rec Samples were rec Were <u>custody sea</u>	eived in: (cir		Fed Ex Cooler	Box	es D	<i>DHL</i> Envelop If ye	e .	OX Con Other many and		d Delivered	NA	
If present, were o	ustody seals	intact?	Y	Ŋ	1	I	prese	nt, were the	y signed and		Y	N
Raw Corrected.		Corrected Temp Blank	Corr. Factor		momet	er (Cooler/	COC ID	7772	Tracking Number		NA Filed
	·											
Were custody pa Were samples re Were all sample Did all sample la Were appropria Were the pH-p Were VOA via Were VOA via Sample I	If application of the complete	od condition plicable, tis ete (i.e anales agree with a stainers and les (see SMC)	n (tempera ssue sample lysis, prese a custody p volumes r O GEN SOP	es were ervation apers? received?) received dicate	nbroke e receiven, etc.)? Indicated for the	red: ate major e tests he app able be	Froze or disc indicat ropriat	n Partio repancies i ed?	ally Thawed In the table on cate in the tab	N		N N N N N N
Sampl	e ID		e Count	Out of Temp	Head- space	Broke	рН	Reagen	Volume t added	Reagent Lot Number	initials	Time
Votes, Discrepa	ıcies, & Res	solutions:										
												

Miscellaneous Forms

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.

 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEH	http://dec.alaska.gov/eh/lab/cs/csapproval.htm	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L16-58-R4
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Hawaii DOH	http://health.hawaii.gov/	-
ISO 17025	http://www.pjlabs.com/	L16-57
Louisiana DEQ	http://www.deq.louisiana.gov/page/la-lab-accreditation	03016
Maine DHS	http://www.maine.gov/dhhs/	WA01276
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-457
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA01276
New Jersey DEP	http://www.nj.gov/dep/enforcement/oqa.html	WA005
New York - DOH	https://www.wadsworth.org/regulatory/elap	12060
	https://deq.nc.gov/about/divisions/water-resources/water-resources-data/water-sciences-home-page/laboratory-certification-branch/non-field-lab-	
North Carolina DEQ	certification	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
Oregon – DEQ (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaboratoryAccreditation/Pages/index.aspx	WA100010
South Carolina DHEC	http://www.scdhec.gov/environment/EnvironmentalLabCertification/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
Wyoming (EPA Region 8)	https://www.epa.gov/region8-waterops/epa-region-8-certified-drinking-water-	-
Kelso Laboratory Website	www.alsglobal.com	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LOD Limit of Detection
LOQ Limit of Quantitation

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a substance

allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater than or

equal to the MDL.

Analyst Summary report

Client: ALS Environmental - Canada

Project: L2393429/ Service Request: K1911637

Sample Name: L2393429-1 Lab Code: K1911637-001

Sample Matrix: Water **Date Collected:** 12/6/19 **Date Received:** 12/12/19

Analysis Method

1650C

Analyzed By Extracted/Digested By

ESCHLOSS

Sample Name: L2393429-2 Lab Code:

Sample Matrix:

K1911637-002

Water

Date Collected: 12/6/19 **Date Received:** 12/12/19

Analysis Method

1650C

Extracted/Digested By

Analyzed By

ESCHLOSS

Sample Name: L2393429-3 Lab Code: K1911637-003

Sample Matrix:

Water

Date Collected: 12/6/19 **Date Received:** 12/12/19

Analysis Method

1650C

Extracted/Digested By

Analyzed By

ESCHLOSS

Sample Name: L2393429-4

Lab Code:

K1911637-004

Sample Matrix:

Water

Date Collected: 12/6/19 **Date Received:** 12/12/19

Analysis Method

1650C

Extracted/Digested By

Analyzed By ESCHLOSS

Printed 12/26/2019 1:58:25 PM

Sample Results

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

General Chemistry

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

Analytical Report

Client: ALS Environmental - Canada

Project: L2393429

Sample Matrix: Water

Service Request: K1911637

Date Collected: 12/06/19

Date Received: 12/12/19 10:00

Sample Name: L2393429-1 Basis: NA

Lab Code: K1911637-001

General Chemistry Parameters

Analysis

	1 111111 9 515						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Halides, Adsorbable Organic (AOX)	1650C	ND U	mg/L	0.025	2.5	12/19/19 09:58	

Analytical Report

Client: ALS Environmental - Canada

Project: L2393429

Sample Matrix: Water

Sample Name:

L2393429

L2393429-2 **Basis:** NA

Lab Code: K1911637-002

General Chemistry Parameters

Analysis

	1 x 11 at y 515						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Halides, Adsorbable Organic (AOX)	1650C	0.039	mg/L	0.025	2.5	12/19/19 09:58	

Service Request: K1911637 **Date Collected:** 12/06/19

Date Received: 12/12/19 10:00

Analytical Report

Client: ALS Environmental - Canada

Project: L2393429

Sample Matrix: Water

Service Request: K1911637

Date Collected: 12/06/19

Date Received: 12/12/19 10:00

Sample Name: L2393429-3 Basis: NA

Lab Code: K1911637-003

General Chemistry Parameters

Analysis

	1 111111 9 515						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Halides, Adsorbable Organic (AOX)	1650C	ND U	mg/L	0.10	10	12/19/19 09:58	

Analytical Report

Client: ALS Environmental - Canada

Project: L2393429

Sample Matrix: Water

Sample Name:

393429

L2393429-4 Basis: NA

Lab Code: K1911637-004

General Chemistry Parameters

Analysis

	1 Kildly 515						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Halides, Adsorbable Organic (AOX)	1650C	0.180	mg/L	0.025	2.5	12/19/19 10:54	

Service Request: K1911637 **Date Collected:** 12/06/19

Date Received: 12/12/19 10:00

QC Summary Forms

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

General Chemistry

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

Analytical Report

Client: ALS Environmental - Canada

Water

Project: L2393429

Date Collected: NA **Date Received:** NA

Service Request: K1911637

Sample Name:

Sample Matrix:

Method Blank

Lab Code: K1911637-MB1

Basis: NA

General Chemistry Parameters

Analysis

	1 x11tt1 y 515						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Halides, Adsorbable Organic (AOX)	1650C	ND U	mg/L	0.010	1	12/19/19 10:54	

Analytical Report

Client: ALS Environmental - Canada

Project: L2393429

Date Collected: NA

Service Request: K1911637

Sample Matrix:

Lab Code:

Water

Date Received: NA

Sample Name: Method Blank

K1911637-MB2

Basis: NA

General Chemistry Parameters

Analysis

Analyte Name	Method	Result	Units	MDI	Dil.	Date Analyzed	0
Analyte Name	Methou	Kesuit	Units	MIKL	DII.	Date Analyzeu	V
Halides, Adsorbable Organic (AOX)	1650C	ND U	mg/L	0.010	1	12/19/19 09:58	

QA/QC Report

Client: ALS Environmental - Canada

Project: L2393429/
Sample Matrix: Water

Service Request: K1911637

Date Collected: NA
Date Received: NA

Date Analyzed: 12/19/2019 **Analysis Lot:** 663925

Calibration and Method Blank Summary Halides, Adsorbable Organic (AOX)

1650C

	Halide Check Standard (ug)	Instrument Calibration Standard (ug)	PAR Standard (ug/L)
True Value	3.64	10.0	0.100
Run A Percent Recovery A Run B Percent Recovery B	3.70 102 3.75 103	10.4 104 10.3 103	0.099 99

QA/QC Report

Client: ALS Environmental - Canada

Project: L2393429/
Sample Matrix: Water

Service Request: K1911637

Date Collected: NA
Date Received: NA

Date Analyzed: 12/19/2019 **Analysis Lot:** 663927

Calibration and Method Blank Summary Halides, Adsorbable Organic (AOX)

1650C

	Halide Check Standard (ug)	Instrument Calibration Standard (ug)	PAR Standard (ug/L)
True Value	3.64	10.0	0.100
Run A Percent Recovery A Run B Percent Recovery B	3.70 102 3.76 103	10.9 109 10.9 109	0.100 100

QA/QC Report

Client: ALS Environmental - Canada

Project: L2393429

Sample Matrix: Water **Service Request:**

K1911637

Date Collected:

12/06/19

Date Received:

12/12/19

Date Analyzed:

12/19/19

Date Extracted:

NA

Duplicate Matrix Spike Summary

Sample Name: L2393429-2 Lab Code: K1911637-002

Analysis Method: Prep Method:

Halides, Adsorbable Organic (AOX)

Units: Basis: mg/L NA

1650C

None

Matrix Spike

Duplicate Matrix Spike

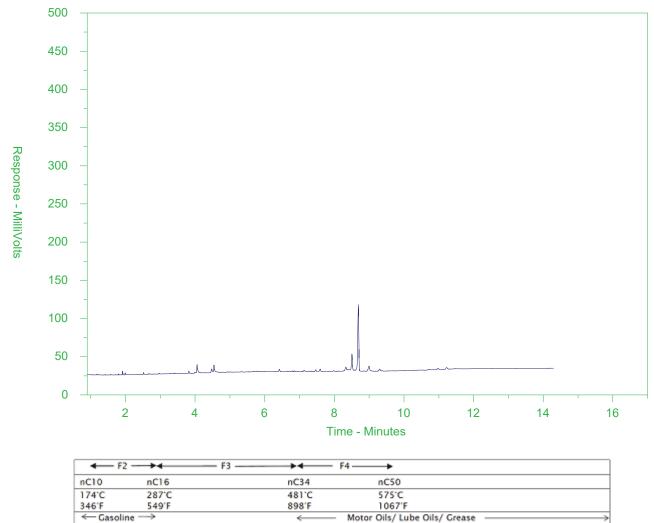
K1911637-002DMS

K1911637-002MS

RPD Sample **Spike** Spike % Rec Analyte Name Result Amount % Rec Result Amount % Rec Limits **RPD** Limit Result Halides, Adsorbable Organic (AOX) 0.039 0.289 0.250 100 0.302 0.250 105 90-110 20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

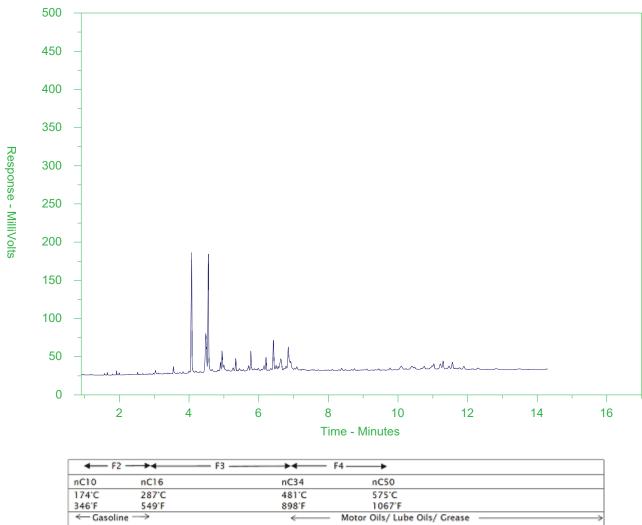

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 12/26/2019 1:58:25 PM Superset Reference: 19-0000534639 rev 00

ALS Sample ID: L2393429-1 Client Sample ID: MW-01

Diesel/ Jet Fuels

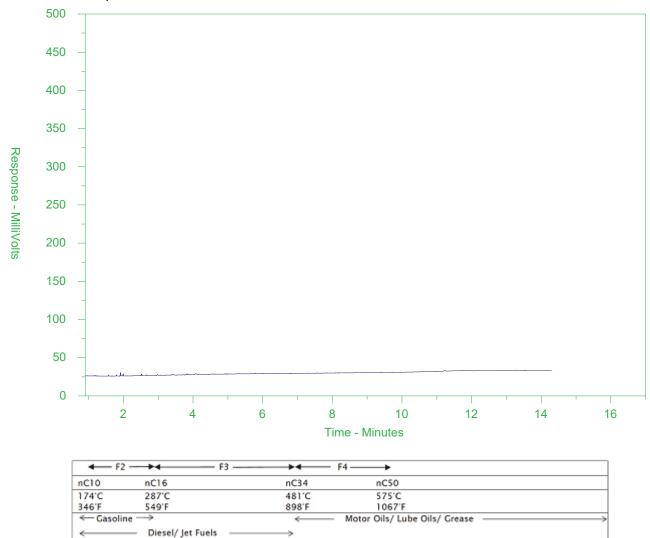
The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.


The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

ALS Sample ID: L2393429-2 Client Sample ID: AEP MW-04

Diesel/ Jet Fuels

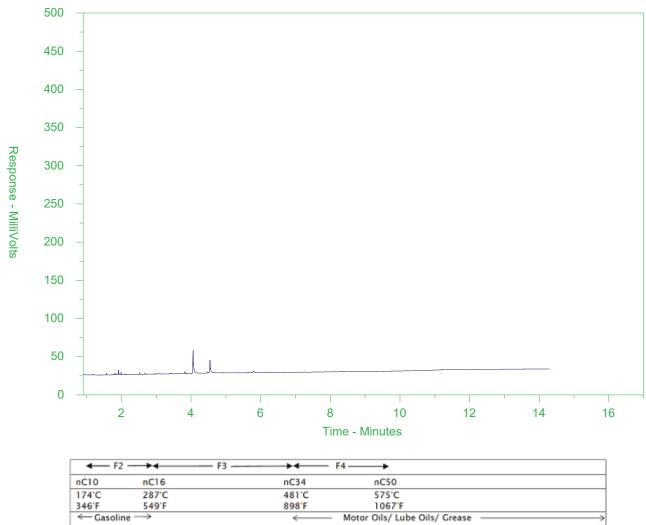

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

ALS Sample ID: L2393429-3 Client Sample ID: AEP MW-04

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.


The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

ALS Sample ID: L2393429-4 Client Sample ID: AEP MW-05

Diesel/ Jet Fuels

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

ALS Laboratory Group

Environmental Division

Chain of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878 www.alsqtobal.com

COC # CORD Red Deer Motors

o o

Page

Propertion of Containers 1 9 Emergency Service (<1 Day / Wkend) - Contact ALS lighty Contaminated? Suobiezel Temperature | Sample Condition (lab use only) Samples Received in Good
Condition? Y / N (ff no...
provided details) W-ATV **Analysis Request** Priority Service (1 Day or ASAP) YOX-MISA-KI T-COL-CL Regular Service (Default) Rush Service (2-3 Days) By the use of this form the user acknowledges and agrees with the Terms and Conditions as speaffed on the adjacent worksheet. NH3-E-CF C-DIS-OBG-CF Service Requested: Special Instructions / Hazardous Detalls * * * JO-NTBA-Q_TBM-UO? KM-E-CF Fallure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. OC-8560-CF \star Х BTX,F1,F2-CL Indicate Bottles: Filtered / Preserved (F/P) →-(Setect from drop-down list) Sample Type MR/RH るそのろ Water かれるろ SWM.SWOP04071-01.006 SWM.SWOP04071-01.006 Water Water Water Date & Time: Date & Time: Email 1: darby.madalena@tetratech.com Sampler 1430 (Initials): Time Ph:mm 302 445 1415 Report Format / Distribution Cllent / Project Information: ALS Digital Crosstab results 06-000-19 ☐ Standard ☐ Other dd-mmm-yy PI-290-9D Wendy Sears Excel Legal Site Description: Date Quote #: Q71650 ALS Contact: F PDF Email 2: PO/AFE: By: Received Received Job#: Lab Work Order #r. (lab use only) >--(This description will appear on the report) 110, 140 Quarry Park Blvd SE, Calgary, AB T2C 3G3 19/06/13 009 403-203-3301 Sample Identification Guidelines / Regulations Date & Time: Date & Time: NO-37 Fax Fax: AED MW-04 AEP MM-04 ✓ Same as Report リスリ Company: Tetra Tech Canada Inc. Company: SAME AS REPORT MANAGAR Darby Madalena 403-723-6867 MAW-02 REP MW-01 \$0-**A**M Involce To: V. V. **经验**# Report to: #Sample > Reinquished Refinquished Address: Address: Contact: Contact: Phone: Sample Phone:

TETRA TECH CANADA INC.

ATTN: Darby Madalena

110, 140 Quarry Park Blvd SE

Calgary AB T2C 3G3

Date Received: 06-DEC-19

Report Date: 24-DEC-19 13:39 (MT)

Version: FINAL

Client Phone: 403-203-3355

Certificate of Analysis

Lab Work Order #: L2393599

Project P.O. #:

SWM.SWOP04071-01.006

Job Reference:

SWM.SWOP04071-01.006 (RED DEER MOTORS)

C of C Numbers: Legal Site Desc:

Inayat Dhaliwal Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 2559 29 Street NE, Calgary, AB T1Y 7B5 Canada | Phone: +1 403 291 9897 | Fax: +1 403 291 0298

ALS CANADA LTD Part of the ALS Group An ALS Limited Company

L2393599 CONTD.... PAGE 2 of 17 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2393599-1 VW-01							
Sampled By: MEGAN ROUSE on 05-DEC-19 @ 14:10							
Matrix: SG Total F1 and F2+ Sub Fractionation							
Aliphatic/Aromatic PHC Sub-Fractionation							
Aliphatic C6-C8	56400	DLHC	390	ug/m3		23-DEC-19	R4953011
Aliphatic C>8-C10	21500	DLHC	390	ug/m3		23-DEC-19	R4953011
Aliphatic C>10-C12	9920	DLHC	390	ug/m3		23-DEC-19	R4953011
Aliphatic C>12-C16	880	DLHC	770	ug/m3		23-DEC-19	R4953011
Aromatic C>8-C10	<390	DLHC	390	ug/m3		23-DEC-19	R4953011
Aromatic C>10-C12	490	DLHC	390	ug/m3		23-DEC-19	R4953011
Aromatic C>12-C16	<770	DLHC	770	ug/m3		23-DEC-19	R4953011
Total F1and F2 fractions (not corrected)							
F1 (C6-C10)	62900	DLHC	390	ug/m3		23-DEC-19	R4953011
F2 (C10-C16)	19300	DLHC	390	ug/m3		23-DEC-19	R4953011
Surrogate: 4-Bromofluorobenzene	97.9		50-150	%		23-DEC-19	R4953011
High Level Fixed Gases by TCD						40	
Nitrogen	66.3		1.0	%		13-DEC-19	R4944389
Oxygen	7.04		0.10	%		13-DEC-19	R4944389
Carbon Dioxide	11.1		0.050	%		13-DEC-19	R4944389
Carbon Monoxide	<0.050		0.050	%		13-DEC-19	R4944389
Methane	5.26		0.050	%		13-DEC-19	R4944389
BTEX and Naphthalene Naphthalene	<66	DLM	66	ug/m3		23-DEC-19	R4953168
Naphthalene	<13	DLM	13	ppb(V)		23-DEC-19 23-DEC-19	R4953168
Surrogate: 4-Bromofluorobenzene	86.1	"	50-150	% %		23-DEC-19	R4953168
Canister EPA TO-15	00.1		30-130	/0		25-020-15	114333100
1,1,1-Trichloroethane	<27	DLM	27	ug/m3		23-DEC-19	R4953168
1,1,1-Trichloroethane	<5.0	DLM	5.0	ppb(V)		23-DEC-19	R4953168
1,1,2,2-Tetrachloroethane	<34	DLM	34	ug/m3		23-DEC-19	R4953168
1,1,2,2-Tetrachloroethane	<5.0	DLM	5.0	ppb(V)		23-DEC-19	R4953168
1,1,2-Trichloroethane	<27	DLM	27	ug/m3		23-DEC-19	R4953168
1,1,2-Trichloroethane	<5.0	DLM	5.0	ppb(V)		23-DEC-19	R4953168
1,1-Dichloroethane	<20	DLM	20	ug/m3		23-DEC-19	R4953168
1,1-Dichloroethane	<5.0	DLM	5.0	ppb(∀)		23-DEC-19	R4953168
1,1-Dichloroethene	<20	DLM	20	ug/m3		23-DEC-19	R4953168
1,1-Dichloroethene	<5.0	DLM	5.0	ppb(V)		23-DEC-19	R4953168
1,2,4-Trichlorobenzene	<37	DLM	37	ug/m3		23-DEC-19	R4953168
1,2,4-Trichlorobenzene	<5.0	DLM	5.0	ppb(V)		23-DEC-19	R4953168
1,2,4-Trimethylbenzene	<25	DLM	25	ug/m3		23-DEC-19	R4953168
1,2,4-Trimethylbenzene	<5.0	DLM	5.0	ppb(V)		23-DEC-19	R4953168
1,2-Dibromoethane	<38	DLM	38	ug/m3		23-DEC-19	R4953168
1,2-Dibromoethane	<5.0	DLM	5.0	ppb(V)		23-DEC-19	R4953168
1,2-Dichlorobenzene	<30	DLM	30	ug/m3		23-DEC-19	R4953168
1,2-Dichlorobenzene	<5.0	DLM	5.0	ppb(V)		23-DEC-19	R4953168
1,2-Dichloroethane	45	DLM	20	ug/m3		23-DEC-19	R4953168
1,2-Dichloroethane	11.0	DLM	5.0	ppb(V)		23-DEC-19	R4953168
1,2-Dichloropropane	<23	DLM DLM	23	ug/m3		23-DEC-19	R4953168
1,2-Dichloropropane	<5.0	DLM	5.0	ppb(V)		23-DEC-19	R4953168
1,3,5-Trimethylbenzene 1,3,5-Trimethylbenzene	172	DLM	25 5 n	ug/m3		23-DEC-19 23-DEC-19	R4953168
1,3-Butadiene	35.1 <11	DLM	5.0 11	ppb(V) ug/m3		23-DEC-19 23-DEC-19	R4953168
1,3-Butadiene	<11 <5.0	DLM	5.0	ppb(V)		23-DEC-19 23-DEC-19	R4953168 R4953168
1,3-Dichlorobenzene	<30	DLM	30	ug/m3		23-DEC-19 23-DEC-19	R4953168
1,3-Dichlorobenzene	<5.0	DLM	5.0	ppb(V)		23-DEC-19 23-DEC-19	R4953168
1,0-Diditiolopenzelle	\$5.U	DUM	5.0	ppu(v)		23-DEC-13	174900 100

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2393599 CONTD.... PAGE 3 of 17 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2393599-1 VW-01							
Sampled By: MEGAN ROUSE on 05-DEC-19 @ 14:10							
Matrix: SG							
Canister EPA TO-15	-20	DLM	20			22 DEG 40	DADESACO
1,4-Dichlorobenzene	<30	DLM	30	ug/m3		23-DEC-19 23-DEC-19	R4953168
1,4-Dichlorobenzene 1,4-Dioxane	<5.0 <18	DLM	5.0	ppb(V) ug/m3		23-DEC-19 23-DEC-19	R4953168
1,4-Dioxane	<18 <5.0	DLM	18 5.0	ppb(V)		23-DEC-19 23-DEC-19	R4953168 R4953168
2-Hexanone	<100	DLM	100	ug/m3		23-DEC-19	R4953168
2-Hexanone	<25	DLM	25	ppb(V)		23-DEC-19	R4953168
4-Ethyltoluene	<25	DLM	25	ug/m3		23-DEC-19	R4953168
4-Ethyltoluene	<5.0	DLM	5.0	ppb(V)		23-DEC-19	R4953168
Acetone	<460	DLQ	460	ug/m3		23-DEC-19	R4953168
Acetone	<190	DLQ	190	ppb(V)		23-DEC-19	R4953168
Allyl chloride	<16	DLM	16	ug/m3		23-DEC-19	R4953168
Allyl chloride	<5.0	DLM	5.0	ppb(V)		23-DEC-19	R4953168
Benzene	<16	DLM	16	ug/m3		23-DEC-19	R4953168
Benzene	<5.0	DLM	5.0	ppb(V)		23-DEC-19	R4953168
Benzyl chloride	<26	DLM	26	ug/m3		23-DEC-19	R4953168
Benzyl chloride	<5.0	DLM	5.0	ppb(V)		23-DEC-19	R4953168
Bromodichloromethane	<34	DLM	34	ug/m3		23-DEC-19	R4953168
Bromodichloromethane	<5.0	DLM	5.0	ppb(V)		23-DEC-19	R4953168
Bromoform	<52	DLM	52	ug/m3		23-DEC-19	R4953168
Bromoform	<5.0	DLM	5.0	ppb(V)		23-DEC-19	R4953168
Bromomethane	<19	DLM	19	ug/m3		23-DEC-19	R4953168
Bromomethane	<5.0	DLM	5.0	ppb(∀)		23-DEC-19	R4953168
Carbon Disulfide	<16	DLM	16	ug/m3		23-DEC-19	R4953168
Carbon Disulfide	<5.0	DLM	5.0	ppb(V)		23-DEC-19	R4953168
Carbon Tetrachloride	<31	DLM	31	ug/m3		23-DEC-19	R4953168
Carbon Tetrachloride	<5.0	DLM	5.0	ppb(∀)		23-DEC-19	R4953168
Chlorobenzene	<23	DLM	23	ug/m3		23-DEC-19	R4953168
Chlorobenzene	<5.0	DLM	5.0	ppb(V)		23-DEC-19	R4953168
Chloroethane	<13	DLM	13	ug/m3		23-DEC-19	R4953168
Chloroethane	<5.0	DLM	5.0	ppb(V)		23-DEC-19	R4953168
Chloroform	<24	DLM	24	ug/m3		23-DEC-19	R4953168
Chloroform	<5.0	DLM	5.0	ppb(V)		23-DEC-19	R4953168
Chloromethane	<10	DLM DLM	10	ug/m3		23-DEC-19	R4953168
Chloromethane	<5.0	DLM	5.0	ppb(V)		23-DEC-19	R4953168
cis-1,2-Dichloroethene cis-1,2-Dichloroethene	34 8.6	DLM	20 5.0	ug/m3		23-DEC-19 23-DEC-19	R4953168 R4953168
cis-1,3-Dichloropropene		DLM		ppb(V) ug/m3		23-DEC-19 23-DEC-19	1
cis-1,3-Dichloropropene	<23 <5.0	DLM	23 5.0	ppb(V)		23-DEC-19 23-DEC-19	R4953168 R4953168
Cyclohexane	6700	DLA	1100	ug/m3		23-DEC-19 23-DEC-19	R4953168
Cyclohexane	1960	DLA	320	ppb(V)		23-DEC-19 23-DEC-19	R4953168
Dibromochloromethane	<43	DLM	43	ug/m3		23-DEC-19	R4953168
Dibromochloromethane	<5.0	DLM	5.0	ppb(V)		23-DEC-19	R4953168
Dichlorodifluoromethane	31	DLM	25	ug/m3		23-DEC-19	R4953168
Dichlorodifluoromethane	6.2	DLM	5.0	ppb(V)		23-DEC-19	R4953168
Ethyl acetate	<18	DLM	18	ug/m3		23-DEC-19	R4953168
Ethyl acetate	<5.0	DLM	5.0	ppb(V)		23-DEC-19	R4953168
Ethylbenzene	<22	DLM	22	ug/m3		23-DEC-19	R4953168
Ethylbenzene	<5.0	DLM	5.0	ppb(V)		23-DEC-19	R4953168
Freon 113	<38	DLM	38	ug/m3		23-DEC-19	R4953168
Freon 113	<5.0	DLM	5.0	ppb(V)		23-DEC-19	R4953168

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2393599 CONTD.... PAGE 4 of 17 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2393599-1 VW-01							
Sampled By: MEGAN ROUSE on 05-DEC-19 @ 14:10							
Canister EPA TO-15 Freon 114	9.3	DLM	5.0	ppb(V)		23-DEC-19	R4953168
Hexachlorobutadiene	<53	DLM	53	ug/m3		23-DEC-19	R4953168
Hexachlorobutadiene	<5.0	DLM	5.0	ppb(V)		23-DEC-19	R4953168
Isooctane	1050	AI	120	ug/m3		23-DEC-19	R4953168
Isooctane	226	AI	25	ppb(V)		23-DEC-19	R4953168
Isopropyl alcohol	<61	DLM	61	ug/m3		23-DEC-19	R4953168
Isopropyl alcohol	<25	DLM	25	ppb(V)		23-DEC-19	R4953168
Isopropylbenzene	<25	DLM	25	ug/m3		23-DEC-19	R4953168
Isopropylbenzene	<5.0	DLM	5.0	ppb(V)		23-DEC-19	R4953168
m&p-Xylene	<43	DLM	43	ug/m3		23-DEC-19	R4953168
m&p-Xylene	<10	DLM	10	ppb(∀)		23-DEC-19	R4953168
Methyl ethyl ketone	<15	DLM	15	ug/m3		23-DEC-19	R4953168
Methyl ethyl ketone	<5.0	DLM	5.0	ppb(V)		23-DEC-19	R4953168
Methyl isobutyl ketone	<20	DLM	20	ug/m3		23-DEC-19	R4953168
Methyl isobutyl ketone	<5.0	DLM	5.0	ppb(∀)		23-DEC-19	R4953168
Methylene chloride	<17	DLM	17	ug/m3		23-DEC-19	R4953168
Methylene chloride	<5.0	DLM	5.0	ppb(V)		23-DEC-19	R4953168
MTBE	<18	DLM	18	ug/m3		23-DEC-19	R4953168
MTBE	<5.0	DLM	5.0	ppb(V)		23-DEC-19	R4953168
n-Heptane	4210	DLA	100	ug/m3		23-DEC-19	R4953168
n-Heptane	1030	DLA	25	ppb(V)		23-DEC-19	R4953168
n-Hexane	11700	DLA	1100	ug/m3		23-DEC-19	R4953168
n-Hexane	3320	DLA	320	ppb(V)		23-DEC-19	R4953168
o-Xylene	<22	DLM	22	ug/m3		23-DEC-19	R4953168
o-Xylene	<5.0	DLM AI	5.0	ppb(V)		23-DEC-19 23-DEC-19	R4953168
Propylene Propylene	676	AI I	43	ug/m3		23-DEC-19 23-DEC-19	R4953168
Styrene	393 <21	DLM	25 21	ppb(V) ug/m3		23-DEC-19	R4953168 R4953168
Styrene	<5.0	DLM	5.0	ppb(V)		23-DEC-19	R4953168
Tetrachloroethylene	<34	DLM	34	ug/m3		23-DEC-19	R4953168
Tetrachloroethylene	<5.0	DLM	5.0	ppb(V)		23-DEC-19	R4953168
Tetrahydrofuran	<15	DLM	15	ug/m3		23-DEC-19	R4953168
Tetrahydrofuran	<5.0	DLM	5.0	ppb(V)		23-DEC-19	R4953168
Toluene	<19	DLM	19	ug/m3		23-DEC-19	R4953168
Toluene	<5.0	DLM	5.0	ppb(V)		23-DEC-19	R4953168
trans-1,2-Dichloroethene	24	DLM	20	ug/m3		23-DEC-19	R4953168
trans-1,2-Dichloroethene	6.0	DLM	5.0	ppb(V)		23-DEC-19	R4953168
trans-1,3-Dichloropropene	<23	DLM	23	ug/m3		23-DEC-19	R4953168
trans-1,3-Dichloropropene	<5.0	DLM	5.0	ppb(∀)		23-DEC-19	R4953168
Trichloroethylene	<27	DLM	27	ug/m3		23-DEC-19	R4953168
Trichloroethylene	<5.0	DLM	5.0	ppb(V)		23-DEC-19	R4953168
Trichlorofluoromethane	<28	DLM	28	ug/m3		23-DEC-19	R4953168
Trichlorofluoromethane	<5.0	DLM	5.0	ppb(∀)		23-DEC-19	R4953168
Vinyl acetate	<44	DLM	44	ug/m3		23-DEC-19	R4953168
Vinyl acetate	<13	DLM	13	ppb(V)		23-DEC-19	R4953168
Vinyl bromide	<22	DLM	22	ug/m3		23-DEC-19	R4953168
Vinyl bromide	<5.0	DLM	5.0	ppb(V)		23-DEC-19	R4953168
Vinyl chloride	926	DLA	64	ug/m3		23-DEC-19	R4953168
Vinyl chloride	362	DLA	25	ppb(V)		23-DEC-19	R4953168
Surrogate: 4-Bromofluorobenzene	86.1		50-150	%		23-DEC-19	R4953168
Sum of Xylene Isomer Concentrations							

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2393599 CONTD.... PAGE 5 of 17 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2393599-1 VW-01							
Sampled By: MEGAN ROUSE on 05-DEC-19 @ 14:10							
Matrix: SG		l I					
Sum of Xylene Isomer Concentrations Xylenes (Total)	<11		11	ppb(V)		23-DEC-19	
Xylenes (Total)	<48		48	ug/m3		23-DEC-19	
Select list of 7 C1-C5 hydrocarbon gases	~40		40	agrillo		20 020 10	
Methane	N/A	MP	0.00010	%		10-DEC-19	R4944650
Ethane	<0.00020		0.00020	%		10-DEC-19	R4944650
Ethene	0.00026		0.00020	%		10-DEC-19	R4944650
Propane	< 0.00020		0.00020	%		10-DEC-19	R4944650
Propene	< 0.00020		0.00020	%		10-DEC-19	R4944650
Butane	< 0.00020		0.00020	%		10-DEC-19	R4944650
Pentane	0.00021		0.00020	%		10-DEC-19	R4944650
Canister Information							
Pressure on Receipt	-11.4		-30	in Hg	17-DEC-19	17-DEC-19	R4944737
Canister ID	01400-0480				17-DEC-19	17-DEC-19	R4944737
Regulator ID	G315				17-DEC-19	17-DEC-19	R4944737
Batch Proof ID	191119.116				17-DEC-19	17-DEC-19	R4944737

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2393599 CONTD.... PAGE 6 of 17 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2393599-2 VW-02							
Sampled By: MEGAN ROUSE on 05-DEC-19 @ 15:20							
Matrix: SG		ł I					
Total F1 and F2+ Sub Fractionation							
Aliphatic/Aromatic PHC Sub-Fractionation							
Aliphatic C6-C8	1300		15	ug/m3		23-DEC-19	R4953011
Aliphatic C>8-C10	728		15	ug/m3		23-DEC-19	R4953011
Aliphatic C>10-C12	179		15	ug/m3		23-DEC-19	R4953011
Aliphatic C>12-C16	<30		30	ug/m3		23-DEC-19	R4953011
Aromatic C>8-C10	<15		15	ug/m3		23-DEC-19	R4953011
Aromatic C>10-C12	<15		15	ug/m3		23-DEC-19	R4953011
Aromatic C>12-C16	<30		30	ug/m3		23-DEC-19	R4953011
Total F1and F2 fractions (not corrected)							
F1 (C6-C10)	1720		15	ug/m3		23-DEC-19	R4953011
F2 (C10-C16)	380		15	ug/m3		23-DEC-19	R4953011
Surrogate: 4-Bromofluorobenzene	99.4		50-150	%		23-DEC-19	R4953011
High Level Fixed Gases by TCD							
Nitrogen	74.9		1.0	%		13-DEC-19	R4944389
Oxygen	20.3		0.10	%		13-DEC-19	R4944389
Carbon Dioxide	0.391		0.050	%		13-DEC-19	R4944389
Carbon Monoxide	<0.050		0.050	%		13-DEC-19	R4944389
Methane	<0.050		0.050	%		13-DEC-19	R4944389
BTEX and Naphthalene							
Naphthalene	<2.6		2.6	ug/m3		23-DEC-19	R4953168
Naphthalene	<0.50		0.50	ppb(V)		23-DEC-19	R4953168
Surrogate: 4-Bromofluorobenzene	98.2		50-150	%		23-DEC-19	R4953168
Canister EPA TO-15						22 DEC 40	D4050400
1,1,1-Trichloroethane 1,1,1-Trichloroethane	<1.1 <0.20		1.1 0.20	ug/m3		23-DEC-19 23-DEC-19	R4953168 R4953168
1,1,2,2-Tetrachloroethane	<1.4		1.4	ppb(V) ug/m3		23-DEC-19 23-DEC-19	R4953168
1,1,2,2-Tetrachloroethane	<0.20		0.20	ppb(V)		23-DEC-19 23-DEC-19	R4953168
1,1,2-Trichloroethane	<1.1		1.1	ug/m3		23-DEC-19	R4953168
1,1,2-Trichloroethane	<0.20		0.20	ppb(V)		23-DEC-19	R4953168
1,1-Dichloroethane	<0.81		0.81	ug/m3		23-DEC-19	R4953168
1,1-Dichloroethane	<0.20		0.20	ppb(V)		23-DEC-19	R4953168
1,1-Dichloroethene	<0.79		0.79	ug/m3		23-DEC-19	R4953168
1,1-Dichloroethene	<0.20		0.20	ppb(V)		23-DEC-19	R4953168
1,2,4-Trichlorobenzene	<1.5		1.5	ug/m3		23-DEC-19	R4953168
1,2,4-Trichlorobenzene	<0.20		0.20	ppb(V)		23-DEC-19	R4953168
1,2,4-Trimethylbenzene	<0.98		0.98	ug/m3		23-DEC-19	R4953168
1,2,4-Trimethylbenzene	<0.20		0.20	ppb(V)		23-DEC-19	R4953168
1,2-Dibromoethane	<1.5		1.5	ug/m3		23-DEC-19	R4953168
1,2-Dibromoethane	<0.20		0.20	ppb(V)		23-DEC-19	R4953168
1,2-Dichlorobenzene	<1.2		1.2	ug/m3		23-DEC-19	R4953168
1,2-Dichlorobenzene	<0.20		0.20	ppb(V)		23-DEC-19	R4953168
1,2-Dichloroethane	<0.81		0.81	ug/m3		23-DEC-19	R4953168
1,2-Dichloroethane	<0.20		0.20	ppb(V)		23-DEC-19	R4953168
1,2-Dichloropropane	<0.92		0.92	ug/m3		23-DEC-19	R4953168
1,2-Dichloropropane	<0.20		0.20	ppb(V)		23-DEC-19	R4953168
1,3,5-Trimethylbenzene	<0.98		0.98	ug/m3		23-DEC-19	R4953168
1,3,5-Trimethylbenzene	<0.20		0.20	ppb(V)		23-DEC-19	R4953168
1,3-Butadiene	<0.44		0.44	ug/m3		23-DEC-19	R4953168
1,3-Butadiene 1,3-Dichlorobenzene	<0.20		0.20	ppb(V)		23-DEC-19	R4953168
l ·	<1.2		1.2	ug/m3		23-DEC-19	R4953168
1,3-Dichlorobenzene	<0.20		0.20	ppb(V)		23-DEC-19	R4953168

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2393599 CONTD.... PAGE 7 of 17 Version: FINAL

L2393599-2 VW-02 Sampled By: MEGAN ROUSE on 05-DEC-19 @ 15:20							
Sampled by. WILGAN NOOSE ON 03-DEC-19 @ 13.20							
N-L							
Matrix: SG							
Canister EPA TO-15 1,4-Dichlorobenzene	<1.2		1.2	ug/m3		23-DEC-19	R4953168
1,4-Dichlorobenzene	<0.20		0.20	ppb(V)		23-DEC-19	R4953168
1,4-Dioxane	<0.72		0.72	ug/m3		23-DEC-19	R4953168
1,4-Dioxane	<0.20		0.72	ppb(V)		23-DEC-19	R4953168
2-Hexanone	<4.1		4.1	ug/m3		23-DEC-19	R4953168
2-Hexanone	<1.0		1.0	ppb(V)		23-DEC-19	R4953168
4-Ethyltoluene	<0.98		0.98	ug/m3		23-DEC-19	R4953168
4-Ethyltoluene	<0.20		0.20	ppb(V)		23-DEC-19	R4953168
Acetone	9.0	AI	1.2	ug/m3		23-DEC-19	R4953168
Acetone	3.78	AI	0.50	ppb(V)		23-DEC-19	R4953168
Allyl chloride	< 0.63		0.63	ug/m3		23-DEC-19	R4953168
Allyl chloride	<0.20		0.20	ppb(V)		23-DEC-19	R4953168
Benzene	1.40		0.64	ug/m3		23-DEC-19	R4953168
Benzene	0.44		0.20	ppb(V)		23-DEC-19	R4953168
Benzyl chloride	<1.0		1.0	ug/m3		23-DEC-19	R4953168
Benzyl chloride	<0.20		0.20	ppb(V)		23-DEC-19	R4953168
Bromodichloromethane	<1.3		1.3	ug/m3		23-DEC-19	R4953168
Bromodichloromethane	<0.20		0.20	ppb(V)		23-DEC-19	R4953168
Bromoform	<2.1		2.1	ug/m3		23-DEC-19	R4953168
Bromoform	<0.20		0.20	ppb(V)		23-DEC-19	R4953168
Bromomethane	<0.78		0.78	ug/m3		23-DEC-19	R4953168
Bromomethane	<0.20		0.20	ppb(V)		23-DEC-19	R4953168
Carbon Disulfide	2.75		0.62	ug/m3		23-DEC-19	R4953168
Carbon Disulfide	0.88		0.20	ppb(V)		23-DEC-19	R4953168
Carbon Tetrachloride	<1.3		1.3	ug/m3		23-DEC-19	R4953168
Carbon Tetrachloride	<0.20		0.20	ppb(V)		23-DEC-19	R4953168
Chlorobenzene	<0.92	[0.92	ug/m3		23-DEC-19	R4953168
Chlorobenzene	<0.20		0.20	ppb(V)		23-DEC-19	R4953168
Chloroethane	<0.53		0.53	ug/m3		23-DEC-19	R4953168
Chloroethane	<0.20		0.20	ppb(V)		23-DEC-19	R4953168
Chloroform	<0.98		0.98	ug/m3		23-DEC-19	R4953168
Chloroform	<0.20 1.10		0.20	ppb(V)		23-DEC-19	R4953168
Chloromethane Chloromethane	0.53		0.41 0.20	ug/m3 ppb(V)		23-DEC-19 23-DEC-19	R4953168 R4953168
cis-1,2-Dichloroethene	0.53 <0.79		0.20	ug/m3		23-DEC-19 23-DEC-19	R4953168
cis-1,2-Dichloroethene	<0.20		0.79	ppb(V)		23-DEC-19	R4953168
cis-1,3-Dichloropropene	<0.91		0.20	ug/m3		23-DEC-19	R4953168
cis-1,3-Dichloropropene	<0.20		0.20	ppb(V)		23-DEC-19	R4953168
Cyclohexane	45.0	DLA	3.4	ug/m3		23-DEC-19	R4953168
Cyclohexane	13.1	DLA	1.0	ppb(V)		23-DEC-19	R4953168
Dibromochloromethane	<1.7		1.7	ug/m3		23-DEC-19	R4953168
Dibromochloromethane	<0.20		0.20	ppb(V)		23-DEC-19	R4953168
Dichlorodifluoromethane	47.8	DLA	4.9	ug/m3		23-DEC-19	R4953168
Dichlorodifluoromethane	9.7	DLA	1.0	ppb(V)		23-DEC-19	R4953168
Ethyl acetate	<0.72		0.72	ug/m3		23-DEC-19	R4953168
Ethyl acetate	<0.20		0.20	ppb(V)		23-DEC-19	R4953168
Ethylbenzene	<0.87		0.87	ug/m3		23-DEC-19	R4953168
Ethylbenzene	<0.20		0.20	ppb(V)		23-DEC-19	R4953168
Freon 113	<1.5		1.5	ug/m3		23-DEC-19	R4953168
Freon 113	<0.20		0.20	ppb(V)		23-DEC-19	R4953168
Freon 114	7.6		1.4	ug/m3		23-DEC-19	R4953168

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2393599 CONTD.... PAGE 8 of 17 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2393599-2 VW-02							
Sampled By: MEGAN ROUSE on 05-DEC-19 @ 15:20							
Matrix: SG							
Canister EPA TO-15 Freon 114	1.08		0.20	ppb(V)		23-DEC-19	R4953168
Hexachlorobutadiene	<2.1		2.1	ug/m3		23-DEC-19	R4953168
Hexachlorobutadiene	<0.20		0.20	ppb(V)		23-DEC-19	R4953168
Isooctane	4.45	AI	0.93	ug/m3		23-DEC-19	R4953168
Isooctane	0.95	AI	0.20	ppb(V)		23-DEC-19	R4953168
Isopropyl alcohol	<2.5		2.5	ug/m3		23-DEC-19	R4953168
Isopropyl alcohol	<1.0		1.0	ppb(V)		23-DEC-19	R4953168
Isopropylbenzene	<0.98		0.98	ug/m3		23-DEC-19	R4953168
Isopropylbenzene	<0.20		0.20	ppb(V)		23-DEC-19	R4953168
m&p-Xylene	<1.7		1.7	ug/m3		23-DEC-19	R4953168
m&p-Xylene	<0.40		0.40	ppb(V)		23-DEC-19	R4953168
Methyl ethyl ketone	0.74		0.59	ug/m3		23-DEC-19	R4953168
Methyl ethyl ketone	0.25		0.20	ppb(V)		23-DEC-19	R4953168
Methyl isobutyl ketone	<0.82		0.82	ug/m3		23-DEC-19	R4953168
Methyl isobutyl ketone	<0.20		0.20	ppb(V)		23-DEC-19	R4953168
Methylene chloride	<0.69		0.69	ug/m3		23-DEC-19	R4953168
Methylene chloride	<0.20		0.20	ppb(V)		23-DEC-19	R4953168
MTBE	<0.72		0.72	ug/m3		23-DEC-19	R4953168
MTBE	<0.20		0.20	ppb(∀)		23-DEC-19	R4953168
n-Heptane	16.5		0.82	ug/m3		23-DEC-19	R4953168
n-Heptane	4.04		0.20	ppb(V)		23-DEC-19	R4953168
n-Hexane	79.8	DLA	3.5	ug/m3		23-DEC-19	R4953168
n-Hexane	22.7	DLA	1.0	ppb(V)		23-DEC-19	R4953168
o-Xylene	<0.87		0.87	ug/m3		23-DEC-19	R4953168
o-Xylene	<0.20		0.20	ppb(V)		23-DEC-19	R4953168
Propylene	<0.34		0.34	ug/m3		23-DEC-19	R4953168
Propylene Styrene	<0.20		0.20	ppb(V)		23-DEC-19	R4953168
Styrene	<0.85 <0.20		0.85 0.20	ug/m3 ppb(V)		23-DEC-19 23-DEC-19	R4953168 R4953168
Tetrachloroethylene	252	DLA	6.8	ug/m3		23-DEC-19	R4953168
Tetrachloroethylene	37.2	DLA	1.0	ppb(V)		23-DEC-19	R4953168
Tetrahydrofuran	<0.59		0.59	ug/m3		23-DEC-19	R4953168
Tetrahydrofuran	<0.20		0.20	ppb(V)		23-DEC-19	R4953168
Toluene	1.31		0.75	ug/m3		23-DEC-19	R4953168
Toluene	0.35		0.20	ppb(V)		23-DEC-19	R4953168
trans-1,2-Dichloroethene	<0.79		0.79	ug/m3		23-DEC-19	R4953168
trans-1,2-Dichloroethene	<0.20		0.20	ppb(V)		23-DEC-19	R4953168
trans-1,3-Dichloropropene	<0.91		0.91	ug/m3		23-DEC-19	R4953168
trans-1,3-Dichloropropene	<0.20		0.20	ppb(V)		23-DEC-19	R4953168
Trichloroethylene	7.6		1.1	ug/m3		23-DEC-19	R4953168
Trichloroethylene	1.41		0.20	ppb(V)		23-DEC-19	R4953168
Trichlorofluoromethane	60.2	DLA	5.6	ug/m3		23-DEC-19	R4953168
Trichlorofluoromethane	10.7	DLA	1.0	ppb(V)		23-DEC-19	R4953168
Vinyl acetate	<1.8		1.8	ug/m3		23-DEC-19	R4953168
Vinyl acetate	<0.50		0.50	ppb(∀)		23-DEC-19	R4953168
Vinyl bromide	<0.87		0.87	ug/m3		23-DEC-19	R4953168
Vinyl bromide	<0.20		0.20	ppb(∀)		23-DEC-19	R4953168
Vinyl chloride	3.98		0.51	ug/m3		23-DEC-19	R4953168
Vinyl chloride	1.56		0.20	ppb(∨)		23-DEC-19	R4953168
Surrogate: 4-Bromofluorobenzene	98.2		50-150	%		23-DEC-19	R4953168
Sum of Xylene Isomer Concentrations							

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2393599 CONTD.... PAGE 9 of 17 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2393599-2 VW-02							
Sampled By: MEGAN ROUSE on 05-DEC-19 @ 15:20							
Matrix: SG		l I					
Sum of Xylene Isomer Concentrations Xylenes (Total)	<0.45		0.45	ppb(V)		23-DEC-19	
Xylenes (Total)	<2.0		2.0	ug/m3		23-DEC-19	
Select list of 7 C1-C5 hydrocarbon gases	~2.0		2.0	ugimo		20 020 10	
Methane	0.00333		0.00010	%		10-DEC-19	R4944650
Ethane	<0.00020		0.00020	%		10-DEC-19	R4944650
Ethene	< 0.00020		0.00020	%		10-DEC-19	R4944650
Propane	< 0.00020		0.00020	%		10-DEC-19	R4944650
Propene	< 0.00020		0.00020	%		10-DEC-19	R4944650
Butane	< 0.00020		0.00020	%		10-DEC-19	R4944650
Pentane	< 0.00020		0.00020	%		10-DEC-19	R4944650
Canister Information							
Pressure on Receipt	-4.9		-30	in Hg	17-DEC-19	17-DEC-19	R4944737
Canister ID	01400-0311				17-DEC-19	17-DEC-19	R4944737
Regulator ID	G255				17-DEC-19	17-DEC-19	R4944737
Batch Proof ID	191119.126				17-DEC-19	17-DEC-19	R4944737

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2393599 CONTD.... PAGE 10 of 17 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2393599-3 19DUP01							
Sampled By: MEGAN ROUSE on 05-DEC-19 @ 12:00							
Matrix: SG							
Total F1 and F2+ Sub Fractionation							
Aliphatic/Aromatic PHC Sub-Fractionation							
Aliphatic C6-C8	56200	DLHC	360	ug/m3		23-DEC-19	R4953011
Aliphatic C>8-C10	21100	DLHC	360	ug/m3		23-DEC-19	R4953011
Aliphatic C>10-C12	9690	DLHC	360	ug/m3		23-DEC-19	R4953011
Aliphatic C>12-C16	840	DLHC	730	ug/m3		23-DEC-19	R4953011
Aromatic C>8-C10	<360	1 1	360	ug/m3		23-DEC-19	R4953011
Aromatic C>10-C12 Aromatic C>12-C16	470	DLHC	360	ug/m3		23-DEC-19	R4953011
	<730	DLHC	730	ug/m3		23-DEC-19	R4953011
Total F1and F2 fractions (not corrected) F1 (C6-C10)	62500	DLHC	200	ug/m3		23-DEC-19	D4052044
	62500 18900	DLHC	360 360	-		23-DEC-19	R4953011 R4953011
F2 (C10-C16)		DLHC		ug/m3			
Surrogate: 4-Bromofluorobenzene	96.1		50-150	%		23-DEC-19	R4953011
High Land Court by TCD							
High Level Fixed Gases by TCD Nitrogen	69.8		1.0	%		13-DEC-19	R4944389
Oxygen	7.49		0.10	%		13-DEC-19	R4944389
Carbon Dioxide	11.5		0.10	%		13-DEC-19	R4944389
Carbon Monoxide	<0.050		0.050	/°		13-DEC-19	R4944389
Methane	5.46		0.050	/ _%		13-DEC-19	R4944389
	3.40		0.050	/*		13-DEC-19	114344303
BTEX and Naphthalene Naphthalene	<60	DLM	60	ug/m3		23-DEC-19	R4953168
Naphthalene	<11	DLM	11	ppb(V)		23-DEC-19	R4953168
Surrogate: 4-Bromofluorobenzene	82.1	"	50-150	% ppb(v)		23-DEC-19	R4953168
Canister EPA TO-15	02.1		30-130	/*		23-020-13	114333100
1,1,1-Trichloroethane	<25	DLM	25	ug/m3		23-DEC-19	R4953168
1,1,1-Trichloroethane	<4.5	DLM	4.5	ppb(V)		23-DEC-19	R4953168
1,1,2,2-Tetrachloroethane	<31	DLM	31	ug/m3	J	23-DEC-19	R4953168
1,1,2,2-Tetrachloroethane	<4.5	DLM	4.5	ppb(V)		23-DEC-19	R4953168
1,1,2-Trichloroethane	<25	DLM	25	ug/m3		23-DEC-19	R4953168
1,1,2-Trichloroethane	<4.5	DLM	4.5	ppb(V)		23-DEC-19	R4953168
1,1-Dichloroethane	<18	DLM	18	ug/m3		23-DEC-19	R4953168
1,1-Dichloroethane	<4.5	DLM	4.5	ppb(V)		23-DEC-19	R4953168
1,1-Dichloroethene	<18	DLM	18	ug/m3		23-DEC-19	R4953168
1,1-Dichloroethene	<4.5	DLM	4.5	ppb(V)		23-DEC-19	R4953168
1.2.4-Trichlorobenzene	<34	DLM	34	ug/m3		23-DEC-19	R4953168
1,2,4-Trichlorobenzene	<4.5	DLM	4.5	ppb(V)		23-DEC-19	R4953168
1,2,4-Trimethylbenzene	<22	DLM	22	ug/m3		23-DEC-19	R4953168
1,2,4-Trimethylbenzene	<4.5	DLM	4.5	ppb(V)		23-DEC-19	R4953168
1.2-Dibromoethane	<35	DLM	35	ug/m3		23-DEC-19	R4953168
1,2-Dibromoethane	<4.5	DLM	4.5	ppb(V)		23-DEC-19	R4953168
1,2-Dichlorobenzene	<27	DLM	27	ug/m3		23-DEC-19	R4953168
1,2-Dichlorobenzene	<4.5	DLM	4.5	ppb(V)		23-DEC-19	R4953168
1,2-Dichloroethane	33	DLM	18	ug/m3		23-DEC-19	R4953168
1,2-Dichloroethane	8.1	DLM	4.5	ppb(V)		23-DEC-19	R4953168
1,2-Dichloropropane	<21	DLM	21	ug/m3		23-DEC-19	R4953168
1,2-Dichloropropane	<4.5	DLM	4.5	ppb(V)		23-DEC-19	R4953168
1,3,5-Trimethylbenzene	126	DLM	22	ug/m3		23-DEC-19	R4953168
1,3,5-Trimethylbenzene	25.7	DLM	4.5	ppb(V)		23-DEC-19	R4953168
1,3-Butadiene	<10	DLM	10	ug/m3		23-DEC-19	R4953168
1,3-Butadiene	<4.5	DLM	4.5	ppb(V)		23-DEC-19	R4953168
1,3-Dichlorobenzene	<27	DLM	27	ug/m3		23-DEC-19	R4953168
1,3-Dichlorobenzene	<4.5	DLM	4.5	ppb(V)		23-DEC-19	R4953168
1,0-DIGHIOLONGHZGIIG	54.5	DUM	4.5	hhn(A)	L	25-DEC-19	174900 100

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2393599 CONTD.... PAGE 11 of 17 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2393599-3 19DUP01							
Sampled By: MEGAN ROUSE on 05-DEC-19 @ 12:00							
Matrix: SG		l 1					
Canister EPA TO-15							
1,4-Dichlorobenzene	<27	DLM	27	ug/m3		23-DEC-19	R4953168
1,4-Dichlorobenzene	<4.5	DLM	4.5	ppb(V)		23-DEC-19	R4953168
1,4-Dioxane	<16	DLM	16	ug/m3		23-DEC-19	R4953168
1.4-Dioxane	<4.5	DLM	4.5	ppb(V)		23-DEC-19	R4953168
2-Hexanone	<93	DLM	93	ug/m3		23-DEC-19	R4953168
2-Hexanone	<23	DLM	23	ppb(V)		23-DEC-19	R4953168
4-Ethyltoluene	<22	DLM	22	ug/m3		23-DEC-19	R4953168
4-Ethyltoluene	<4.5	DLM	4.5	ppb(V)		23-DEC-19	R4953168
Acetone	<320	DLQ	320	ug/m3		23-DEC-19	R4953168
Acetone	<130	DLQ	130	ppb(V)		23-DEC-19	R4953168
Allyl chloride	<14	DLM	14	ug/m3		23-DEC-19	R4953168
Allyl chloride	<4.5	DLM	4.5	ppb(V)		23-DEC-19	R4953168
Benzene	<15	DLM	15	ug/m3		23-DEC-19	R4953168
Benzene	<4.5	DLM	4.5	ppb(V)		23-DEC-19	R4953168
Benzyl chloride	<24	DLM	24	ug/m3		23-DEC-19	R4953168
Benzyl chloride	<4.5	DLM	4.5	ppb(V)		23-DEC-19	R4953168
Bromodichloromethane	<30	DLM	30	ug/m3		23-DEC-19	R4953168
Bromodichloromethane	<4.5	DLM	4.5	ppb(V)		23-DEC-19	R4953168
Bromoform	<47	DLM	47	ug/m3		23-DEC-19	R4953168
Bromoform	<4.5	DLM	4.5	ppb(V)		23-DEC-19	R4953168
Bromomethane	<18	DLM	18	ug/m3		23-DEC-19	R4953168
Bromomethane	<4.5	DLM	4.5	ppb(V)		23-DEC-19	R4953168
Carbon Disulfide	<14	DLM	14	ug/m3		23-DEC-19	R4953168
Carbon Disulfide	<4.5	DLM	4.5	ppb(V)		23-DEC-19	R4953168
Carbon Tetrachloride	<29	DLM	29	ug/m3		23-DEC-19	R4953168
Carbon Tetrachloride	<4.5	DLM	4.5	ppb(V)		23-DEC-19	R4953168
Chlorobenzene	<21	DLM	21	ug/m3		23-DEC-19	R4953168
Chlorobenzene	<4.5	DLM	4.5	ppb(V)		23-DEC-19	R4953168
Chloroethane	<12	DLM	12	ug/m3		23-DEC-19	R4953168
Chloroethane	<4.5	DLM	4.5	ppb(V)		23-DEC-19	R4953168
Chloroform	<22	DLM	22	ug/m3		23-DEC-19	R4953168
Chloroform	<4.5	DLM	4.5	ppb(V)		23-DEC-19	R4953168
Chloromethane	<9.4	DLM	9.4	ug/m3		23-DEC-19	R4953168
Chloromethane	<4.5	DLM	4.5	ppb(V)		23-DEC-19	R4953168
cis-1,2-Dichloroethene	22	DLM	18	ug/m3		23-DEC-19	R4953168
cis-1,2-Dichloroethene	5.5	DLM	4.5	ppb(V)		23-DEC-19	R4953168
cis-1,3-Dichloropropene	<21	DLM	21	ug/m3		23-DEC-19	R4953168
cis-1,3-Dichloropropene	<4.5	DLM	4.5	ppb(V)		23-DEC-19	R4953168
Cyclohexane	6450	DLA	78	ug/m3		23-DEC-19	R4953168
Cyclohexane	1870	DLA	23	ppb(V)		23-DEC-19	R4953168
Dibromochloromethane	<39	DLM	39	ug/m3		23-DEC-19	R4953168
Dibromochloromethane	<4.5	DLM	4.5	ppb(V)		23-DEC-19	R4953168
Dichlorodifluoromethane	<22	DLM	22	ug/m3		23-DEC-19	R4953168
Dichlorodifluoromethane	<4.5	DLM	4.5	ppb(V)		23-DEC-19	R4953168
Ethyl acetate	<16	DLM	16	ug/m3		23-DEC-19	R4953168
Ethyl acetate	<4.5	DLM	4.5	ppb(V)		23-DEC-19	R4953168
Ethylbenzene	<20	DLM	20	ug/m3		23-DEC-19	R4953168
Ethylbenzene	<4.5	DLM	4.5	ppb(V)		23-DEC-19	R4953168
Freon 113	<35	DLM	4.5 35	ug/m3		23-DEC-19	R4953168
Freon 113	<4.5	DLM	4.5	ppb(V)		23-DEC-19	R4953168
Freon 114	47	DLM	32	ug/m3		23-DEC-19	R4953168
HOWELTH	41	504	32	ugniis		23-020-19	174900100

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2393599 CONTD.... PAGE 12 of 17 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
1 2202500 2 40011004							
L2393599-3 19DUP01							
Sampled By: MEGAN ROUSE on 05-DEC-19 @ 12:00							
Matrix: SG							
Canister EPA TO-15		5	4.5			22 DE0 40	D4050400
Freon 114	6.7	DLM DLM	4.5	ppb(V)		23-DEC-19	R4953168
Hexachlorobutadiene	<48	1 1	48	ug/m3		23-DEC-19	R4953168
Hexachlorobutadiene	<4.5	DLM	4.5	ppb(V)		23-DEC-19	R4953168
Isooctane Isooctane	720	AI AI	110	ug/m3		23-DEC-19	R4953168
Isopropyl alcohol	153 <56	DLM	23 56	ppb(V) ug/m3		23-DEC-19 23-DEC-19	R4953168 R4953168
Isopropyl alcohol	<23	DLM	23	ppb(V)		23-DEC-19	R4953168
Isopropylbenzene	<22	DLM	22	ug/m3		23-DEC-19	R4953168
Isopropylbenzene	<4.5	DLM	4.5	ppb(V)		23-DEC-19	R4953168
m&p-Xylene	<39	DLM	39	ug/m3		23-DEC-19	R4953168
m&p-Xylene	<9.1	DLM	9.1	ppb(V)		23-DEC-19	R4953168
Methyl ethyl ketone	<13	DLM	13	ug/m3		23-DEC-19	R4953168
Methyl ethyl ketone	<4.5	DLM	4.5	ppb(V)		23-DEC-19	R4953168
Methyl isobutyl ketone	<19	DLM	19	ug/m3		23-DEC-19	R4953168
Methyl isobutyl ketone	<4.5	DLM	4.5	ppb(V)		23-DEC-19	R4953168
Methylene chloride	<16	DLM	16	ug/m3		23-DEC-19	R4953168
Methylene chloride	<4.5	DLM	4.5	ppb(V)		23-DEC-19	R4953168
MTBE	<16	DLM	16	ug/m3		23-DEC-19	R4953168
MTBE	<4.5	DLM	4.5	ppb(V)		23-DEC-19	R4953168
n-Heptane	2880	DLA	93	ug/m3		23-DEC-19	R4953168
n-Heptane	703	DLA	23	ppb(V)		23-DEC-19	R4953168
n-Hexane	11600	DLA	1100	ug/m3		23-DEC-19	R4953168
n-Hexane	3290	DLA	320	ppb(V)		23-DEC-19	R4953168
o-Xylene	<20	DLM	20	ug/m3		23-DEC-19	R4953168
o-Xylene	<4.5	DLM	4.5	ppb(∀)		23-DEC-19	R4953168
Propylene	474	AI	39	ug/m3		23-DEC-19	R4953168
Propylene	275	AI	23	ppb(∀)	1	23-DEC-19	R4953168
Styrene	<19	DLM	19	ug/m3		23-DEC-19	R4953168
Styrene	<4.5	DLM	4.5	ppb(V)		23-DEC-19	R4953168
Tetrachloroethylene	<31	DLM	31	ug/m3		23-DEC-19	R4953168
Tetrachloroethylene	<4.5	DLM	4.5	ppb(V)		23-DEC-19	R4953168
Tetrahydrofuran	<13	DLM	13	ug/m3		23-DEC-19	R4953168
Tetrahydrofuran	<4.5	DLM	4.5	ppb(V)		23-DEC-19	R4953168
Toluene	<17	DLM	17	ug/m3		23-DEC-19	R4953168
Toluene	<4.5	DLM	4.5	ppb(V)		23-DEC-19	R4953168
trans-1,2-Dichloroethene	<18	DLM	18	ug/m3		23-DEC-19	R4953168
trans-1,2-Dichloroethene	<4.5	DLM	4.5	ppb(V)		23-DEC-19	R4953168
trans-1,3-Dichloropropene	<21	DLM DLM	21	ug/m3		23-DEC-19	R4953168
trans-1,3-Dichloropropene Trichloroethylene	<4.5	DLM	4.5	ppb(V)		23-DEC-19 23-DEC-19	R4953168
Trichloroethylene	<24 <4.5	DLM	24 4.5	ug/m3		23-DEC-19 23-DEC-19	R4953168 R4953168
Trichlorofluoromethane	<4.5 <26	DLM	4.5 26	ppb(V) ug/m3		23-DEC-19 23-DEC-19	R4953168
Trichlorofluoromethane	<4.5	DLM	4.5	ppb(V)		23-DEC-19 23-DEC-19	R4953168
Vinyl acetate	<4.5 <40	DLM	4.5	ug/m3		23-DEC-19	R4953168
Vinyl acetate	<11	DLM	11	ppb(V)		23-DEC-19	R4953168
Vinyl bromide	<20	DLM	20	ug/m3		23-DEC-19	R4953168
Vinyl bromide	<4.5	DLM	4.5	ppb(V)		23-DEC-19	R4953168
Vinyl chloride	664	DLA	58	ug/m3		23-DEC-19	R4953168
Vinyl chloride	260	DLA	23	ppb(V)		23-DEC-19	R4953168
Surrogate: 4-Bromofluorobenzene	82.1		50-150	%		23-DEC-19	R4953168
Sum of Xylene Isomer Concentrations							
•							

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2393599 CONTD.... PAGE 13 of 17 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
1 2202500 2 40011004							
L2393599-3 19DUP01							
Sampled By: MEGAN ROUSE on 05-DEC-19 @ 12:00							
Matrix: SG							
Sum of Xylene Isomer Concentrations	-40		40			22 DEG 45	
Xylenes (Total)	<10		10	ppb(V)		23-DEC-19	
Xylenes (Total)	<43		43	ug/m3		23-DEC-19	
Select list of 7 C1-C5 hydrocarbon gases Methane		MP	0.00040	0/		40 DEC 40	D4044050
Ethane	N/A <0.00020	MIT	0.00010 0.00020	% %		10-DEC-19 10-DEC-19	R4944650 R4944650
Ethene	0.00025		0.00020	%		10-DEC-19	R4944650
Propane	<0.00020		0.00020	%		10-DEC-19	R4944650
Propene	<0.00020		0.00020	%		10-DEC-19	R4944650
Butane	<0.00020		0.00020	%		10-DEC-19	R4944650
Pentane	0.00020		0.00020	%		10-DEC-19	R4944650
Canister Information	0.00020		0.00020	~		10-020-10	111011000
Pressure on Receipt	-9.4		-30	in Hg	17-DEC-19	17-DEC-19	R4944737
Canister ID	01400-0178				17-DEC-19	17-DEC-19	R4944737
Regulator ID	G315				17-DEC-19	17-DEC-19	R4944737
Batch Proof ID	191119.125				17-DEC-19	17-DEC-19	R4944737

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2393599 CONTD.... PAGE 14 of 17 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2393599-4 VW-01							
Sampled By: MEGAN ROUSE on 05-DEC-19 @ 16:10							
Matrix: SG							
Miscellaneous Parameters							
Air volume	.06			L		19-DEC-19	R4939247
Linear & Cyclic Methyl Siloxanes	.00					10-020-10	114333241
D3(CVMS)	<170		170	ug/m3		18-DEC-19	R4945277
D3(CVMS)	<10		10	ng		18-DEC-19	R4945277
D4(CVMS)	<170		170	ug/m3		18-DEC-19	R4945277
D4(CVMS)	<10		10	ng		18-DEC-19	R4945277
D5(CVMS)	<170		170	ug/m3		18-DEC-19	R4945277
D5(CVMS)	<10		10	ng		18-DEC-19	R4945277
D6(CVMS)	<170		170	ug/m3		18-DEC-19	R4945277
D6(CVMS)	<10		10	ng		18-DEC-19	R4945277
MM(LVMS)	<170		170	ug/m3		18-DEC-19	R4945277
MM(LVMS)	<10		10	ng ua/m²		18-DEC-19	R4945277
MDM(LVMS)	<170		170	ug/m3		18-DEC-19	R4945277
MDM(LVMS) MD2M(LVMS)	<10 <170		10 170	ng ug/m3		18-DEC-19 18-DEC-19	R4945277 R4945277
MD2M(LVMS)	<170 <10		170	ng ng		18-DEC-19	R4945277
MD3M(LVMS)	<170		170	ug/m3		18-DEC-19	R4945277
MD3M(LVMS)	<10		10	ng		18-DEC-19	R4945277
Surrogate: 4-Bromofluorobenzene	102.0		50-150	%		18-DEC-19	R4945277
Tube Information							
Tube ID	G0150006SVI					13-DEC-19	R4942791
Batch Proof ID	13-Nov-19					13-DEC-19	R4942791
Tube Usage Number	N/A					13-DEC-19	R4942791
Tube Manufacturer Date	N/A					13-DEC-19	R4942791

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2393599 CONTD.... PAGE 15 of 17 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2393599-5 VW-02							
Sampled By: MEGAN ROUSE on 05-DEC-19 @ 16:30							
Matrix: SG		l I					
Miscellaneous Parameters							
Air volume	.06			L		19-DEC-19	R4939247
Linear & Cyclic Methyl Siloxanes	.00					10-020-10	114333247
D3(CVMS)	<170		170	ug/m3		18-DEC-19	R4945277
D3(CVMS)	<10		10	ng		18-DEC-19	R4945277
D4(CVMS)	<170		170	ug/m3		18-DEC-19	R4945277
D4(CVMS)	<10		10	ng		18-DEC-19	R4945277
D5(CVMS)	<170		170	ug/m3		18-DEC-19	R4945277
D5(CVMS)	<10		10	ng		18-DEC-19	R4945277
D6(CVMS)	<170		170	ug/m3		18-DEC-19	R4945277
D6(CVMS)	<10		10	ng		18-DEC-19	R4945277
MM(LVMS)	<170		170	ug/m3		18-DEC-19	R4945277
MM(LVMS)	<10		10	ng ua/m²		18-DEC-19	R4945277
MDM(LVMS)	<170 <10		170 10	ug/m3		18-DEC-19	R4945277
MDM(LVMS) MD2M(LVMS)	<10 <170		10 170	ng ug/m3		18-DEC-19 18-DEC-19	R4945277 R4945277
MD2M(LVMS)	<170 <10		170	ng ng		18-DEC-19	R4945277
MD3M(LVMS)	<170		170	ug/m3		18-DEC-19	R4945277
MD3M(LVMS)	<10		10	ng		18-DEC-19	R4945277
Surrogate: 4-Bromofluorobenzene	100.9		50-150	%		18-DEC-19	R4945277
Tube Information							
Tube ID	G0150679SVI					13-DEC-19	R4942791
Batch Proof ID	13-Nov-19					13-DEC-19	R4942791
Tube Usage Number	N/A					13-DEC-19	R4942791
Tube Manufacturer Date	N/A					13-DEC-19	R4942791

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

Reference Information

L2393599 CONTD....
PAGE 16 of 17
Version: FINAL

Sample Parameter Qualifier Kev:

Qualifier	Description
AI	Analytical interferences may be present. Result may be biased high.
DLA	Detection Limit adjusted for required dilution
DLHC	Detection Limit Raised: Dilution required due to high concentration of test analyte(s).
DLM	Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference, colour, turbidity).
DLQ	Detection Limit raised due to co-eluting interference. GCMS qualifier ion ratio did not meet acceptance criteria.

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
AIR VOLUME-WT	Misc.	Air volume (L)	DATA ENTRY
ALIPH/AROM-GCMS-WT	Canister	Aliphatic/Aromatic PHC Sub-Fractionation	EPA TO-15, Atlantic RBCA

This analysis is performed using procedures adapted from EPA TO-15 & Atlantic RBCA. A volume of air is removed from a canister & injected into a GCMS with preconcentrator for analysis. The concentrations of the hydrocarbon aliphatic & aromatic sub-fractions are calculated using gas standards. The canister samples will be retained for 7 calendar days after final report.

BTEX+NAPH-GCMS-WT Canister BTEX and Naphthalene EPA TO-15

This analysis is performed using procedures adapted from EPA Method TO-15. Air samples are collected into cleaned evacuated canisters. A volume of air sample is transferred from the canister to a preconcentrator system where the analytes are trapped & focused. The analytes are then thermally desorbed into a GC-MSD for analysis. Test results are not blank corrected unless indicated by a qualifier.

Canister samples will be retained for 7 calendar days after final report. If you require a longer canister storage time, please contact your account manager.

C1-C5-FID-WT Canister Select list of 7 C1-C5 hydrocarbon gases EPA Method 3C & ASTM D1946

This analysis is performed using procedures adapted from ASTM D1946/EPA Method 3C. Air samples are collected into cleaned evaculated canisters. A volume of air is removed from the canister & injected into a GC-FID for analysis. Hydrocarbon gas concentrations are calculated against a gas standard. Test results are not blank corrected unless indicated by a qualifier.

Canister samples will be retained for 7 calendar days after final report. If you require longer canister storage time, please contact your account manager.

CAN-DATA-WT Canister Canister Information EPA TO-15

Batch Proof ID, Canister ID, Pressure on Receipt, Regulator ID.

F1-F2-GCMS-WT Canister Total F1 and F2 fractions (not corrected) EPATO-15

This analysis is performed using procedures adapted from EPA Method TO-15. Air samples are collected into cleaned evacuated canisters. A volume of air sample is transferred from the canister to a preconcentrator system where the analytes are trapped & focused. The analytes are then thermally desorbed into a GC-MSD for analysis. Test results are not blank corrected unless indicated by a qualifier.

Canister samples will be retained for 7 calendar days after final report. If you require a longer canister storage time, please contact your account manager

FIXED GASES-TCD-WT Canister High Level Fixed Gases by TCD EPA Method 3C & ASTM D1946

This analysis is performed using procedures adapted from EPA Method 3C & ASTM D1946. Air samples are collected into cleaned evacuated canisters. A volume of air is removed from the canister and injected by means of a gas-sampling/backflush valve onto a series of packed GC columns and measured using a thermal conductivity detector (TCD).

Oxygen is not separated from Argon.

Canister samples will be retained for 7 calendar days after final report. If you require a longer canister storage time, please contact your account manager.

SILOXANES-GCMS-WT Tube Linear & Cyclic Methyl Siloxanes EPA TO-17

This analysis is performed using procedures adapted from EPA Method TO-17, ISO Method 16017 & NIOSH Method 2549. Air samples actively collected on PE VI TD tubes are thermally stripped & the analytes are re-collected on trapping material of a focusing trap in the thermal desorber. The analytes are then thermally desorbed into a GC-MSD for analysis. Test results are not blank corrected unless indicated by a qualifier.

This analysis was performed under AIHA-IHLAP Scope of Accreditation, GC/MS Field of Testing which is compliant with AIHA-LAP, LLC Accreditation Policy Modules & ISO/IEC 17025:2005 Standard.

TD tube samples will be retained for 7 calendar days after final report. If you require a longer TD tube storage time, please contact your account manager.

TO15-GCMS-WT Canister Canister EPA TO-15 EPA TO-15

This analysis is performed using procedures adapted from EPA Method TO-15. Air samples are collected into cleaned evacuated canisters. A volume of

Reference Information

L2393599 CONTD.... PAGE 17 of 17 Version: FINAL

Test Method References:

ALS Test Code Matrix Test Description Method Reference**

air sample is transferred from the canister to a preconcentrator system where the analytes are trapped & focused. The analytes are then thermally desorbed into a GC-MSD for analysis. Test results are not blank corrected unless indicated by a qualifier.

Canister samples will be retained for 7 calendar days after final report. If you require a longer canister storage time, please contact your account manager.

XYLENES-SUM-CALC-

Canister

Sum of Xylene Isomer Concentrations

CALCULATION

WT

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code Laboratory Location

WT ALS E

ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

ALS Routine Water Chemistry Report

L2393599

Lab ID	Sample ID		Lab ID	Sample ID		
		 <u> </u>	<u> </u>		 l	

ALS LABORATORY GROUP SOIL SALINITY CONVERSION

L2393599

Lab ID	Sample II	ID			Lab ID	Sample ID		
"Coloulation	nc are ac	DOE:						
Methods of	is are as [Analysis	per: for Solls, Plan and Parker F. ia, Riverside,	ts and Wat	ers				
Homer D. (Chapmah a	and Parker F.	Pratt					
August, 19	61."	ia, ravorsido,	7					
			1					

Workorder: L2393599 Report Date: 24-DEC-19 Page 1 of 13

Client: TETRA TECH CANADA INC.

110, 140 Quarry Park Blvd SE

Calgary AB T2C 3G3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
ALIPH/AROM-GCMS-WT	Canister							
Batch R4953011								
WG3247105-2 LCS			424.6		0/			
Aliphatic C6-C8			121.6		%		50-150	23-DEC-19
Aliphatic C>8-C10			101.0				50-150	23-DEC-19
Aliphatic C>10-C12			117.1		%		50-150	23-DEC-19
Aliphatic C>12-C16			128.7		%		50-150	23-DEC-19
Aromatic C>8-C10			105.7		%		50-150	23-DEC-19
Aromatic C>10-C12			101.0		%		50-150	23-DEC-19
Aromatic C>12-C16			87.2		%		50-150	23-DEC-19
WG3247105-3 LCSD Aliphatic C6-C8		WG3247105-2 121.6	128.6		%	5.6	50	23-DEC-19
Aliphatic C>8-C10		101.0	103.8		%	2.8	50	23-DEC-19
Aliphatic C>10-C12		117.1	119.5		%	2.0	50	23-DEC-19
Aliphatic C>12-C16		128.7	136.9		%	6.2	50	23-DEC-19
Aromatic C>8-C10		105.7	108.2		%	2.3	50	23-DEC-19
Aromatic C>10-C12		101.0	104.3		%	3.2	50	23-DEC-19
Aromatic C>12-C16		87.2	95.6		%	9.2	50	23-DEC-19
WG3247105-1 MB								
Aliphatic C6-C8			<15		ug/m3		15	23-DEC-19
Aliphatic C>8-C10			<15		ug/m3		15	23-DEC-19
Aliphatic C>10-C12			<15		ug/m3		15	23-DEC-19
Aliphatic C>12-C16			<30		ug/m3		30	23-DEC-19
Aromatic C>8-C10			<15		ug/m3		15	23-DEC-19
Aromatic C>10-C12			<15		ug/m3		15	23-DEC-19
Aromatic C>12-C16			<30		ug/m3		30	23-DEC-19
BTEX+NAPH-GCMS-WT	Canister							
Batch R4953168								
WG3247636-4 DUP		L2393586-1	0.50					
Naphthalene		<0.50	<0.50	RPD-NA	ppb(V)	N/A	30	23-DEC-19
WG3247636-2 LCS Naphthalene			111.7		%		70-130	23-DEC-19
WG3247636-3 LCSD Naphthalene		WG3247636-2 111.7	96.1		%	15	50	23-DEC-19
WG3247636-1 MB								
Naphthalene			<0.50		ppb(V)		0.5	23-DEC-19
Surrogate: 4-Bromofluor	obenzene		94.2		%		50-150	23-DEC-19

Qualifier

Workorder: L2393599 Report Date: 24-DEC-19 Page 2 of 13

RPD

Limit

Analyzed

Units

Client: TETRA TECH CANADA INC.

110, 140 Quarry Park Blvd SE

Matrix

Reference

Result

Calgary AB T2C 3G3

Contact: Darby Madalena

Test

lest		матлх	Reference	Result	Qualmer	Units	RPD	LIMIT	Analyzed
C1-C5-FID-WT		Canister							
Batch	R4944650								
WG3239341- Methane	4 DUP		L2393570-1 0.00029	0.00027		%	7.3	20	10-DEC-19
Ethane			<0.00020	<0.00020	RPD-NA	%	N/A	20	10-DEC-19
Ethene			<0.00020	<0.00020	RPD-NA	%	N/A	20	10-DEC-19
Propane			<0.00020	<0.00020	RPD-NA	%	N/A	20	10-DEC-19
Propene			<0.00020	<0.00020	RPD-NA	%	N/A	20	10-DEC-19
Butane			<0.00020	<0.00020	RPD-NA	%	N/A	20	10-DEC-19
Pentane			<0.00020	<0.00020	RPD-NA	%	N/A	20	10-DEC-19
WG3239341-	1 LCS								
Methane				78.8		%		70-130	10-DEC-19
Ethane				88.3		%		70-130	10-DEC-19
Ethene				84.4		%		70-130	10-DEC-19
Propane				88.8		%		70-130	10-DEC-19
Propene				96.7		%		70-130	10-DEC-19
Pentane				92.4		%		70-130	10-DEC-19
WG3239341- Methane	2 LCSD		WG3239341-1 78.8	82.3		%	4.4	50	10-DEC-19
Ethane			88.3	89.4		%	1.2	50	10-DEC-19
Ethene			84.4	84.6		%	0.1	50	10-DEC-19
Propane			88.8	88.5		%	0.4	50	10-DEC-19
Propene			96.7	96.9		%	0.2	50	10-DEC-19
Pentane			92.4	92.2		%	0.2	50	10-DEC-19
WG3239341-	3 MB			<0.00010		%		0.0001	10-DEC-19
Ethane				<0.00020		%		0.0002	10-DEC-19
Ethene				<0.00020		%		0.0002	10-DEC-19
Propane				<0.00020		%		0.0002	10-DEC-19
Propene				<0.00020		%		0.0002	10-DEC-19
Butane				<0.00020		%		0.0002	10-DEC-19
Pentane				<0.00020		%		0.0002	10-DEC-19
CAN-DATA-WT		Canister							
Batch WG3244055-	R4944737 1 MB								
Pressure on				-29.8		in Hg			17-DEC-19

Workorder: L2393599 Report Date: 24-DEC-19 Page 3 of 13

Client: TETRA TECH CANADA INC.

110, 140 Quarry Park Blvd SE

Calgary AB T2C 3G3

Contact: Darby Madalena

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
F1-F2-GCMS-WT	Canister							
Batch R4953011								
WG3247105-2 LC\$ F1 (C6-C10)			110.1		%		50-150	23-DEC-19
WG3247105-3 LCSD F1 (C6-C10)		WG3247105-2 110.1	108.4		%	1.5	50	23-DEC-19
WG3247105-1 MB F1 (C6-C10)			<15		ug/m3		15	23-DEC-19
F2 (C10-C16)			<15		ug/m3		15	23-DEC-19
Surrogate: 4-Bromofluor	robenzene		98.3		%		50-150	23-DEC-19
FIXED GASES-TCD-WT	Canister							
Batch R4944389								
WG3236065-8 DUP		L2393575-4						
Nitrogen		75.8	76.0		%	0.3	30	13-DEC-19
Oxygen		19.6	19.6		%	0.3	30	13-DEC-19
Carbon Dioxide		2.84	2.76		%	2.7	30	13-DEC-19
Carbon Monoxide		<0.050	<0.050	RPD-NA	%	N/A	30	13-DEC-19
Methane		<0.050	<0.050	RPD-NA	%	N/A	30	13-DEC-19
WG3236065-5 LC\$ Nitrogen			98.5		%		70-130	13-DEC-19
Oxygen			97.5		%		70-130	13-DEC-19
Carbon Dioxide			95.4		%		70-130	13-DEC-19
Carbon Monoxide			95.7		%		70-130	13-DEC-19
Methane			98.3		%		70-130	13-DEC-19
WG3236065-6 LCSD Nitrogen		WG3236065-5 98.5	98.6		%	0.4	25	42 DEO 40
		97.5	97.6		%	0.1	25	13-DEC-19
Oxygen Carbon Dioxide		95.4	96.1		%	0.2	25	13-DEC-19
						0.8	25	13-DEC-19
Carbon Monoxide		95.7	95.9		%	0.2	25	13-DEC-19
Methane		98.3	98.3		%	0.0	25	13-DEC-19
WG3236065-7 MB Nitrogen			<1.0		%		1	13-DEC-19
Oxygen			<0.10		%		0.1	13-DEC-19
Carbon Dioxide			<0.050		%		0.05	13-DEC-19
Carbon Monoxide			<0.050		%		0.05	13-DEC-19
Methane			<0.050		%		0.05	13-DEC-19
TO15 COMP WT	Conjeter							

TO15-GCMS-WT Canister

Workorder: L2393599 Report Date: 24-DEC-19 Page 4 of 13

Client: TETRA TECH CANADA INC.

110, 140 Quarry Park Blvd SE

Calgary AB T2C 3G3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
TO15-GCMS-WT	Canister							
Batch R4953168								
WG3247636-4 DUP 1,1,1-Trichloroethane		L2393586-1 <0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
1,1,2,2-Tetrachloroetha	ne	<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
1,1,2-Trichloroethane		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
1,1-Dichloroethane		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
1,1-Dichloroethene		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
1,2,4-Trichlorobenzene		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
1,2,4-Trimethylbenzene		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
1,2-Dibromoethane		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
1,2-Dichlorobenzene		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
1,2-Dichloroethane		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
1,2-Dichloropropane		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
1,3,5-Trimethylbenzene		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
1,3-Butadiene		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
1,3-Dichlorobenzene		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
1,4-Dichlorobenzene		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
1,4-Dioxane		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
2-Hexanone		<1.0	<1.0	RPD-NA	ppb(V)	N/A	30	23-DEC-19
4-Ethyltoluene		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
Acetone		1.97	1.94		ppb(V)	1.5	30	23-DEC-19
Allyl chloride		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
Benzene		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
Benzyl chloride		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
Bromodichloromethane		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
Bromoform		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
Bromomethane		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
Carbon Disulfide		1.30	1.28		ppb(V)	1.2	30	23-DEC-19
Carbon Tetrachloride		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
Chlorobenzene		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
Chloroethane		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
Chloroform		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
Chloromethane		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
cis-1,2-Dichloroethene		0.78	0.72		ppb(V)	8.0	30	23-DEC-19
cis-1,3-Dichloropropene	:	<0.20	<0.20		ppb(V)			23-DEC-19

Report Date: 24-DEC-19 Workorder: L2393599 Page 5 of 13

TETRA TECH CANADA INC. Client:

110, 140 Quarry Park Blvd SE

Calgary AB T2C 3G3

Contact: Darby Madalena

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
TO15-GCMS-WT	Canister							
Batch R4953168								
WG3247636-4 DUP		L2393586-1	-0.00					
cis-1,3-Dichloropropene		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
Cyclohexane		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
Dibromochloromethane		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
Dichlorodifluoromethane		0.69	0.68		ppb(V)	2.6	30	23-DEC-19
Ethyl acetate		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
Ethylbenzene		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
Freon 113		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
Freon 114		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
Hexachlorobutadiene		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
Isooctane		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
Isopropyl alcohol		<1.0	<1.0	RPD-NA	ppb(V)	N/A	30	23-DEC-19
Isopropylbenzene		<0.20	<0.20	RPD-NA	ppb(V)	N/A	50	23-DEC-19
m&p-Xylene		0.72	0.70		ppb(V)	3.4	30	23-DEC-19
Methyl ethyl ketone		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
Methyl isobutyl ketone		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
Methylene chloride		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
MTBE		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
n-Heptane		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
n-Hexane		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
o-Xylene		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
Propylene		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
Styrene		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
Tetrachloroethylene		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
Tetrahydrofuran		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
Toluene		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
trans-1,2-Dichloroethene	•	0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
trans-1,3-Dichloroproper	ne	<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
Trichloroethylene		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
Trichlorofluoromethane		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
Vinyl acetate		<0.50	<0.50	RPD-NA	ppb(V)	N/A	30	23-DEC-19
Vinyl bromide		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
Vinyl chloride		<0.20	<0.20	RPD-NA	ppb(V)	N/A	30	23-DEC-19
WG3247636-2 LCS								

Workorder: L2393599 Report Date: 24-DEC-19 Page 6 of 13

Client: TETRA TECH CANADA INC.

110, 140 Quarry Park Blvd SE

Calgary AB T2C 3G3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
TO15-GCMS-WT	Canister							
Batch R4953168								
WG3247636-2 LCS								
1,1,1-Trichloroethane			88.6		%		70-130	23-DEC-19
1,1,2,2-Tetrachloroetha	ine		91.9		%		70-130	23-DEC-19
1,1,2-Trichloroethane			86.6		%		70-130	23-DEC-19
1,1-Dichloroethane			92.4		%		70-130	23-DEC-19
1,1-Dichloroethene			90.6		%		70-130	23-DEC-19
1,2,4-Trichlorobenzene			108.3		%		70-130	23-DEC-19
1,2,4-Trimethylbenzene	;		92.4		%		70-130	23-DEC-19
1,2-Dibromoethane			90.8		%		70-130	23-DEC-19
1,2-Dichlorobenzene			92.5		%		70-130	23-DEC-19
1,2-Dichloroethane			90.4		%		70-130	23-DEC-19
1,2-Dichloropropane			90.0		%		70-130	23-DEC-19
1,3,5-Trimethylbenzene	;		90.6		%		70-130	23-DEC-19
1,3-Butadiene			89.8		%		70-130	23-DEC-19
1,3-Dichlorobenzene			91.1		%		70-130	23-DEC-19
1,4-Dichlorobenzene			94.2		%		70-130	23-DEC-19
1,4-Dioxane			92.9		%		70-130	23-DEC-19
2-Hexanone			92.2		%		70-130	23-DEC-19
4-Ethyltoluene			90.5		%		70-130	23-DEC-19
Acetone			91.2		%		70-130	23-DEC-19
Allyl chloride			88.3		%		70-130	23-DEC-19
Benzene			92.1		%		70-130	23-DEC-19
Benzyl chloride			87.4		%		70-130	23-DEC-19
Bromodichloromethane			88.1		%		70-130	23-DEC-19
Bromoform			88.4		%		70-130	23-DEC-19
Bromomethane			92.9		%		70-130	23-DEC-19
Carbon Disulfide			84.8		%		70-130	23-DEC-19
Carbon Tetrachloride			87.6		%		70-130	23-DEC-19
Chlorobenzene			90.8		%		70-130	23-DEC-19
Chloroethane			90.9		%		70-130	23-DEC-19
Chloroform			94.1		%		70-130	23-DEC-19
Chloromethane			93.2		%		70-130	23-DEC-19
cis-1,2-Dichloroethene			89.8		%		70-130	23-DEC-19
cis-1,3-Dichloropropene	е		89.0		%		70-130	23-DEC-19

Workorder: L2393599 Report Date: 24-DEC-19 Page 7 of 13

Client: TETRA TECH CANADA INC.

110, 140 Quarry Park Blvd SE

Calgary AB T2C 3G3

TO15-GCMS-WT Canister Batch R4953168 R4953168 WG3247636-2 LCS 92.0 % 70-130 23-DEC-Dipromochloromethane Dibromochloromethane 86.9 % 70-130 23-DEC-Dipromochloromethane Ethyl acetate 89.3 % 70-130 23-DEC-Dipromochloromethane Ethyl acetate 89.3 % 70-130 23-DEC-Dipromochloromethane	19 19 19
WG3247636-2 LCS LCS Cyclohexane 92.0 % 70-130 23-DEC-Dibromochloromethane Dibromochloromethane 86.9 % 70-130 23-DEC-Dichlorodiffuoromethane Ethyl acetate 89.3 % 70-130 23-DEC-Dichlorodiffuoromethane	19 19 19
Cyclohexane 92.0 % 70-130 23-DEC- Dibromochloromethane 86.9 % 70-130 23-DEC- Dichlorodiffluoromethane 89.3 % 70-130 23-DEC- Ethyl acetate 89.3 % 70-130 23-DEC-	19 19 19
Dibromochloromethane 86.9 % 70-130 23-DEC- Dichlorodifluoromethane 89.3 % 70-130 23-DEC- Ethyl acetate 89.3 % 70-130 23-DEC-	19 19 19
Dichlorodifluoromethane 89.3 % 70-130 23-DEC- Ethyl acetate 89.3 % 70-130 23-DEC-	19 19
Ethyl acetate 89.3 % 70-130 23-DEC-	19
7	
	19
Ethylbenzene 89.4 % 70-130 23-DEC-	
Freon 113 89.0 % 70-130 23-DEC-	
Freon 114 95.4 % 70-130 23-DEC-	19
Hexachlorobutadiene 103.3 % 70-130 23-DEC-	
Isooctane 90.2 % 70-130 23-DEC-	19
Isopropyl alcohol 83.3 % 70-130 23-DEC-	19
Isopropylbenzene 87.4 % 50-150 23-DEC-	19
m&p-Xylene 91.2 % 70-130 23-DEC-	19
Methyl ethyl ketone 89.5 % 70-130 23-DEC-	19
Methyl isobutyl ketone 89.1 % 70-130 23-DEC-	19
Methylene chloride 95.2 % 70-130 23-DEC-	19
MTBE 90.7 % 70-130 23-DEC-	19
n-Heptane 89.9 % 70-130 23-DEC-	19
n-Hexane 90.8 % 70-130 23-DEC-	19
o-Xylene 90.5 % 70-130 23-DEC-	19
Propylene 88.6 % 70-130 23-DEC-	19
Styrene 89.1 % 70-130 23-DEC-	19
Tetrachloroethylene 90.2 % 70-130 23-DEC-	19
Tetrahydrofuran 92.0 % 70-130 23-DEC-	19
Toluene 91.9 % 70-130 23-DEC-	19
trans-1,2-Dichloroethene 91.7 % 70-130 23-DEC-	19
trans-1,3-Dichloropropene 87.5 % 70-130 23-DEC-	19
Trichloroethylene 91.3 % 70-130 23-DEC-	19
Trichlorofluoromethane 89.8 % 70-130 23-DEC-	19
Vinyl acetate 89.2 % 70-130 23-DEC-	19
Vinyl bromide 92.1 % 70-130 23-DEC-	19
Vinyl chloride 89.8 % 70-130 23-DEC-	
WG3247636-3 LCSD WG3247636-2	
1,1,1-Trichloroethane 88.6 77.4 % 13 25 23-DEC-	19
1,1,2,2-Tetrachloroethane 91.9 80.2 % 14 25 23-DEC-	19

Workorder: L2393599 Report Date: 24-DEC-19 Page 8 of 13

Client: TETRA TECH CANADA INC.

110, 140 Quarry Park Blvd SE

Calgary AB T2C 3G3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
TO15-GCMS-WT	Canister							
Batch R4953168								
WG3247636-3 LCSD		WG3247636-2	74.0		%	44	25	00.050.40
1,1,2-Trichloroethane 1,1-Dichloroethane		86.6 92.4	74.9 77.3		%	14	25	23-DEC-19
1,1-Dichloroethene		90.6	75.4		%	18	25	23-DEC-19
1,2,4-Trichlorobenzene		108.3	91.8		%	18	25	23-DEC-19
1,2,4-Trichlorobenzene		92.4	79.2		%	16	25	23-DEC-19
		90.8	77.8		%	15	25	23-DEC-19
1,2-Dibromoethane						15	25	23-DEC-19
1,2-Dichlorobenzene		92.5	79.7		%	15	25	23-DEC-19
1,2-Dichloroethane		90.4	78.5		%	14	25	23-DEC-19
1,2-Dichloropropane 1,3,5-Trimethylbenzene		90.0 90.6	78.6 77.2		%	13	25	23-DEC-19
1,3-Butadiene					%	16	25	23-DEC-19
1,3-Dutadiene 1,3-Dichlorobenzene		89.8	79.7		%	12	25	23-DEC-19
		91.1 94.2	78.3		%	15	25	23-DEC-19
1,4-Dichlorobenzene 1,4-Dioxane		92.9	81.2 82.0		%	15	25	23-DEC-19
2-Hexanone		92.9	81.0		%	12	25	23-DEC-19
4-Ethyltoluene		90.5	78.4		%	13	25	23-DEC-19
4-Ethylloluerie Acetone		91.2	77.4		%	14	25	23-DEC-19
		88.3	77.2		%	16	25	23-DEC-19
Allyl chloride		92.1	78.2		%	13	25	23-DEC-19
Benzene Benzel ablasida		87.4	76.4		%	16	25	23-DEC-19
Benzyl chloride						13	25	23-DEC-19
Bromodichloromethane		88.1	77.3		%	13	25	23-DEC-19
Bromoform		88.4	74.5		%	17	25	23-DEC-19
Bromomethane Carbon Disulfide		92.9	79.7		%	15	25	23-DEC-19
		84.8	73.4		%	15	25	23-DEC-19
Carbon Tetrachloride		87.6	77.2			13	25	23-DEC-19
Chlorobenzene		90.8	78.1		%	15	25	23-DEC-19
Chloroethane		90.9	79.4		%	13	25	23-DEC-19
Chloroform		94.1	80.5		%	16	25	23-DEC-19
Chloromethane		93.2	79.5		%	16	25	23-DEC-19
cis-1,2-Dichloroethene		89.8	79.2		%	12	25	23-DEC-19
cis-1,3-Dichloropropene		89.0	76.0		%	16	25	23-DEC-19
Cyclohexane		92.0	77.5		%	17	25	23-DEC-19
Dibromochloromethane		86.9	76.1		%			23-DEC-19

Workorder: L2393599 Report Date: 24-DEC-19 Page 9 of 13

Client: TETRA TECH CANADA INC.

110, 140 Quarry Park Blvd SE

Calgary AB T2C 3G3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
TO15-GCMS-WT	Canister							
Batch R4953168								
WG3247636-3 LCSD Dibromochloromethane		WG3247636- 86.9	2 76.1		%	13	25	23-DEC-19
Dichlorodifluoromethane	;	89.3	77.0		%	15	25	23-DEC-19
Ethyl acetate		89.3	75.4		%	17	25	23-DEC-19
Ethylbenzene		89.4	78.0		%	14	25	23-DEC-19
Freon 113		89.0	75.4		%	17	25	23-DEC-19
Freon 114		95.4	82.0		%	15	25	23-DEC-19
Hexachlorobutadiene		103.3	88.9		%	15	25	23-DEC-19
Isooctane		90.2	79.3		%	13	25	23-DEC-19
Isopropyl alcohol		83.3	72.3		%	14	25	23-DEC-19
Isopropylbenzene		87.4	76.3		%	14	50	23-DEC-19
m&p-Xylene		91.2	80.3		%	13	25	23-DEC-19
Methyl ethyl ketone		89.5	78.2		%	13	25	23-DEC-19
Methyl isobutyl ketone		89.1	75.6		%	16	25	23-DEC-19
Methylene chloride		95.2	76.9		%	21	25	23-DEC-19
MTBE		90.7	77.2		%	16	25	23-DEC-19
n-Heptane		89.9	77.9		%	14	25	23-DEC-19
n-Hexane		90.8	78.3		%	15	25	23-DEC-19
o-Xylene		90.5	78.6		%	14	25	23-DEC-19
Propylene		88.6	74.1		%	18	25	23-DEC-19
Styrene		89.1	76.4		%	15	25	23-DEC-19
Tetrachloroethylene		90.2	76.6		%	16	25	23-DEC-19
Tetrahydrofuran		92.0	79.5		%	15	25	23-DEC-19
Toluene		91.9	79.4		%	15	25	23-DEC-19
trans-1,2-Dichloroethene	е	91.7	77.5		%	17	25	23-DEC-19
trans-1,3-Dichloroproper	ne	87.5	76.1		%	14	25	23-DEC-19
Trichloroethylene		91.3	77.8		%	16	25	23-DEC-19
Trichlorofluoromethane		89.8	77.5		%	15	25	23-DEC-19
Vinyl acetate		89.2	99.98		%	11	25	23-DEC-19
Vinyl bromide		92.1	78.8		%	16	25	23-DEC-19
Vinyl chloride		89.8	78.0		%	14	25	23-DEC-19
WG3247636-1 MB 1,1,1-Trichloroethane			<0.20		ppb(√)		0.2	23-DEC-19
1,1,2,2-Tetrachloroethar	ne		<0.20		ppb(∀)		0.2	23-DEC-19 23-DEC-19
., .,=,=			-0.20		FF-(*/			25-020-13

Workorder: L2393599 Report Date: 24-DEC-19 Page 10 of 13

Client: TETRA TECH CANADA INC.

110, 140 Quarry Park Blvd SE

Calgary AB T2C 3G3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
TO15-GCMS-WT	Canister							
Batch R4953168								
WG3247636-1 MB			<0.20		nnh() ()		0.2	
1,1,2-Trichloroethane 1,1-Dichloroethane			<0.20		ppb(V)		0.2 0.2	23-DEC-19
			<0.20		ppb(V)		0.2	23-DEC-19
1,1-Dichloroethene					ppb(V)		0.2	23-DEC-19
1,2,4-Trichlorobenzene			<0.20 <0.20		ppb(V)			23-DEC-19
1,2,4-Trimethylbenzene 1,2-Dibromoethane			<0.20		ppb(V)		0.2 0.2	23-DEC-19
•			<0.20		ppb(V)			23-DEC-19
1,2-Dichlorobenzene			<0.20		ppb(V)		0.2 0.2	23-DEC-19
1,2-Dichloroethane 1,2-Dichloropropane					ppb(V)		0.2	23-DEC-19
			<0.20 <0.20		ppb(V)			23-DEC-19
1,3,5-Trimethylbenzene			<0.20		ppb(V)		0.2	23-DEC-19
1,3-Butadiene 1,3-Dichlorobenzene			<0.20		ppb(V)		0.2	23-DEC-19
1,4-Dichlorobenzene			<0.20		ppb(V)		0.2 0.2	23-DEC-19
1,4-Dioxane					ppb(V)		0.2	23-DEC-19
•			<0.20 <1.0		ppb(V)			23-DEC-19
2-Hexanone			<0.20		ppb(V)		1 0.2	23-DEC-19
4-Ethyltoluene			<0.50		ppb(V)		0.5	23-DEC-19
Acetone Allyl chloride			<0.50		ppb(V)		0.5	23-DEC-19
Benzene			<0.20		ppb(V) ppb(V)		0.2	23-DEC-19
			<0.20				0.2	23-DEC-19
Benzyl chloride Bromodichloromethane			<0.20		ppb(V)		0.2	23-DEC-19
Bromoform			<0.20		ppb(V)			23-DEC-19
Bromomethane			<0.20		ppb(∨) ppb(∨)		0.2 0.2	23-DEC-19
Carbon Disulfide			<0.20		ppb(V)		0.2	23-DEC-19
Carbon Tetrachloride			<0.20				0.2	23-DEC-19
Chlorobenzene					ppb(V)		0.2	23-DEC-19
Chloroethane			<0.20 <0.20		ppb(V)		0.2	23-DEC-19
Chloroform			<0.20		ppb(V)		0.2	23-DEC-19
Chloromethane			<0.20		ppb(\/)		0.2	23-DEC-19
			<0.20		ppb(∨) ppb(∨)			23-DEC-19
cis-1,2-Dichloroethene cis-1,3-Dichloropropene							0.2 0.2	23-DEC-19
			<0.20		ppb(V)			23-DEC-19
Cyclohexane			<0.20		ppb(V)		0.2	23-DEC-19
Dibromochloromethane			<0.20		ppb(V)		0.2	23-DEC-19

Report Date: 24-DEC-19 Workorder: L2393599 Page 11 of 13

TETRA TECH CANADA INC. Client:

110, 140 Quarry Park Blvd SE

Calgary AB T2C 3G3

Contact: Darby Madalena

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
TO15-GCMS-WT	Canister							
Batch R4953168								
WG3247636-1 MB								
Dichlorodifluoromethane			<0.20		ppb(V)		0.2	23-DEC-19
Ethyl acetate			<0.20		ppb(V)		0.2	23-DEC-19
Ethylbenzene			<0.20		ppb(V)		0.2	23-DEC-19
Freon 113			<0.20		ppb(V)		0.2	23-DEC-19
Freon 114			<0.20		ppb(V)		0.2	23-DEC-19
Hexachlorobutadiene			<0.20		ppb(V)		0.2	23-DEC-19
Isooctane			<0.20		ppb(V)		0.2	23-DEC-19
Isopropyl alcohol			<1.0		ppb(V)		1	23-DEC-19
Isopropylbenzene			<0.20		ppb(V)		0.2	23-DEC-19
m&p-Xylene			<0.40		ppb(V)		0.4	23-DEC-19
Methyl ethyl ketone			<0.20		ppb(V)		0.2	23-DEC-19
Methyl isobutyl ketone			<0.20		ppb(V)		0.2	23-DEC-19
Methylene chloride			<0.20		ppb(V)		0.2	23-DEC-19
MTBE			<0.20		ppb(∨)		0.2	23-DEC-19
n-Heptane			<0.20		ppb(V)		0.2	23-DEC-19
n-Hexane			<0.20		ppb(V)		0.2	23-DEC-19
o-Xylene			<0.20		ppb(V)		0.2	23-DEC-19
Propylene			<0.20		ppb(V)		0.2	23-DEC-19
Styrene			<0.20		ppb(V)		0.2	23-DEC-19
Tetrachloroethylene			<0.20		ppb(V)		0.2	23-DEC-19
Tetrahydrofuran			<0.20		ppb(V)		0.2	23-DEC-19
Toluene			<0.20		ppb(V)		0.2	23-DEC-19
trans-1,2-Dichloroethene	•		<0.20		ppb(V)		0.2	23-DEC-19
trans-1,3-Dichloroproper	ne		<0.20		ppb(V)		0.2	23-DEC-19
Trichloroethylene			<0.20		ppb(V)		0.2	23-DEC-19
Trichlorofluoromethane			<0.20		ppb(V)		0.2	23-DEC-19
Vinyl acetate			<0.50		ppb(V)		0.5	23-DEC-19
Vinyl bromide			<0.20		ppb(V)		0.2	23-DEC-19
Vinyl chloride			<0.20		ppb(V)		0.2	23-DEC-19
Surrogate: 4-Bromofluor	obenzene		94.2		%		50-150	23-DEC-19

Tube SILOXANES-GCMS-WT

Workorder: L2393599 Report Date: 24-DEC-19 Page 12 of 13

Client: TETRA TECH CANADA INC.

110, 140 Quarry Park Blvd SE

Calgary AB T2C 3G3

Test	Matrix Reference	e Result Qua	alifier Units	RPD	Limit	Analyzed
SILOXANES-GCMS-WT	Tube					
Batch R4945277						
WG3242059-2 LCS		116.0	0/			
D3(CVMS)			%		70-130	18-DEC-19
D4(CVMS)		117.6			70-130	18-DEC-19
D5(CVMS)		127.7	%		70-130	18-DEC-19
D6(CVMS)		121.6	%		70-130	18-DEC-19
MM(LVMS)		122.0	%		70-130	18-DEC-19
MDM(LVMS)		124.9	%		70-130	18-DEC-19
MD2M(LVMS)		118.9	%		70-130	18-DEC-19
MD3M(LVMS)		114.1	%		70-130	18-DEC-19
WG3242059-3 LCSD D3(CVMS)	WG3242 116.0	2 059-2 118.1	%	1.7	50	18-DEC-19
D4(CVMS)	117.6	121.2	%	3.0	50	18-DEC-19
D5(CVMS)	127.7	131.7	%	3.1	50	
D6(CVMS)	121.6	125.5	%		50	18-DEC-19
	122.0	94.5	%	3.2		18-DEC-19
MM(LVMS)				25	50	18-DEC-19
MDM(LVMS)	124.9	123.7	%	0.9	50	18-DEC-19
MD2M(LVMS)	118.9	116.5	%	2.0	50	18-DEC-19
MD3M(LVMS)	114.1	106.2	%	7.2	50	18-DEC-19
WG3242059-1 MB D3(CVMS)		<10	ng		10	18-DEC-19
D4(CVMS)		<10	ng		10	18-DEC-19
D5(CVMS)		<10	ng		10	18-DEC-19
D6(CVMS)		<10	ng		10	18-DEC-19
MM(LVMS)		<10	ng		10	18-DEC-19
MDM(LVMS)		<10	ng		10	18-DEC-19
MD2M(LVMS)		<10	ng		10	18-DEC-19
MD3M(LVMS)		<10	ng		10	18-DEC-19
Surrogate: 4-Bromofluor	obenzene	100.4	%		50-150	18-DEC-19
						10-020-10

Workorder: L2393599 Report Date: 24-DEC-19

TETRA TECH CANADA INC. Client: Page 13 of 13

110, 140 Quarry Park Blvd SE Calgary AB T2C 3G3

Contact: Darby Madalena

Legend:

ALS Control Limit (Data Quality Objectives) DUP RPD Relative Percent Difference

N/A Not Available LCS Laboratory Control Sample Standard Reference Material

SRM MS Matrix Spike

MSD Matrix Spike Duplicate ADE Average Desorption Efficiency

Method Blank MB IRM Internal Reference Material CRM Certified Reference Material Continuing Calibration Verification CCV

CVS Calibration Verification Standard LCSD Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
J	Duplicate results and limits are expressed in terms of absolute difference.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

Batch Proof Report

		Datem 1 1 0 0 1 1	cport			
Batch ID	Canister ID	Parameters	Value	Units	Date	Analyst
	01400-0480	1.1.1-Trichloroethane	< 0.02			
B191119.112		, ,		ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	1,1,1,2-Tetrachloroethane	< 0.02	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	1,1,2,2-Tetrachloroethane	< 0.02	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	1,1,2-Trichloroethane	<0.02	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	1,1-Dichloroethane	< 0.02	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	1,1-Dichloroethene	< 0.02			DT1
				ppb(V)	21-Nov-19	
B191119.112	01400-0480	1,2,4-Trichlorobenzene	< 0.20	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	1,2,4-Trimethylbenzene	< 0.20	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	1,2-Dibromoethane	< 0.01	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	1,2-Dichlorobenzene	< 0.02	ppb(V)	21-Nov-19	DT1
		,				
B191119.112	01400-0480	1,2-Dichloroethane	< 0.01	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	1,2-Dichloropropane	< 0.02	ppb(V)	21-Nov-19	DT1
			<0.20			
B191119.112	01400-0480	1,3,5-Trimethylbenzene		ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	1,3-Butadiene	<0.20	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	1,3-Dichlorobenzene	< 0.02	ppb(V)	21-Nov-19	DT1
		· ·				
B191119.112	01400-0480	1,4-Dichlorobenzene	<0.02	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	1,4-Dioxane	< 0.20	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	2-Chlorophenol	<0.20	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	2-Hexanone	<1.0	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	4-Ethyltoluene	<0.20	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	Acetone	< 0.50	ppb(V)	21-Nov-19	DT1
	01400-0480	Allyl Chloride	<0.20	ppb(V)	21-Nov-19	DT1
B191119.112		•				
B191119.112	01400-0480	Benzene	<0.02	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	Benzyl Chloride	< 0.20	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	Bromodichloromethane	< 0.20	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	Bromobenzene	< 0.20	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	Bromoform	< 0.02	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	Bromomethane	< 0.20	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	Carbon Disulfide	< 0.20		21-Nov-19	DT1
				ppb(V)		
B191119.112	01400-0480	Carbon Tetrachloride	< 0.02	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	Chlorobenzene	< 0.20	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	Chloroethane	< 0.02	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	Chloroform	< 0.02	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	Chloromethane	<0.20	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	cis-1,2-Dichloroethene	< 0.02	ppb(V)	21-Nov-19	DT1
		The state of the s				DT1
B191119.112	01400-0480	cis-1,3-Dichloropropene	< 0.02	ppb(V)	21-Nov-19	
B191119.112	01400-0480	Cyclohexane	<0.20	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	Dibromochloromethane	< 0.20	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	Dichlorodifluoromethane	<0.20	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	Ethyl Acetate	< 0.20	ppb(V)	21-Nov-19	DT1
		•				
B191119.112	01400-0480	Ethyl Benzene	<0.02	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	Freon 113	<0.20	ppb(V)	21-Nov-19	DT1
	01400-0480	Freon 114	< 0.20		21-Nov-19	DT1
B191119.112				ppb(V)		
B191119.112	01400-0480	Hexachlorobutadiene	< 0.02	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	Isooctane	< 0.20	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	Isopropyl Alcohol	<1.0	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	Isopropylbenzene	< 0.20	ppb(V)	21-Nov-19	DT1
		,				
B191119.112	01400-0480	m&p-Xylene	< 0.04	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	Methyl Ethyl Ketone	<0.20	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	Methylcyclohexane	< 0.20	ppb(V)	21-Nov-19	DT1
				ppb(v)		
B191119.112	01400-0480	Methyl Isobutyl Ketone	< 0.20	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	Methylene Chloride	< 0.02	ppb(V)	21-Nov-19	DT1
		,				
B191119.112	01400-0480	MTBE	<0.20	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	Naphthalene	< 0.05	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	n-Decane	<0.20	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	n-Heptane	<0.20	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	n-Hexane	< 0.02	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	o-Xylene	<0.02	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	Propylene	< 0.20	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	Styrene	<0.02	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	Tetrachloroethylene	< 0.02	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	Tetrahydrofuran	<0.20	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	Toluene	< 0.02	ppb(V)	21-Nov-19	DT1
	01400-0480				21-Nov-19	DTI
B191119.112		trans-1,2-Dichloroethene	<0.02	ppb(V)		
B191119.112	01400-0480	trans-1,3-Dichloropropene	< 0.02	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	Trichloroethylene	< 0.02	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	Trichlorofluoromethane	<0.20	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	Vinyl Acetate	< 0.50	ppb(V)	21-Nov-19	DT1
B191119.112	01400-0480	Vinyl Bromide	<0.20	ppb(V)	21-Nov-19	DT1

ADDRESS 60 Northland Rd, Unit 1 Waterloo, ON, N2V 2B8 Canada PHONE +1 519 886-6910 FAX +1 519 886-9047

ALS CANADA LTD. Part of the ALS Group A Campbell Brothers Limited Company

01400-0480 01400-0480

Vinyl Chloride 4-Bromofluorobenzene

<0.02 ppb(V) 103.1 %

21-Nov-19 21-Nov-19

DT1 DT1

L2393599-COFC

60 NORTHLAND ROAD, UNIT I WATERLOO, ON N2V 288

Phone: (519) 886-6910

Page__1_of__1__ 10 day (regular) Service Requested Rush 3 day (100%) Y FORM - Canister/Tube/Gas Bag Specify date required Note: all TAT Quoted material is in business days which exclude statutory holidays and weekends. TAT of samples received past Environmental

				WILL EXCLUSE	Position		[
Fax: (519) 886-9047			statutory holidays and weekends. TAT of samples received past	received past	37	10 day (regular)	<u> </u>	Rush 2 day (200%)	
Toll Free: 1-800-668-9878	9878		3:00 pm or Saturday / Sunday begin the next day.	٠.		Rush 5 day (50%)		Rush 1 day (300%)- Enquire	
COMPANY NAME	Tetra Tech Canada Inc.	ıda Inc.	SAMPLEATYPE/REGULATION		ANALYSIS	ANALYSIS REQUEST		All rush work requires lab approval	pproval
OFFICE	110, 140 Quarry Park Blvd SE, Calgary, AB T2C 3G3	Calgary, AB T2C 3G3	Reg 419/05 Soil Vapor Intrusion					before sample submission	6
PROJECT MANAGER	Darby Madalena	ena	e an LV		۰	(6)	(6	SUBMISSION #: * SEE	
PROJECT #	SWM.SWOP04071-01.006 (Red Deer Motors)	-01.006 tors)		£	TW-	н) Би	э́н") б		
PHONE 403-723-6867	FAX 403-203-3301		REPORT FORMAT/DISTRIBUTION	m ve	Y-DDT 4AN+,		undw	ENTERED BY:	
ACCOUNT #		-	EMAII EAV BOTTH		∕A13	S-91,		DATE/TIME ENTERED:	
QUOTATION # Q71650	PO # SWM.SWOP04071-01.006	-01.006	PDF_DIGIT	io-10	Z J 1 J	RE - F			*
	SAMPLING INFORMATION		EMAIL 2		'S LO	เกรร		BIN #	27.58
Sample Date/Time	ne	┝	_	10,		PRI			
Date (dd-mmm-yy)	Time Canister or Tube ID# (24hr) or G0XXXXXX or G0XXXXXX	Regulator Serial # Y	SAMPLE DESCRIPTION TO APPEAR ON REPORT	V ЯІА ЗВИТ		STARTING	COLLECTION PROPERTY.	Field Conditions (Rain/Wind/Dust/Odour) Field PID Reading	LAB ID
(15-1)ec-19	1410 920C	G315 S6	10-MA	1.4 × ×	×	1- 1 2-	5 3		
\$	1530 00944	GASS 56) vw-02	1.4 x	×	137-(-		
105-Dec-19	3636	DS36 KG	1910000 journas	1.4 x x	×	-34-5	2		
	1610 6015000 6501	98] — [\	10-72>			// X	/		
Þ	1630 60150679811	1 - 56					/		
	:								
				-					
					_				
							_		
P. STORAGO P. SEC. STORAGE SPEC	A PROPERTY OF THE SPECIAL INSTRUCTIONS/COMMENTS AND	Monte Company of Marie Company and Company	Revision Management of This Chain of Custody Form is only to be used for Air Quality	only to be used for	Air Quality S	Samples the process and proces	colorabi/files	BE SAMPLE CONDITION AS RECEIVED	IVED
		Àbe	Soil Gas Vapour = SG	Indoor Air = IA				FROZEN	MEAN TEMP
		T xitseM	Ambient Air = AA	Industrial Hygiene = IH	ene = IH			COOLING INITIATED	M
SAMPLED BY: WEG	Megan Rouse	ETA'	DATE & TIME A / O & / 44			DATE & TIME) 7		OBSERVATIONS TO THE PARTY OF TH	INIT
RELINQUISHED BY	Bear Laso	DATE & TIME	ď			DATE & TIME		ایّا∟	14
Notes	, , , , ,			<i> </i>		1101			

1. Quote number must be provided to ensure proper priking

TAT may vary dependent on complexity of analysis and lab workload at time of submission. Please contact the lab to confirm TATs.

3. Any known or suspected hazards relating to a sample must be noted on the chain of custody in comments section.

APPENDIX E

HISTORICAL ANALYTICAL RESULTS

Table 1
Elevations for Soil Vapour and Groundwater Monitoring Wells

Test	Well		Eleva	itions		Screen
Location	Depth	Ground	Top of Pipe	Screen Interval		Length
	(m)	(m)	(m)	Bottom	Тор	(m)
	,					
MW-01	6.1	874.014	875.099	867.914	872.514	4.6
MW-02	6.6	877.302	878.096	870.702		
MW-03	5.1	877.297	877.307	872.197		
VW-01	3.5	874.194	874.943	870.694	870.994	0.3
VW-02	4.6	877.321	878.166	872.721	873.021	0.3
VW-03	4.0	877.316	878.017	873.316	873.616	0.3
	,					
TH-03	No Well	875.332				
TH-05	No Well	875.567				
TH-06	No Well	876.597				
TH-07	No Well	876.925				
TH-08	No Well	876.812				
TH-09	No Well	875.907				

- 1) Geodetic elevations are referenced to multiple ASCM Nos. 269191, 376673 and 384792.
- 2) MW Monitoring Well.
- 3) VW Soil Vapour Well.
- 4) TH Testhole.
- 5) Well depth, screen interval derived from borehole logs by others, where avalable.
- 6) - No value established.

12-435
Phase II ESA - Red Deer Motors Site
Historic Waste Disposal Sites, The City of Red Deer

Table 2
Site Monitoring Results

Test	Eleva	ations	Groundwat	er Elevation	Headspace Vapour				
Location	Ground	Top of Pipe	(r	n)	03/08/13				
	(m)	(m)	03/08/13		Combustible	Volatile	Combustible	Volatile	
MW-01	874.014	875.099	869.841		230	43			
MW-02	877.302	878.096	874.276		ND	ND			
MW-03	877.297	877.307	NM		NM	NM			
VW-01	874.194	874.943			1,600	64			
VW-02	877.321	878.166			20	2			
VW-03	877.316	878.017			25	ND			
TH-03	875.332	NA							
TH-05	875.567	NA	= =						
TH-06	876.597	NA	= =						
TH-07	876.925	NA							
TH-08	876.812	NA							
TH-09	875.907	NA							

- 1) Geodetic elevations are referenced to multiple ASCM Nos 269191, 376673 and 384792.
- 2) Measurement of combustible and volatile vapours by RKI Eagle 2. Units ppmv. Combustible vapour sensor calibrated to hexane and photoionization detector calibrated to isobutylene.
- 3) NA Not Applicable.
- 4) ND Not Detected, less than the limit of instrument detection.
- 5) NM Not Measured.
- 6) - No applicable value.

Table 3A
Analytical Results - Soil - Drill Cuttings (Soil Bag)

Parameter	Detection	Cail Dag	Class II Landfill
rarameter		Soil Bag	
	Limit	1 of 1	Acceptance Criteria
pН	0.10	7.71	2-12.5
Flash Point (°C)	30.0	>7.71	>61
Paint Filter Test	30.0	PASS	PASS
Tamt Pitter Test	-	1 A33	1 Abb
TCLP Hydrocarbons			
Benzene	0.0050	ND	0.5
Toluene	0.0050	ND	0.5
Ethylbenzene	0.0050	ND	0.5
Xylenes	0.0050	ND	0.5
-5,00000			
TCLP Metals			
Antimony (Sb)	5.0	ND	500
Arsenic (As)	0.20	ND	5
Barium (Ba)	5.0	ND	100
Beryllium (Be)	0.50	ND	5
Boron (B)	5.0	ND	500
, ,			
Cadmium (Cd)	0.050	ND	1
Chromium (Cr)	0.50	ND	5
Cobalt (Co)	5.0	ND	100
Copper (Cu)	5.0	ND	100
Iron (Fe)	5.0	ND	1,000
Lead (Pb)	0.50	ND	5
Mercury (Hg)	0.010	ND	0.2
Nickel (Ni)	0.50	ND	5
Selenium (Se)	0.20	ND	1
Silver (Ag)	0.50	ND	5
Thallium (Tl)	0.50	ND	5
Uranium (U)	1.0	ND	2
Vanadium (V)	5.0	ND	100
Zinc (Zn)	5.0	ND	500
Zirconium (Zr)	5.0	ND	500

- 1) Applicance waste screening process for The City of Red Deer Class II Waste Managment Facility.
- Class II Landfill Acceptable Criteria per Table 2, Part 4 Schedule to the Alberta User Guide for Waste Managers 3/95.
- 3) All units are mg/L unless otherwise stated.
- 4) ND Not Detected
- 5) Soil Bags were sampled June 26, 2013.
- 6) For further laboratory information, refer to the specific laboratory report in Appendix A.

Table 3B
Analytical Results - Soil - General Indices and Heavy Metals

Parameters	Units	Detection	TH-01	Tier 1
T all affected 5	Circs	Limit	@ 5.2 m	Guideline
		Ziiiit	06/26/2013	Guidenne
			00/20/2012	
Chloride (Cl)	mg/kg	15	188	
Nitrate-N	mg/kg	0.74	ND	
Nitrite-N	mg/kg	0.74	ND	
1,121.00		0. , .	1,2	
<u>Metals</u>				
Antimony (Sb)	mg/kg	0.20	0.44	20
Arsenic (As)	mg/kg	0.20	7.18	17
Barium (Ba)	mg/kg	5.0	242	500
Beryllium (Be)	mg/kg	1.0	ND	5
Cadmium (Cd)	mg/kg	0.50	ND	10
,				
Chromium (Cr)	mg/kg	0.50	35.7	64
Cobalt (Co)	mg/kg	1.0	7.8	20
Copper (Cu)	mg/kg	2.0	18.3	63
Lead (Pb)	mg/kg	5.0	8.0	140
Mercury (Hg)	mg/kg	0.05	ND	6.6
Molybdenum (Mo)	mg/kg	1.0	1.2	4
Nickel (Ni)	mg/kg	2.0	28.6	50
Selenium (Se)	mg/kg	0.50	ND	1.0
Silver (Ag)	mg/kg	1.0	ND	20
Thallium (Tl)	mg/kg	0.5	ND	1.0
, ,				
Tin (Sn)	mg/kg	2.0	ND	5
Uranium (U)	mg/kg	2.0	ND	23
Vanadium (V)	mg/kg	1.0	38.4	130
Zinc (Zn)	mg/kg	10	63	200
Hexavalent Chromium	mg/kg	0.10	ND	0.4
Boron (B), Hot Water Ext.	mg/kg	0.10	1.26	2

- 1) Tier 1 Guideline Alberta Tier 1 Soil and Groundwater Remediation Guidelines, December 2010 and amendments. Coarse-grained criteria for residential/parkland land use.
- 2) ND Not Detected, less than the limit of method detection.
- 3) -- No value established in the referenced criteria.
- 4) Bold & Shaded Exceeds the referenced Alberta Tier 1 Guidelines.
- 5) For further laboratory information, refer to the specific laboratory report in Appendix A.

Table 3C Analytical Results - Soil - VOCs

Hadrocarbons Ha	Analytical Results - Soil - VOCs									
Hydrocarbons Hydrocarbons Hydrocarbons Hydrocarbons F1 (C ₂ C ₁₀) mg/kg 10	Parameters	Units	Detection	TH-01	Tier 1					
Hydrocarbons F1 ($C_{c}C_{n}$) mg/kg 10 ND 24 F1 ($C_{c}C_{n}$) mg/kg 25 ND 130 F3 (C_{10} - C_{10}) mg/kg 50 ND 300 F3 (C_{10} - C_{10}) mg/kg 50 ND 2,800 Total Hydrocarbons (C_{c} - C_{20}) mg/kg 50 ND 0,073 Benzene mg/kg 0,010 ND Berzene mg/kg 0,010 ND Bromochloromethane mg/kg 0,010 ND Carbon terachloride mg/kg 0,010 ND 0,018 Dibromochloromethane mg/kg 0,010 ND Calloro			Limit)	Guideline					
FI ($C_c C_{cl})$ mg/kg 25 ND 130 P3 ($C_{1c} C_{cl})$ mg/kg 25 ND 130 P3 ($C_{1c} C_{cl})$ mg/kg 50 117 300 P3 ($C_{1c} C_{cl})$ mg/kg 50 ND 2,800 Total Hydrocarbons ($C_c C_{cl}$) mg/kg 50 ND 2,800 Total Hydrocarbons ($C_c C_{cl}$) mg/kg 50 ND 2,800 Total Hydrocarbons ($C_c C_{cl}$) mg/kg 50 ND 0,073 Benzene mg/kg 0,010 ND Bromochloromethane mg/kg 0,010 ND Total Hydrocarbons ($C_c C_{cl})$ mg/kg 0,010 ND 0,00056 ND				06/26/2013						
FI ($C_c C_{cl})$ mg/kg 25 ND 130 P3 ($C_{1c} C_{cl})$ mg/kg 25 ND 130 P3 ($C_{1c} C_{cl})$ mg/kg 50 117 300 P3 ($C_{1c} C_{cl})$ mg/kg 50 ND 2,800 Total Hydrocarbons ($C_c C_{cl}$) mg/kg 50 ND 2,800 Total Hydrocarbons ($C_c C_{cl}$) mg/kg 50 ND 2,800 Total Hydrocarbons ($C_c C_{cl}$) mg/kg 50 ND 0,073 Benzene mg/kg 0,010 ND Bromochloromethane mg/kg 0,010 ND Total Hydrocarbons ($C_c C_{cl})$ mg/kg 0,010 ND 0,00056 ND	Hydrocarbons									
$F_2(C_{10}/C_{10})$ mg/kg 50		mg/kg	10	ND	24					
F3 (C ₁₁ -C ₂₃)			25	ND	130					
F4 (Cs_x-Cs_0)	10 10				300					
Total Hydrocarbons (C ₀ -C ₅₀) mg/kg 50 117										
Volatile Organic Compounds										
Benzene mg/kg 0.0050 ND 0.073	15tal 11 ar ocal oolio (0, 0,50)		50	11,						
Bromochenzene mg/kg 0.010 ND										
Bromochloromethane mg/kg 0.010 ND										
Bromodichloromethane mg/kg 0.010 ND										
Bromoform										
Bromomethane										
B-Butylbenzene sec-Butylbenzene mg/kg 0.010 ND tert-Butylbenzene mg/kg 0.010 ND tert-Butylbenzene mg/kg 0.010 ND 0.00056 Chlorobenzene mg/kg 0.010 ND 0.00056 Chlorobenzene mg/kg 0.010 ND 0.00056 Chlorobenzene mg/kg 0.010 ND 0.27 Chlorocthane mg/kg 0.010 ND 0.27 Chloroform mg/kg 0.010 ND 0.0018 Chlorothane mg/kg 0.010 ND 0.0010 Chlorothane mg/kg 0.010 ND Chlorothane mg/kg 0.010 ND 2-Chlorotoluene mg/kg 0.010 ND 1,2-Dibromo-s-holropropane mg/kg 0.010 ND 1,2-Dibromo-thane mg/kg 0.010 ND 1,2-Dibrorothane mg/kg 0.010 ND 1,1-Dibromo-thane mg/kg 0.010 ND 1,2-Dibromo-thane mg/kg 0.010 ND 1,1-Dibromo-thane mg/kg 0.010 ND 1,2-Dibromo-thane mg/kg 0.010 ND 1,2-Tirchlorochane mg/kg 0.010 ND 1,2-Tirchlorochane mg/kg 0.010 ND	Bromorom.		0.010	112						
sec-Buylbenzene mg/kg 0.010 ND	Bromomethane	mg/kg	0.10	ND						
Carbon tetrachloride										
Carbon tetrachloride mg/kg 0.010 ND 0.00056 Chlorobenzene mg/kg 0.010 ND 0.018 Dibromochloromethane mg/kg 0.010 ND 0.27 Chloroform mg/kg 0.010 ND 0.0010 Chloroform mg/kg 0.010 ND 0.0010 Chlorotoluene mg/kg 0.010 ND 4-Chlorotoluene mg/kg 0.010 ND 4-Chlorotoluene mg/kg 0.010 ND 1,2-Dibromo-3-chloropropane mg/kg 0.010 ND 1,2-Dibromo-shene mg/kg 0.010 ND 1,2-Dichlorobenzene mg/kg 0.010 ND 1,1-Dichlorobenzene mg/kg 0.010 ND 1,1-Dichlorobenzene mg/kg 0.010 ND 1,1-Dichlorobenzene mg/kg 0.010 ND 1,1-Dichlorobethene m	II									
Chlorobenzene										
Dibromochloromethane mg/kg 0.010 ND 0.27 Chloroethane mg/kg 0.10 ND Chloroform mg/kg 0.010 ND 0.0010 Chlorotoluene mg/kg 0.010 ND 2-Chlorotoluene mg/kg 0.010 ND 1,2-Dibromo-schloropropane mg/kg 0.010 ND 1,2-Dibromo-schloropropane mg/kg 0.010 ND 1,2-Dibromoethane mg/kg 0.010 ND 1,2-Dichlorobenzene mg/kg 0.010 ND 1,4-Dichlorobenzene mg/kg 0.010 ND 0.098 1,4-Dichloroethane mg/kg 0.010 ND 1,1-Dichloroethane mg/kg 0.010 ND 0.0027 1,1-Dichloroethane mg/kg 0.010 ND 0.0221 vis-1,2-Dichloroethane mg/kg 0.010 ND 1,1-Dichloroethane	Carbon tetrachloride	mg/kg	0.010	ND	0.00056					
Dibromochloromethane mg/kg 0.010 ND 0.27 Chloroethane mg/kg 0.10 ND Chloroform mg/kg 0.010 ND 0.0010 Chlorotoluene mg/kg 0.010 ND 2-Chlorotoluene mg/kg 0.010 ND 1,2-Dibromo-schloropropane mg/kg 0.010 ND 1,2-Dibromo-schloropropane mg/kg 0.010 ND 1,2-Dibromoethane mg/kg 0.010 ND 1,2-Dichlorobenzene mg/kg 0.010 ND 1,4-Dichlorobenzene mg/kg 0.010 ND 0.098 1,4-Dichloroethane mg/kg 0.010 ND 1,1-Dichloroethane mg/kg 0.010 ND 0.0027 1,1-Dichloroethane mg/kg 0.010 ND 0.0221 vis-1,2-Dichloroethane mg/kg 0.010 ND 1,1-Dichloroethane	Chlorobenzene	mø/ko	0.010	ND	0.018					
Chloroethane mg/kg 0.10 ND										
Chloroform mg/kg 0.010 ND 0.0010 Chlorotoluene mg/kg 0.10 ND 2-Chlorotoluene mg/kg 0.010 ND 4-Chlorotoluene mg/kg 0.010 ND 1,2-Dibromoethane mg/kg 0.010 ND 1,2-Dichlorobenzene mg/kg 0.010 ND 1,2-Dichlorobenzene mg/kg 0.010 ND 1,4-Dichlorobenzene mg/kg 0.010 ND 1,4-Dichlorobenzene mg/kg 0.010 ND 1,4-Dichlorobenzene mg/kg 0.010 ND 1,4-Dichlorobenzene mg/kg 0.010 ND 0.098 Dichlorodifluoromethane mg/kg 0.010 ND 1,1-Dichlorocthane mg/kg 0.010 ND 0.021 1,1-Dichlorocthane mg/kg 0.010 ND 1,1-Dichlorocthane mg/kg										
Chloromethane					0.0010					
#-Chlorotoluene	Chloromethane		0.10	ND						
#-Chlorotoluene		_								
1,2-Dibromo-3-chloropropane mg/kg 0.010 ND 1,2-Dibromoethane mg/kg 0.010 ND 1,2-Dichlorobenzene mg/kg 0.010 ND 1,3-Dichlorobenzene mg/kg 0.010 ND 1,4-Dichlorobenzene mg/kg 0.010 ND 1,4-Dichloroethane mg/kg 0.010 ND 1,1-Dichloroethane mg/kg 0.010 ND 1,1-Dichloroethane mg/kg 0.010 ND 0.0027 1,1-Dichloroethane mg/kg 0.010 ND 0.021 1,1-Dichloroethene mg/kg 0.010 ND 0.021 trans-1,2-Dichloroethene mg/kg 0.010 ND trans-1,3-Dichloropropane mg/kg 0.010 ND 1,2-Dichloropropane mg/kg 0.010 ND 1,1-Dichloropropene mg/kg 0.010 ND set-1,3-Dichl										
1,2-Dibromoethane										
Dibromomethane	1 -									
1,2-Dichlorobenzene										
1,3-Dichlorobenzene mg/kg 0.010 ND 1,4-Dichlorobenzene mg/kg 0.010 ND 0.098 Dichlorodifluoromethane mg/kg 0.010 ND 1,1-Dichloroethane mg/kg 0.010 ND 1,1-Dichloroethane mg/kg 0.010 ND 0.0027 1,1-Dichloroethene mg/kg 0.010 ND trans-1,2-Dichloroethene mg/kg 0.010 ND trans-1,2-Dichloroethene mg/kg 0.010 ND trans-1,2-Dichloroethene mg/kg 0.010 ND 1,2-Dichloropropane mg/kg 0.010 ND 1,3-Dichloropropane mg/kg 0.010 ND 1,1-Dichloropropane mg/kg 0.010 ND trans-1,3-Dichloropropene mg/kg 0.010 ND ttaylebarorophylocopropene mg/kg 0.010 ND <td< td=""><td>Dioromomethane</td><td>mg/kg</td><td>0.010</td><td>ND</td><td></td></td<>	Dioromomethane	mg/kg	0.010	ND						
1,4-Dichlorobenzene mg/kg	1,2-Dichlorobenzene	mg/kg	0.010	ND	0.18					
Dichlorodifluoromethane	1,3-Dichlorobenzene	mg/kg	0.010	ND						
1,1-Dichloroethane mg/kg 0.010 ND 1,2-Dichloroethane mg/kg 0.010 ND 0.0027 1,1-Dichloroethene mg/kg 0.010 ND 0.021 cis-1,2-Dichloroethene mg/kg 0.010 ND Methylene chloride mg/kg 0.010 ND 1,2-Dichloropropane mg/kg 0.010 ND 1,1-Dichloropropane mg/kg 0.010 ND trans-1,3-Dichloropropene mg/kg 0.010 ND trans-1,3-Dichloropropene mg/kg 0.015 ND 0.21 Hexachlorobutadiene mg/kg 0.010 ND Isopropylbenzene <td>II *</td> <td>mg/kg</td> <td>0.010</td> <td>ND</td> <td>0.098</td>	II *	mg/kg	0.010	ND	0.098					
1,2-Dichloroethane										
1,1-Dichloroethene mg/kg 0.010 ND 0.021 cis-1,2-Dichloroethene mg/kg 0.010 ND trans-1,2-Dichloroethene mg/kg 0.010 ND Methylene chloride mg/kg 0.010 ND 0.095 1,2-Dichloropropane mg/kg 0.010 ND 1,3-Dichloropropane mg/kg 0.010 ND 2,2-Dichloropropane mg/kg 0.010 ND 1,1-Dichloropropene mg/kg 0.010 ND trans-1,3-Dichloropropene mg/kg 0.010 ND trans-1,3-Dichloropropene mg/kg 0.010 ND ttrans-1,3-Dichloropropene mg/kg 0.010 ND 0.21 Hexachlorobutadiene mg/kg 0.010 ND 0.21 Hexachlorobutadiene mg/kg 0.010 ND styrene mg/kg 0.010 ND n-Propylbenz	1,1-Dichloroethane	mg/kg	0.010	ND						
1,1-Dichloroethene mg/kg 0.010 ND 0.021 cis-1,2-Dichloroethene mg/kg 0.010 ND trans-1,2-Dichloroethene mg/kg 0.010 ND Methylene chloride mg/kg 0.010 ND 0.095 1,2-Dichloropropane mg/kg 0.010 ND 1,3-Dichloropropane mg/kg 0.010 ND 2,2-Dichloropropane mg/kg 0.010 ND 1,1-Dichloropropene mg/kg 0.010 ND trans-1,3-Dichloropropene mg/kg 0.010 ND trans-1,3-Dichloropropene mg/kg 0.010 ND ttrans-1,3-Dichloropropene mg/kg 0.010 ND 0.21 Hexachlorobutadiene mg/kg 0.010 ND 0.21 Hexachlorobutadiene mg/kg 0.010 ND styrene mg/kg 0.010 ND n-Propylbenz	1 2-Dichloroethane	mo/ko	0.010	ND	0.0027					
cis-1,2-Dichloroethene mg/kg 0.010 ND trans-1,2-Dichloroethene mg/kg 0.010 ND Methylene chloride mg/kg 0.010 ND Methylene chloride mg/kg 0.010 ND 1,3-Dichloropropane mg/kg 0.010 ND 1,3-Dichloropropane mg/kg 0.010 ND 1,1-Dichloropropene mg/kg 0.010 ND cis-1,3-Dichloropropene mg/kg 0.010 ND trans-1,3-Dichloropropene mg/kg 0.010 ND Ethylbenzene mg/kg 0.010 ND Ethylbenzene mg/kg 0.010 ND 0.0067 Isopropylbenzene mg/kg 0.010 ND P-Propylbenzene mg/kg 0.010 ND styrene mg/kg 0.050 ND 0.8 1,1,1,2-Tetrachloroethane mg/k	II *									
trans-1,2-Dichloroethene mg/kg 0.010 ND Methylene chloride mg/kg 0.010 ND 0.095 1,2-Dichloropropane mg/kg 0.010 ND 1,3-Dichloropropane mg/kg 0.010 ND 1,1-Dichloropropane mg/kg 0.010 ND 1,1-Dichloropropene mg/kg 0.010 ND is-1,3-Dichloropropene mg/kg 0.010 ND trans-1,3-Dichloropropene mg/kg 0.010 ND tethylbenzene mg/kg 0.015 ND 0.21 Hexachlorobutadiene mg/kg 0.010 ND Isopropylbenzene mg/kg 0.010 ND sopropyltoluene mg/kg 0.010 ND n-Propylbenzene mg/kg 0.010 ND styrene mg/kg 0.050 ND 0.8 1,1,2-Tetrachloroethane mg/k	II ·			ND						
1,2-Dichloropropane	trans-1,2-Dichloroethene		0.010	ND						
1,3-Dichloropropane mg/kg 0.010 ND 2,2-Dichloropropane mg/kg 0.010 ND 1,1-Dichloropropene mg/kg 0.010 ND cis-1,3-Dichloropropene mg/kg 0.010 ND trans-1,3-Dichloropropene mg/kg 0.015 ND 0.21 Hexachlorobutadiene mg/kg 0.010 ND Ethylbenzene mg/kg 0.010 ND 0.0067 Isopropylbenzene mg/kg 0.010 ND sopropylbenzene mg/kg 0.010 ND n-Propylbenzene mg/kg 0.010 ND styrene mg/kg 0.050 ND 0.8 1,1,2-Tetrachloroethane mg/kg 0.050 ND Tetrachloroethene mg/kg 0.050 ND 0.16 Toluene mg/kg 0.050 ND 0.49 1,2,3-Trichloroebnzene mg/kg	Methylene chloride	mg/kg	0.010	ND	0.095					
1,3-Dichloropropane mg/kg 0.010 ND 2,2-Dichloropropane mg/kg 0.010 ND 1,1-Dichloropropene mg/kg 0.010 ND cis-1,3-Dichloropropene mg/kg 0.010 ND trans-1,3-Dichloropropene mg/kg 0.015 ND 0.21 Hexachlorobutadiene mg/kg 0.010 ND Ethylbenzene mg/kg 0.010 ND 0.0067 Isopropylbenzene mg/kg 0.010 ND sopropylbenzene mg/kg 0.010 ND n-Propylbenzene mg/kg 0.010 ND styrene mg/kg 0.050 ND 0.8 1,1,2-Tetrachloroethane mg/kg 0.050 ND Tetrachloroethene mg/kg 0.050 ND 0.16 Toluene mg/kg 0.050 ND 0.49 1,2,3-Trichloroebnzene mg/kg	1.2 5: 11	,,	0.010	ND						
2,2-Dichloropropane mg/kg 0.010 ND 1,1-Dichloropropene mg/kg 0.010 ND cis-1,3-Dichloropropene mg/kg 0.010 ND trans-1,3-Dichloropropene mg/kg 0.010 ND Ethylbenzene mg/kg 0.015 ND 0.21 Hexachlorobutadiene mg/kg 0.010 ND 0.0067 Isopropylbenzene mg/kg 0.010 ND p-Isopropyltoluene mg/kg 0.010 ND m-Propylbenzene mg/kg 0.010 ND styrene mg/kg 0.050 ND 0.8 1,1,2,2-Tetrachloroethane mg/kg 0.050 ND 0.8 1,1,1,2-Tetrachloroethane mg/kg 0.050 ND 0.16 Toluene mg/kg 0.050 ND 0.16 Toluene mg/kg 0.010 ND 0.26 1,2,4-Trichloroebnzene mg/kg	1 -									
1,1-Dichloropropene mg/kg 0.010 ND cis-1,3-Dichloropropene mg/kg 0.010 ND trans-1,3-Dichloropropene mg/kg 0.010 ND Ethylbenzene mg/kg 0.015 ND 0.21 Hexachlorobutadiene mg/kg 0.010 ND 0.0067 Isopropylbenzene mg/kg 0.010 ND p-Isopropyltoluene mg/kg 0.010 ND n-Propylbenzene mg/kg 0.010 ND styrene mg/kg 0.050 ND 0.8 1,1,1,2-Tetrachloroethane mg/kg 0.050 ND 0.8 1,1,1,2-Tetrachloroethane mg/kg 0.050 ND 0.16 Toluene mg/kg 0.050 ND 0.16 Toluene mg/kg 0.010 ND 0.26 1,2,4-Trichloroebnzene mg/kg 0.010 ND 0.23 1,1,1-Trichloroethane mg/kg<										
cis-1,3-Dichloropropene mg/kg 0.010 ND trans-1,3-Dichloropropene mg/kg 0.010 ND Ethylbenzene mg/kg 0.015 ND 0.21 Hexachlorobutadiene mg/kg 0.010 ND 0.0067 Isopropylbenzene mg/kg 0.010 ND n-Propylbenzene mg/kg 0.010 ND n-Propylbenzene mg/kg 0.050 ND Styrene mg/kg 0.050 ND 0.8 1,1,1,2-Tetrachloroethane mg/kg 0.050 ND Tetrachloroethene mg/kg 0.050 ND 0.16 Toluene mg/kg 0.010 ND 0.16 Toluene mg/kg 0.010 ND 0.26 1,2,3-Trichlorobenzene mg/kg 0.010 ND 0.23 1,1,1-Trichloroethane mg/kg 0.010 ND 1,1,2-Trichloroethane mg/kg	1 -									
trans-1,3-Dichloropropene mg/kg 0.010 ND Ethylbenzene mg/kg 0.015 ND 0.21 Hexachlorobutadiene mg/kg 0.010 ND 0.0067 Isopropylbenzene mg/kg 0.010 ND p-Isopropyltoluene mg/kg 0.010 ND n-Propylbenzene mg/kg 0.010 ND styrene mg/kg 0.050 ND 0.8 1,1,1,2-Tetrachloroethane mg/kg 0.050 ND 1,1,2,2-Tetrachloroethane mg/kg 0.050 ND 0.16 Toluene mg/kg 0.010 ND 0.16 Toluene mg/kg 0.050 ND 0.49 1,2,3-Trichlorobenzene mg/kg 0.010 ND 0.26 1,2,4-Trichloroethane mg/kg 0.010 ND 1,1,2-Trichloroethane mg/kg 0.010 ND 1,1,2-Trichloroethane mg/kg </td <td></td> <td></td> <td></td> <td></td> <td></td>										
Ethylbenzene mg/kg 0.015 ND 0.21 Hexachlorobutadiene mg/kg 0.010 ND 0.0067 Isopropylbenzene mg/kg 0.010 ND p-Isopropyltoluene mg/kg 0.010 ND n-Propylbenzene mg/kg 0.010 ND styrene mg/kg 0.050 ND 0.8 1,1,1,2-Tetrachloroethane mg/kg 0.050 ND Styrene mg/kg 0.050 ND 0.8 1,1,2,2-Tetrachloroethane mg/kg 0.050 ND Tetrachloroethene mg/kg 0.050 ND 0.16 Toluene mg/kg 0.050 ND 0.49 1,2,3-Trichlorobenzene mg/kg 0.010 ND 0.26 1,2,4-Trichloroethane mg/kg 0.010 ND 1,1,2-Trichloroethane mg/kg 0.010 ND Trichloroethene mg/kg <td< td=""><td>els 1,5 Blemoropropene</td><td></td><td>0.010</td><td>112</td><td></td></td<>	els 1,5 Blemoropropene		0.010	112						
Hexachlorobutadiene mg/kg 0.010 ND 0.0067										
Isopropylbenzene	*									
p-Isopropyltoluene mg/kg 0.010 ND n-Propylbenzene mg/kg 0.010 ND Styrene mg/kg 0.050 ND 0.8 1,1,1,2-Tetrachloroethane mg/kg 0.010 ND 1,1,2,2-Tetrachloroethane mg/kg 0.050 ND Tetrachloroethene mg/kg 0.010 ND 0.16 Toluene mg/kg 0.050 ND 0.49 1,2,3-Trichloroetnee mg/kg 0.010 ND 0.26 1,2,4-Trichloroetnee mg/kg 0.010 ND 0.23 1,1,1-Trichloroethane mg/kg 0.010 ND 1,1,2-Trichloroethane mg/kg 0.010 ND 0.012 Trichloroethene mg/kg 0.010 ND 0.012 Trichloropfluoromethane mg/kg 0.010 ND 1,2,3-Trichloropropane mg/kg 0.020 ND 1,2,4-Trimethylbenzene										
n-Propylbenzene mg/kg 0.010 ND 0.8 Styrene mg/kg 0.050 ND 0.8 1,1,1,2-Tetrachloroethane mg/kg 0.050 ND 0.7 1,1,2,2-Tetrachloroethane mg/kg 0.050 ND 0.16 Tetrachloroethene mg/kg 0.050 ND 0.16 Toluene mg/kg 0.050 ND 0.16 Toluene mg/kg 0.050 ND 0.49 1,2,3-Trichlorobenzene mg/kg 0.010 ND 0.26 1,2,4-Trichloroethane mg/kg 0.010 ND 0.23 1,1,1-Trichloroethane mg/kg 0.010 ND 0.23 1,1,1-Trichloroethane mg/kg 0.010 ND 0.23 1,1,2-Trichloroethane mg/kg 0.010 ND 0.21 Trichloroethene mg/kg 0.010 ND 0.10 Trichloroethene mg/kg 0.010 ND 0.012 Trichlorofluoromethane mg/kg 0.010 ND 0.013 1,2,3-Trimethylbenzene mg/kg 0.010 ND 0.013 1,3,5-Trimethylbenzene mg/kg 0.010 ND 0.0034										
Styrene mg/kg 0.050 ND 0.8 1,1,1,2-Tetrachloroethane mg/kg 0.010 ND 1,1,2,2-Tetrachloroethane mg/kg 0.050 ND Tetrachloroethene mg/kg 0.010 ND 0.16 Toluene mg/kg 0.050 ND 0.49 1,2,3-Trichlorobenzene mg/kg 0.010 ND 0.26 1,2,4-Trichloroetnae mg/kg 0.010 ND 0.23 1,1,1-Trichloroethane mg/kg 0.010 ND Trichloroethene mg/kg 0.010 ND 0.012 Trichlorofluoromethane mg/kg 0.010 ND 0.012 Trichloropropane mg/kg 0.020 ND 1,2,3-Trimethylbenzene mg/kg 0.010 ND 1,2,5-Trimethylbenzene mg/kg 0.010 ND	p-Isopropyitoiuene	mg/kg	0.010	ND						
Styrene mg/kg 0.050 ND 0.8 1,1,1,2-Tetrachloroethane mg/kg 0.010 ND 1,1,2-Tetrachloroethane mg/kg 0.050 ND Tetrachloroethene mg/kg 0.010 ND 0.16 Toluene mg/kg 0.050 ND 0.49 1,2,3-Trichlorobenzene mg/kg 0.010 ND 0.26 1,2,4-Trichloroethane mg/kg 0.010 ND 0.23 1,1,1-Trichloroethane mg/kg 0.010 ND Trichloroethene mg/kg 0.010 ND 0.012 Trichloroethene mg/kg 0.010 ND 0.012 Trichlorofluoromethane mg/kg 0.010 ND 1,2,3-Trichloropropane mg/kg 0.020 ND 1,2,4-Trimethylbenzene mg/kg 0.010 ND Vinyl chloride mg/kg 0.20 ND 0.00034	n-Propylbenzene	mg/kg	0.010	ND						
1,1,2,2-Tetrachloroethane mg/kg 0.050 ND Tetrachloroethene mg/kg 0.010 ND 0.16 Toluene mg/kg 0.050 ND 0.49 1,2,3-Trichlorobenzene mg/kg 0.010 ND 0.26 1,2,4-Trichloroetnzene mg/kg 0.010 ND 0.23 1,1,1-Trichloroethane mg/kg 0.010 ND 1,1,2-Trichloroethane mg/kg 0.010 ND Trichloroethene mg/kg 0.010 ND 0.012 Trichlorofluoromethane mg/kg 0.010 ND 1,2,3-Trichloropropane mg/kg 0.020 ND 1,2,4-Trimethylbenzene mg/kg 0.010 ND Vinyl chloride mg/kg 0.20 ND 0.00034	Styrene		0.050	ND	0.8					
Tetrachloroethene mg/kg 0.010 ND 0.16 Toluene mg/kg 0.050 ND 0.49 1,2,3-Trichlorobenzene mg/kg 0.010 ND 0.26 1,2,4-Trichlorobenzene mg/kg 0.010 ND 0.23 1,1,1-Trichloroethane mg/kg 0.010 ND 1,1,2-Trichloroethane mg/kg 0.010 ND Trichloroethene mg/kg 0.010 ND 0.012 Trichlorofluoromethane mg/kg 0.010 ND 1,2,3-Trichloropropane mg/kg 0.020 ND 1,2,4-Trimethylbenzene mg/kg 0.010 ND Vinyl chloride mg/kg 0.20 ND 0.00034	1,1,1,2-Tetrachloroethane	mg/kg	0.010	ND						
Toluene										
1,2,3-Trichlorobenzene mg/kg 0.010 ND 0.26 1,2,4-Trichlorobenzene mg/kg 0.010 ND 0.23 1,1,1-Trichloroethane mg/kg 0.010 ND 1,1,2-Trichloroethane mg/kg 0.010 ND Trichloroethene mg/kg 0.010 ND 0.012 Trichlorofluoromethane mg/kg 0.010 ND 1,2,3-Trichloropropane mg/kg 0.020 ND 1,2,4-Trimethylbenzene mg/kg 0.010 ND 1,3,5-Trimethylbenzene mg/kg 0.010 ND Vinyl chloride mg/kg 0.20 ND 0.00034	Tetrachloroethene	mg/kg	0.010	ND	0.16					
1,2,3-Trichlorobenzene mg/kg 0.010 ND 0.26 1,2,4-Trichlorobenzene mg/kg 0.010 ND 0.23 1,1,1-Trichloroethane mg/kg 0.010 ND 1,1,2-Trichloroethane mg/kg 0.010 ND Trichloroethene mg/kg 0.010 ND 0.012 Trichlorofluoromethane mg/kg 0.010 ND 1,2,3-Trichloropropane mg/kg 0.020 ND 1,2,4-Trimethylbenzene mg/kg 0.010 ND 1,3,5-Trimethylbenzene mg/kg 0.010 ND Vinyl chloride mg/kg 0.20 ND 0.00034	Toluene	mg/kg	0.050	ND	0.49					
1,2,4-Trichlorobenzene mg/kg 0.010 ND 0.23 1,1,1-Trichloroethane mg/kg 0.010 ND 1,1,2-Trichloroethane mg/kg 0.010 ND Trichloroethene mg/kg 0.010 ND 0.012 Trichlorofluoromethane mg/kg 0.010 ND 1,2,3-Trichloropropane mg/kg 0.020 ND 1,2,4-Trimethylbenzene mg/kg 0.010 0.013 1,3,5-Trimethylbenzene mg/kg 0.010 ND Vinyl chloride mg/kg 0.20 ND 0.00034										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										
1,1,2-Trichloroethane mg/kg 0.010 ND Trichloroethene mg/kg 0.010 ND 0.012 Trichloroffuoromethane mg/kg 0.010 ND 1,2,3-Trichloropropane mg/kg 0.020 ND 1,2,4-Trimethylbenzene mg/kg 0.010 0.013 1,3,5-Trimethylbenzene mg/kg 0.010 ND Vinyl chloride mg/kg 0.20 ND 0.00034										
Trichlorofluoromethane mg/kg 0.010 ND 1,2,3-Trichloropropane mg/kg 0.020 ND 1,2,4-Trimethylbenzene mg/kg 0.010 0.013 1,3,5-Trimethylbenzene mg/kg 0.010 ND Vinyl chloride mg/kg 0.20 ND 0.00034				ND						
Trichlorofluoromethane mg/kg 0.010 ND 1,2,3-Trichloropropane mg/kg 0.020 ND 1,2,4-Trimethylbenzene mg/kg 0.010 0.013 1,3,5-Trimethylbenzene mg/kg 0.010 ND Vinyl chloride mg/kg 0.20 ND 0.00034	Tuichlanaothana		0.010	MD	0.012					
1,2,3-Trichloropropane mg/kg 0.020 ND 1,2,4-Trimethylbenzene mg/kg 0.010 0.013 1,3,5-Trimethylbenzene mg/kg 0.010 ND Vinyl chloride mg/kg 0.20 ND 0.00034										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
1,3,5-Trimethylbenzene mg/kg 0.010 ND Vinyl chloride mg/kg 0.20 ND 0.00034										
Vinyl chloride mg/kg 0.20 ND 0.00034										
	•									
Xylenes mg/kg 0.1 ND 12										
	Xylenes	mg/kg	0.1	ND	12					

- 1) Tier 1 Guideline Alberta Tier 1 Soil and Groundwater Remediation Guidelines, December 2010 and amendments. Coarse-grained criteria for residential/parkland land use.
- 2) ND Not Detected, less than the limit of method detection.
 3) -- No value established in the reference criteria.
- 4) Bold & Shaded Exceeds the referenced Alberta Tier 1 Guidelines.
- 5) For further laboratory information, refer to the specific laboratory report in Appendix A.

Table 4A
Groundwater Indices Measured at Time of Sampling

Monitoring Well	pН	Electrical Conductivity (µg/cm)	Temperature (°C)	Dissolved Oxygen (mg/L)	Total Dissolved Solid (mg/L)	Potential Redox (±mV)
MW-01 MW-02 MW-03	8.11 7.89	1,437 641 	6.9 6.9 	0.77 1.56	1,404.00 637.00 	-83.6 +42.3

- 1) Samples collected on Saturday, August 3, 2013.
- 2) Groundwater indices are field measured by YSI Pro Plus multi-meter.

Table 4B
Analytical Results - Groundwater - Routine Water Quality

Parameter	Unit	Detection	MW-01	MW-02	Tier 1
rarameter	Cilit	Limit		5/2013	Guideline
		Limit	08/03	72013	Guidenne
General Water Quality					
Biochemical Oxygen Demand	mg/L	2.0	11	2	
Chemical Oxygen Demand	mg/L	5.0	350	16	
Conductivity	μS/cm	1.0	2,400	1,100	
pН	Unitless	NA	7.20	7.51	6.5-8.5
Total Organic Carbon (C)	mg/L	0.50	10	3.5	
Dissolved Cadmium (Cd)	μg/L	0.0050	0.037	0.025	
Total Cadmium (Cd)	μg/L	0.0050	3.4	0.025	0.060*
Alkalinity (CaCO ₃)	mg/L	0.50	570	490	
Bicarbonate (HCO ₃)	mg/L	0.50	700	600	
Carbonate (CO ₃)	mg/L	0.50	ND	ND	
Hydroxide (OH)	mg/L	0.50	ND	ND	
Sulphates (SO ₄)	mg/L	1.0	100	48	
Chlorides (Cl)	mg/L	1.0 - 5.0	360	36	
Total Ammonia (NH ₃ -N)	mg/L	0.050 - 0.50	9	0.1	1.37*
Total Phosphorus (P)	mg/L	0.0030 - 0.0150	4.6	0.015	
Total Nitrogen (N)	mg/L	0.050	12	0.26	
Nitrate plus Nitrite (N)	mg/L	0.0030015	0.019	ND	
Total Kjeldahl Nitrogen (TKN)	mg/L	0.050 - 0.5	12	0.25	
Nitrite (NO ₂)	mg/L	0.0030 - 0.015	ND	ND	
Nitrate (NO ₃)	mg/L	0.0030	0.019	0.013	
Trace Organics					
Acetic Acid	mg/L	50	ND	ND	
Formic Acid	mg/L	50	ND	ND	
Propionic Acid	mg/L	50	ND	ND	
Adsorbable Organic Halogen	mg/L	0.004 - 0.02	0.29	0.016	

- 1) Tier 1 Guideline Alberta Tier 1 Soil and Groundwater Remediation Guidelines, December 2010 and amendments. Coarse-grained criteria for residential/parkland land use.
- 2) * Surface Water Quality Guidelines for Use in Alberta (AENV, 1999) on aquatic life pathway. Canadian Council of Ministers of the Environment (CCME) Guidelines as referenced in the Tier 1 Guidelines.
- 3) ND Not Detected, less than the limit of method detection.
- 4) -- No value established in the reference criteria.
- 5) Bold & Shaded Exceeds the referenced Alberta Tier 1 Guideline.
- 6) For further laboratory information, refer to the specific laboratory report in Appendix A.

Table 4C Analytical Results - Groundwater - Metals

Analytical Results - Groundwater - Metals									
Parameter	Detection	MW-01	MW-02	Tier 1					
	Limit	08/03	/2013	Guideline					
Total Metals									
Aluminum (Al)	0.0030	34	0.29	0.1*					
Antimony (Sb)	0.00060	0.0017	ND	0.006					
Arsenic (As)	0.00020	0.085	0.00072	0.005					
Barium (Ba)	0.010	1.8	0.15	1					
Beryllium (Be)	0.0010	0.0024	ND						
Boron (B)	0.020	0.11	0.065	1.5					
Calcium (Ca)	0.30	330	150						
Chromium (Cr)	0.0010	0.11	ND	0.001*					
Cobalt (Co)	0.00030	0.078	0.0022						
Copper (Cu)	0.00020	0.16	0.0023	0.003*					
T (F)	0.000	100	0.00	0.2					
Iron (Fe) Lead (Pb)	0.060	180 0.10	0.98 0.00057	0.3 0.004*					
Lithium (Li)	0.00020 0.020	0.10	0.00037	0.004					
Magnesium (Mg)	0.20	170	52						
Manganese (Mn)	0.0040	5.6	1.8	0.05					
Molybdenum (Mo)	0.00020	0.0071	0.00034	0.073*					
Nickel (Ni)	0.00050	0.20	0.0034	0.11*					
Phosphorus (P)	0.10	3.4	ND						
Potassium (K)	0.30	22	6.6						
Selenium (Se)	0.00020	0.0026	ND	0.001					
Silicon (Si)	0.10 - 0.50	100	9.9						
Silver (Ag)	0.00010	0.00058	ND	0.0001*					
Sodium (Na)	0.50	140	16						
Strontium (Sr)	0.020	1.8	0.97						
Sulphur (S)	0.20	32	15						
TEL 11: (TEL)	0.00020	0.00007	ND	0.0008*					
Thallium (Tl)	0.00020 0.0010	0.00097 0.0029	ND ND	0.0008*					
Tin (Sn) Titanium (Ti)	0.0010	0.0029	0.015						
Uranium (U)	0.0010	0.006	0.013	0.02					
Vanadium (V)	0.0010	0.000	0.0037	0.02					
v anadrum (v)	0.0010	0.17	0.0013						
Zinc (Zn)	0.0030	0.41	0.0097	0.03					
Dissolved Metals									
Aluminum (Al)	0.0030	0.017	0.011						
Antimony (Sb)	0.00060	ND	ND						
Arsenic (As)	0.00020	0.0230	ND						
Barium (Ba)	0.010	0.68	0.13						
Beryllium (Be)	0.0010	ND	ND						
Boron (B)	0.020	0.074	0.063						
Calcium (Ca)	0.30	160	140						
Chromium (Cr) Cobalt (Co)	0.0010 0.00030	ND 0.012	ND 0.0017						
Copper (Cu)	0.00030	0.0078	0.0017						
Copper (Cu)	0.00020	0.00078	0.002						
Iron (Fe)	0.060	27	0.11						
Lead (Pb)	0.00020	ND	ND						
Lithium (Li)	0.020	0.051	0.049						
Magnesium (Mg)	0.20	110	49						
Manganese (Mn)	0.0040	1.9	1.8						
Molybdenum (Mo)	0.00020	0.0015	0.00026						
Nickel (Ni)	0.00050	0.022	0.002						
Phosphorus (P)	0.10	ND	ND						
Potassium (K)	0.30	14	6.6						
Selenium (Se)	0.00020	ND	ND						
G.1. (G.)	0.10	1.5	0.1						
Silicon (Si)	0.10 0.00010	15 ND	9.1 ND						
Silver (Ag)		ND 140							
Sodium (Na) Strontium (Sr)	0.50 0.020	140 1.60	17 0.98						
Strontium (Sr) Sulphur (S)	0.020	32	15						
ourpliur (o)	0.20	32	1.5						
Thallium (Tl)	0.00020	ND	ND						
Tin (Sn)	0.0010	ND	ND						
Titanium (Ti)	0.0010	ND	ND						
Uranium (U)	0.00010	0.0011	0.0092						
Vanadium (V)	0.0010	ND	ND						
Zinc (Zn)	0.0030	0.0067	0.0062						
()									

- 1) Tier 1 Guideline Alberta Tier 1 Soil and Groundwater Remediation Guidelines, December 2010 and amendments. Coarse-grained criteria for residential/parkland land use.

 2) * Surface Water Quality Guidelines for Use in Alberta (AENV, 1999) on aquatic life pathway.

 Canadian Council of Ministers of the Environment (CCME) Guidelines as referenced in the Tier 1 Guidelines.
- 3) ND Not Detected, less than the limit of method detection.
- 4) Unless specified all units are mg/L.
 5) -- No value established in the reference criteria.
- 6) Bold & Shaded Exceeds the referenced Alberta Tier 1 Guideline.
- 7) For further laboratory information, refer to the specific laboratory report in Appendix A.

Table 4D
Analytical Results - Groundwater -VOCs

	Detection			Tier 1	
Parameter	Detection	MW-01	MW-02	Guideline	
	Limit	08/03	/2013	Guideline	
Volatile Organic Compounds					
Benzene	0.00040	0.0015	ND	0.005	
Toluene	0.00040	ND	ND	0.024	
Ethylbenzene	0.00040	ND	ND	0.0024	
Xylenes (Total)	0.00080	0.0018	ND	0.3	
F1 (C ₆ -C ₁₀)	0.10	ND	ND	0.81	
F2 (C ₁₀ -C ₁₆₎	0.10	ND	ND	1.1	
12 (C ₁₀ -C ₁₆₎	0.10	ND	ND	1.1	
Total Trihalomethanes	0.0020	ND	ND	0.1	
Bromodichloromethane	0.00050	ND	ND		
Bromoform	0.00050	ND	ND		
Bromomethane	0.0020	ND	ND		
Carbon tetrachloride	0.00050	ND	ND	0.00056	
Chlorobenzene	0.00050	ND	ND	0.0013	
Chlorodibromomethane	0.0010	ND	ND		
Chloroethane	0.0010	ND	ND		
Chloroform	0.00050	ND	ND	0.0018	
Chloromethane	0.0020	ND	ND		
1,2-dibromoethane	0.00050	ND	ND		
1,2-dichlorobenzene	0.00050	ND	ND	0.0007	
1,3-dichlorobenzene	0.00050	ND	ND		
1,4-dichlorobenzene	0.00050	ND	ND	0.001	
1,1-dichloroethane	0.00050	ND	ND		
1,2-dichloroethane	0.00050	ND	ND	0.005	
1,1-dichloroethene	0.00050	ND	ND	0.014	
cis-1,2-dichloroethene	0.00050	0.033	ND		
trans-1,2-dichloroethene	0.00050	0.0034	ND		
Dichloromethane	0.0020	ND	ND	0.05	
1,2-dichloropropane	0.00050	ND	ND		
cis-1,3-dichloropropene	0.00050	ND	ND		
trans-1,3-dichloropropene	0.00050	ND	ND		
Methyl methacrylate	0.00050	ND	ND	0.47	
Methyl-tert-butyl ether (MTBE)	0.00050	ND	ND	0.015	
Styrene	0.00050	ND	ND	0.072	
1,1,2-tetrachloroethane	0.0020	ND	ND		
1,1,2,2-tetrachloroethane	0.0020	ND	ND		
Tetrachloroethene	0.00050	ND	ND	0.03	
1,2,3-trichlorobenzene	0.0010	ND	ND	0.008	
1,2,4-trichlorobenzene	0.0010	ND	ND	0.015	
1,3,5-trichlorobenzene	0.00050	ND	ND	0.014	
1,1,1-trichloroethane	0.00050	ND	ND		
1,1,2-trichloroethane	0.00050	ND	ND		
Trichloroethene	0.00050	ND	ND	0.005	
Trichlorofluoromethane	0.00050	ND	ND		
1,2,4-trimethylbenzene	0.00050	0.004	ND		
1,3,5-trimethylbenzene	0.00050	0.004	ND		
Vinyl chloride	0.00050	0.003	ND	0.0011	
, · · · · · · · · · · · · · · · · · · ·			.=		

- 1) Tier 1 Guideline Alberta Tier 1 Soil and Groundwater Remediation Guidelines, December 2010 and amendments. Coarse-grained criteria for residential/parkland land use.
- 2) $\ensuremath{\mathsf{ND}}$ $\ensuremath{\mathsf{Not}}$ Detected, less than the limit of method detection.
- 3) Unless specified all units are mg/L (ppm).
- 4) -- No value established in the reference criteria.
- 5) Bold & Shaded Exceeds the referenced Alberta Tier 1 Guidelines.
- 6) For further laboratory information, refer to the specific laboratory report in Appendix A.

Table 5A
Summary of Parameters Measured During Sampling of Soil Vapour

Parameter	Well Diameter	Screen Length	Well Depth	Headspace Volume	Purge Rate	Purge Time	Pi	ressure
	(mm)	(cm)	(m)	(cm ³)	(cm ³ /min)	(min)	Ambient (psi)	Vapour Well (psi)
VW-01	25	30	3.5	1,718.06	943.3	4	15.00	15.00
VW-02	25	30	4.6	2,258.02	943.3	7	15.10	15.06
VW-03	25	30	4.0	1,963.50	943.3	5	15.14	15.08

- 1) Measurement of pressure by digital Cole-Parmer absolute pressure gauge.
- 2) Purge time is minimum elapsed time prior to the collection of a soil vapour sample.
- 3) Screen set at base of well.
- 4) Soil vapour sampling was completed on Saturday, August 3, 2013.

Table 5B Analytical Results - Soil Vapour - General Indices

Parameter	Unit	Detection Limit	VW-01	VW-02	VW-03
Gauge Pressure Following sampling Reported by laboratory	psi psi		-5.0 -1.4	NA -3.6	-5.0 -3.4
Fixed Gases Oxygen Nitrogen Carbon monoxide Methane Carbon dioxide	% v/v % v/v % v/v % v/v % v/v	0.2 - 0.3 0.2 - 0.3 0.2 - 0.3 0.2 - 0.3 0.2 - 0.3	8.4 52.5 ND 26 13.1	17.2 77.8 ND ND 4.6	19.8 78.3 ND ND 1.9

- 1) Soil vapour sample collected on Saturday, August 3, 2013.
- 2) ND Not Detected, less than the limit of method detection.
- 3) NA Not Available.
- 4) - No value established in the detection limit.
- 5) For further information, the reader should refer to the laboratory report in Appendix A.

Table 5C Analytical Results - Soil Va . VOCs

Analytical Results - Soil Vapour - VOCs									
Parameter	Unit	Detection Limit	VW-01	VW-02 08/03/13	VW-03				
				08/03/13					
Hydrocarbon Fractions Aliphatic >C ₅ -C ₆	μg/m³	5.0 - 480	53,000	332	6.8				
Aliphatic >C ₆ -C ₈	μg/m ³	5.0 - 480	88,300	2,990	34.4				
Aliphatic >C ₈ -C ₁₀	μg/m ³	5.0 - 480	ND	577	73.1				
Aliphatic >C ₁₀ -C ₁₂	μg/m ³	5.0 - 480	664	345	202				
Aliphatic >C ₁₀ C ₁₂	μg/m ³	5.0 - 480	ND	106	105				
Aromatic >C ₇ -C ₈ (TEX excluded)	μg/m ³	5.0 - 480	ND	ND	ND				
Aromatic >C ₈ -C ₁₀	μg/m ³	5.0 - 480	ND	44.8	30.9				
Aromatic >C ₁₀ -C ₁₂	μg/m³ μg/m³	5.0 - 480	ND	78.4	58.1				
Aromatic >C ₁₂ -C ₁₆	μg/III	5.0 - 480	ND	ND	ND				
Select Volatile Gases Acetylene		0.19 - 0.34	ND	ND	ND				
Ethane	ppm ppm	0.19 - 0.34	1.1	ND	ND				
Ethylene	ppm	0.19 - 0.34	0.67	ND	ND				
Methane n-Butane	ppm ppm	5.6 - 6.8 0.358 - 0.68	260,000 2.4	67 ND	ND ND				
n-Pentane Propane	ppm ppm	0.19 - 0.34 0.19 - 0.34	14 0.34	ND ND	ND ND				
Propene	ppm	0.19 - 0.34	0.22	ND	ND				
Propyne	ppm	0.38 - 0.68	ND	ND	ND				
Volatile Organic Compounds									
Dichlorodifluoromethane (FREON 12)	ppbv	0.20 - 58	ND ND	348	1.60				
1,2-Dichlorotetrafluoroethane Chloromethane	ppbv ppbv	0.17 - 16 0.30 - 29	ND ND	34.4 ND	0.58 1.03				
Vinyl chloride	ppbv	0.18 - 17	519	0.51	ND				
Chloroethane	ppbv	0.30 - 29	ND	ND	ND				
1,3-Butadiene	ppbv	0.50 - 48	ND	ND	ND				
Trichlorofluoromethane (FREON 11) Ethanol (ethyl alcohol)	ppbv ppbv	0.20 - 19 23 - 220	ND 322	50.6 180	0.42 648				
Trichlorotrifluoroethane	ppbv	0.15 - 14	ND	ND	ND				
2-propanol	ppbv	3.0 - 290	ND	3.6	5.1				
2-Propanone	ppbv	0.80 - 76	ND	36.5	18				
Methyl ethyl ketone (MEK) (2-Butanone)	ppbv	3.0 - 290	ND	ND	5.8				
Methyl isobutyl ketone Methyl butyl ketone (MBK) (2-Hexanone)	ppbv ppbv	3.2 - 300 2.0 - 190	ND ND	ND ND	ND ND				
Methyl t-butyl ether (MTBE)	ppbv	0.20 - 19	ND	ND	ND				
Ethyl acetate	ppbv	2.2 - 210	ND	ND	ND				
1,1-Dichloroethylene	ppbv	0.25 - 24	ND	1.41	ND				
cis-1,2-Dichloroethylene	ppbv	0.19 - 18	123	13.2	0.42				
trans-1,2-Dichloroethylene Methylene chloride(Dichloromethane)	ppbv ppbv	0.20 - 19 0.80 - 120	30 ND	ND 1.47	ND 1.06				
Chloroform		0.15 - 14	ND	18.2	0.52				
Carbon tetrachloride	ppbv ppbv	0.30 - 29	ND	ND	ND				
1,1-Dichloroethane	ppbv	0.20 - 19	ND	ND	ND				
1,2-Dichloroethane Ethylene dibromide	ppbv	0.20 - 19 0.17 - 16	ND ND	ND ND	ND ND				
_ ·	ppbv								
1,1,1-Trichloroethane 1,1,2-Trichloroethane	ppbv ppbv	0.30 - 29 0.15 - 14	ND ND	3.45 ND	ND ND				
1,1,2,2-Tetrachloroethane	ppbv	0.20 - 19	ND	ND	ND				
cis-1,3-Dichloropropene	ppbv	0.18 - 17	ND	ND	ND				
trans-1,3-Dichloropropene	ppbv	0.17 - 16	ND	ND	ND				
1,2-Dichloropropane Bromomethane	ppbv	0.40 - 38 0.18 - 17	ND ND	ND ND	ND ND				
Bromoform	ppbv ppbv	0.18 - 17	ND ND	ND ND	ND ND				
Bromodichloromethane	ppbv	0.20 - 19	ND	ND	ND				
Dibromochloromethane	ppbv	0.20 - 19	ND	ND	ND				
Trichloroethylene (TCE)	ppbv	0.30 - 29	ND	81.9	1.32				
Tetrachloroethylene (PCE) Benzene	ppbv ppbv	0.20 - 19 0.18 - 17	ND ND	221 5.17	ND 0.79				
Toluene	ppbv	0.20 - 81	ND	4.80	3.95				
Ethylbenzene	ppbv	0.20 - 27	ND	0.75	0.92				
p+m-xylene	ppbv	0.37 - 99	ND	1.89	3.65				
o-xylene Styrene	ppby	0.20 - 19	ND 42	1.22 ND	1.67 0.37				
4-ethyltoluene	ppbv ppbv	0.20 - 19 2.2 - 210	ND	ND ND	0.37 ND				
1,3,5-Trimethylbenzene	ppbv	1.9 - 48	ND	4.05	ND				
1,2,4-Trimethylbenzene	ppbv	0.50 - 48	ND	2.31	2.74				
Chlorobenzene	ppbv	0.20 - 19	ND ND	ND	ND ND				
Benzyl chloride 1,3-Dichlorobenzene	ppbv ppbv	1.0 - 95 0.40 - 38	ND ND	ND ND	ND ND				
1,4-Dichlorobenzene	ppbv	0.40 - 38	ND	ND	ND				
1,2-Dichlorobenzene	ppbv	0.40 - 38	ND	ND	ND				
1,2,4-Trichlorobenzene	ppbv	2.0 - 190	ND	ND	ND				
Hexachlorobutadiene Hexane	ppbv ppbv	3.0 - 290 1.3 - 29	ND 17,800	ND 142	ND ND				
Heptane	ppbv	0.30 - 29	1,970	181	0.58				
Cyclohexane	ppbv	0.20 - 19	4,900	219	0.35				
Tetrahydrofuran	ppbv	0.40 - 38	ND	ND	5.14				
1,4-Dioxane	ppbv	2.0 - 190	ND ND	ND	ND				
Xylene (Total) Vinyl bromide	ppbv ppbv	0.60 - 99 0.20 - 19	ND ND	3.11 ND	5.31 ND				
Propene		3.9 - 29	371	ND	ND				
2,2,4-Trimethylpentane	ppbv ppbv	3.9 - 29 0.20 - 19	ND	ND ND	0.64				
Carbon disulfide	ppbv	0.50 - 48	ND	40.5	3.21				
Vinyl acetate	ppbv	0.20 - 19	ND	ND	ND				

Results are from sampling completed on Saturday, August 03, 2013.
 ND - Not Detected, less than the limit of method detection.
 For further information, the reader should refer to the laboratory report in Appendix A.

Tiamat Environmental Consultants Ltd. Electronic Version 02

12-435 Phase II ESA - Red Deer Motors Site Historic Waste Disposal Sites, The City of Red Deer

Table 5D
Analytics Results - Soil Vapour - Siloxanes

	Detection	on Limit	VW	'-01	VV	V-02	VW-03		
Parameter				08/03/13					
	mg/m³	ppm	mg/m³	ppm	mg/m³	ppm	mg/m³	ppm	
Trimethylsilyl Fluoride			ND	ND	ND	ND	ND	ND	
Tetramethylsilane	0.00010 - 0.0022	0.0001 - 0.0006	ND	ND	ND	ND	ND	ND	
Methoxytrimethylsilane	0.0032 - 0.0563	0.0007 - 0.0132	ND	ND	ND	ND	ND	ND	
Ethoxytrimethylsilane	0.0031 - 0.0543	0.0006 - 0.0112	ND	ND	ND	ND	ND	ND	
Trimethylsilanol			0.0338	0.0092	ND	ND	0.0098	0.0027	
Isopropoxytrimethylsilane	0.0013 - 0.0229	0.00020 - 0.0042	ND	ND	ND	ND	ND	ND	
Trimethoxymethyl Silane #			ND	ND	ND	ND	ND	ND	
Hexamethyl Disiloxane - L2	0.00010 - 0.0021	0.0001 - 0.0003	ND	ND	ND	ND	ND	ND	
Propoxytrimethylsilane	0.0035 - 0.0621	0.0006 - 0.0115	ND	ND	ND	ND	ND	ND	
1-Methylbutoxytrimethylsilane *			ND	ND	ND	ND	ND	ND	
Butoxytrimethylsilane *			ND	ND	ND	ND	ND	ND	
Trimethoxyvinyl Silane #			ND	ND	ND	ND	ND	ND	
Hexamethyl Cyclotrisiloxane - D3			0.1927	0.0212	0.0844	0.0093	0.0146	0.0016	
Octamethyl Trisiloxane - L3	0.0002 - 0.0041	0.0001 - 0.0004	ND	ND	ND	ND	ND	ND	
Triethoxyvinyl Silane #			ND	ND	ND	ND	ND	ND	
Triethoxyethyl Silane #			ND	ND	ND	ND	ND	ND	
Octamethyl Cyclotetrasiloxane - D4			0.0739	0.0061	0.0299	0.0025	0.0234	0.0019	
Decamethyl Tetrasiloxane - L4	0.0003 - 0.0053	0.0001 - 0.0004	ND	ND	ND	ND	ND	ND	
Tetraethylsilicate #			ND	ND	ND	ND	ND	ND	
Decamethyl Cyclopentasiloxane - D5			0.0349	0.0023	0.0321	0.0021	0.0420	0.0028	
Dodecamethyl Pentasiloxane - L5	0.0030 - 0.0528	0.0002 - 0.0034	ND	ND	ND	ND	ND	ND	
Dodecamethyl Cyclohexasiloxane - D6	0.0531	0.0029	ND	ND	0.1454	0.0080	0.1513	0.0083	
Sum			0.6503	0.0870	0.4152	0.0432	0.2559	0.0198	

- 1) Soil vapour samples collected on Saturday, August 3, 2013.
- 2) ND Not Detected, less than the limit of method detection.
- 3) - No value established in the detection limit.
- 4) VW-01 V=10.0mL, VW-02 V=25mL, VW-03 V=200 mL, where V is volume of air/gas sampled.
- 5) * Semiquanititative (response factor set at 5).
- 6) # Unstable, poor detectability, commercial standards tested.
- 7) For further information, the reader should refer to the laboratory report in Appendix A.